
Professor
Department of Electrical and Electronics Engineering

Mepco Schlenk Engineering College
Sivakasi, Tamil Nadu

N. Senthil Kumar

Professor
Department of Electrical and Electronics Engineering

Thiagarajar College of Engineering
Madurai, Tamil Nadu

M. Saravanan

Microprocessors
and Interfacing

8086, 8051, 8096, and advanced processors

Professor
Department of Electrical and Electronics Engineering

Pondicherry Engineering College
Puducherry

S. Jeevananthan

Professor and Head
Department of Electrical Engineering

MS University of Baroda
Vadodara, Gujarat

S.K. Shah

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

3
Oxford University Press is a department of the University of Oxford.

It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of

Oxford University Press in the UK and in certain other countries.

Published in India by
Oxford University Press

YMCA Library Building, 1 Jai Singh Road, New Delhi 110001, India

© Oxford University Press 2012

The moral rights of the author/s have been asserted.

First published in 2012

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the

prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence, or under terms agreed with the appropriate reprographics

rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the

address above.

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.

ISBN-13: 978-0-19-807906-4
ISBN-10: 0-19-807906-0

Typeset in Times New Roman
by Trinity Designers & Typesetters, Chennai

Printed in India by Tara Art Printers (P) Ltd, Noida

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Brief Contents xi

Features of the Book iv

 Preface vii

 1. Microprocessors—Evolution and Introduction to 8085 1

 2. Methods of Data Transfer and Serial Transfer Protocols 47

PART I: INTEL 8086—16-BIT MICROPROCESSORS

 3. Intel 8086 Microprocessor Architecture, Features, and Signals 63

 4. Addressing Modes, Instruction Set, and Programming of 8086 80

 5. 8086 Interrupts 175

 6. Memory and I/O Interfacing 210

 7. Features and Interfacing of Programmable Devices for
 8086-based Systems 240

 9. 8086-based Systems 372

PART II: INTEL 8051—8-BIT MICROCONTROLLERS

 10. Introduction to 8051 Microcontrollers 391

 11. 8051 Instruction Set and Programming 402

 12. Hardware Features of 8051 427

 13. 8051 Interface Examples 464

PART III: INTEL 8096—16-BIT MICROCONTROLLERS

 14. Overview of Intel 8096 Microcontrollers 517

 15. 8096 Instruction Set and Programming 530

 16. Hardware Features of 8096 549

PART IV: ADVANCED TRENDS

 17. Microprocessor System Developments and Recent Trends 591

 18. Advanced Microprocessors and Microcontrollers 604

 19. Embedded Systems 663

 20. Hybrid Programming Techniques Using ASM and C/C++ 736

Brief Contents

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

xii Brief Contents

Appendix A: 8086 Case Studies 752

 Appendix B: 8051 Case Studies 758

 Appendix C: 8275 CRT Controller Chip 766

 Appendix D: Multiple Choice Questions 777

 Appendix E: 8086 Instruction Set 797

 Appendix F: 8051 Instruction Set 803

 Bibliography 811

 Index 812

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Detailed Contents xiii

Features of the Book iv

 Preface vii

 Brief Contents xi
 1. Microprocessors—Evolution and Introduction to 8085 1

1.1 Introduction 1
1.2 Explanation of Basic Terms 2
1.3 Microprocessors and Microcontrollers 5
1.4 Microprocessor-based System 6
1.5 Origin of Microprocessors 7

1.5.1 First generation (1971–1973) 8
1.5.2 Second generation (1974–1978) 8
1.5.3 Third generation (1978–1980) 8
1.5.4 Fourth generation (1981–1995) 8
1.5.5 Fifth generation (1995–till date) 9
1.5.6 Timeline of microprocessor evolution 9

1.7 Types of Memory 11
1.8 Input and Output Devices 13
1.9 Technology Improvements Adapted to Microprocessors and
 Computers 14
1.10 Introduction to 8085 Processor 14
1.11 Architecture of 8085 16

1.11.1 Arithmetic and logic unit 16
1.11.2 General-purpose registers 17
1.11.3 Special-purpose registers 17
1.11.4 Instruction register and decoder 19
1.11.5 Timing and control unit 19

1.12 Microprocessor Instructions 23

1.13.1 Based on functionality 24
1.13.2 Based on length 26
1.13.3 Addressing modes in instructions 28

1.14 Instruction Set of 8085 30
1.14.1 Format of assembly language instructions and programs 31
1.14.2 Data transfer instructions 31
1.14.3 Arithmetic instructions 34
1.14.4 Logical instructions 36
1.14.5 Branching instructions 38
1.14.6 Machine control instructions 39

1.15 Sample Programs 40
1.16 Instruction Execution 42

Detailed Contents

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

xiv Detailed Contents

 2. Methods of Data Transfer and Serial Transfer Protocols 47
2.1 Data Transfer Mechanisms 47
2.2 Memory-mapped and I/O-mapped Data Transfer 47
2.3 Programmed Data Transfer 48
2.4 Direct Memory Access 49
2.5 Parallel Data Transfer 50
2.6 Serial Data Transfer 50

2.6.1 Introduction to RS-232 standard 51
2.6.2 Introduction to RS-485 standard 54
2.6.3 GPIB/IEEE 488 standards 55

2.7 Interrupt Structure of a Microprocessor 57
2.8 Types of Interrupts 57

2.8.1 Vectored and non-vectored interrupts 57
2.8.2 Maskable and non-maskable interrupts 58
2.8.3 Software and hardware interrupts 58

2.9 Interrupt Handling Procedure 58

PART I: INTEL 8086—16-BIT MICROPROCESSORS

 3. Intel 8086 Microprocessor Architecture, Features, and Signals 63
3.1 Introduction 63
3.2 Architecture of 8086 63

3.2.1 Execution unit 63
3.2.2 Bus interface unit 66
3.2.3 Minimum and maximum mode operations 67

3.3 Accessing Memory Locations 67
3.4 Pin Details of 8086 70

3.4.1 Function of pins common to minimum and maximum modes 70
3.4.2 Function of pins used in minimum mode 72
3.4.3 Function of pins used in maximum mode 73

3.5 Differences Between 8086 and 8088 74
 4. Addressing Modes, Instruction Set, and Programming
 of 8086 80

4.1 Addressing Modes in 8086 80
4.1.1 Register Addressing Mode 80
4.1.2 Immediate Addressing Mode 80
4.1.3 Data Memory Addressing Modes 81
4.1.4 Program Memory Addressing Modes 83
4.1.5 Stack Memory Addressing Mode 85

4.3 Instruction Format of 8086 87
4.3.1 One-byte instruction 87
4.3.2 Register to register 87
4.3.3 Register to/from memory with no displacement 87
4.3.4 Register to/from memory with displacement 89
4.3.5 Immediate operand to register 89
4.3.6 Immediate operand to memory with 16-bit displacement 89

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Detailed Contents xv

4.4 Instruction Set of 8086 91
4.4.1 Data transfer instructions 91
4.4.2 Arithmetic instructions 94
4.4.3 Logical instructions 102
4.4.4 Flag manipulation instructions 103
4.4.5 Control transfer instructions 103
4.4.6 Shift/rotate instructions 106
4.4.7 String instructions 109
4.4.8 Machine or processor control instructions 110

4.5 8086 Assembly Language Programming 110
4.5.1 Writing programs using line assembler 111
4.5.2 Writing time delay programs 127
4.5.3 8086 Assembler directives 129
4.5.4 Writing assembly language programs using MASM 138

4.6 Program Development Process 162
4.7 Modular Programming 164

4.7.1 CALL instruction 165
4.7.2 RET instruction 166
4.7.3 Macro 167
4.7.4 Illustrative example 168

 5. 8086 Interrupts 175
5.1 Introduction 175
5.2 Interrupt Types in 8086 175
5.3 Processing of Interrupts by 8086 176
5.4 Dedicated Interrupt Types in 8086 178

5.4.1 Type 00H or divide-by-zero interrupt 178
5.4.2 Type 01H, single step, or trap interrupt 178
5.4.3 Type 02H or NMI interrupt 178
5.4.4 Type 03H or one-byte INT interrupt 179
5.4.5 T

5.5 Software Interrupts—Types 00H–FFH 179
5.6 INTR Interrupts—Types 00H–FFH 180
5.7 Priority Among 8086 Interrupts 182
5.8 Interrupt Service Routines 182
5.9 BIOS Interrupts or Function Calls 189

5.9.1 INT 10H 189
5.9.2 INT 11H 191
5.9.3 INT 12H 192
5.9.4 INT 13H 192
5.9.5 INT 14H 192
5.9.6 INT 15H 192
5.9.7 INT 16H 192
5.9.8 INT 17H 192

5.10 Interrupt Handlers 194
5.11 DOS Services: INT 21H 195
5.12 System Calls—BIOS Services 198

5.12.1 Print screen service: INT 05H 199

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

xvi Detailed Contents

5.12.2 Video services: INT 10H 200
5.12.3 Keyboard services: INT 16H 202
5.12.4 Printer services: INT 17H 204

 6. Memory and I/O Interfacing 210
6.1 Physical Memory Organization in 8086 210
6.2 Formation of System Bus 211
6.3 Interfacing RAM and EPROM Chips using Only Logic Gates 213
6.4 Interfacing RAM/EPROM Chips using Decoder IC and
 Logic Gates 217
6.5 I/O Interfacing 220

6.5.1 I/O instructions in 8086 220
6.5.2 I/O-mapped and memory-mapped I/O 220

6.6 Interfacing 8-bit Input Device with 8086 222
6.6.1 Assigning 8-bit address to 8-bit input device using
 address decoder having only logic gates 222
6.6.2 Assigning 8-bit address to 8-bit input device using
 address decoder IC 74LS138 222
6.6.3 Assigning 16-bit address to 8-bit DIP switch using
 address decoder having only logic gates 224

6.7 Interfacing 8-bit Output Device with 8086 224
6.8 Interfacing Printer with 8086 225
6.9 Interfacing 8-bit and 16-bit I/O Devices or Ports with 8086 229
6.10 Interfacing CRT Terminal with 8086 233

 7. Features and Interfacing of Programmable Devices for
 8086-based Systems 240

7.1 Intel 8255 Programmable Peripheral Interface 240
7.1.1 Features of 8255 241
7.1.2 Block diagram of Intel 8255 241
7.1.3 Operating modes and control words of 8255 242
7.1.4 Programming examples 248

7.2 Interfacing Switches and LEDS 249
7.2.1 Debouncing of keys 253

7.3 Interfacing Seven-segment Displays 254

7.5 Interfacing Analog-to-digital Converters 259
7.5.1 ADC chips and interfacing to microprocessor 260

7.6 Interfacing Digital-to-analog Converters 263
7.6.1 Square wave generation 264
7.6.2 Staircase waveform generation 265
7.6.3 Ramp waveform generation 266
7.6.4 Waveform generation using stored data 267

7.7 Interfacing Stepper Motors 268
7.8 Interfacing Intelligent LCDs 273
7.9 Keyboard and Display Interface IC 8279 278

7.9.1 Matrix keyboard 278
7.9.2 Multiplexed display 283
7.9.3 Features, block diagram, and pin details of 8279 285

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Detailed Contents xvii

7.9.4 Programming of 8279 287
7.9.5 Display interface using 8279 292
7.9.6 Keyboard interface using 8279 293

7.10 Intel Timer IC 8253 295
7.10.1 Features of IC 8253 295
7.10.2 Block diagram of IC 8253 and pin details 295
7.10.3 Operating modes and control word of IC 8253 297
7.10.4 Interfacing of IC 8253 with 8086 302
7.10.5 Application examples 302

7.11 Introduction to Serial Communication 307
7.11.1 Features and details of 8251 USART 309
7.11.2 Control words 312
7.11.3 Interfacing 8251 with 8086 314

7.12 8259 Programmable Interrupt Controller 317
7.12.1 Features and architecture of 8259 318
7.12.2 Pin diagram and details of 8259 320
7.12.3 Initialization of 8259 320
7.12.4 Operation of 8259 324
7.12.5 Interfacing of 8259 to 8086 325

7.13 8237 DMA Controller 326
7.13.1 Features, pin details, and architecture of 8237 327
7.13.2 DMA initialization and operation 333
7.13.3 Operation of 8237 with 8086 335

 8. Multiprocessor Con guration 343
8.1 Introduction 343
8.2 Multiprocessor System—Need and Advantages 344

8.4 Bus Arbitration in Loosely-coupled Multiprocessor System 346
8.4.1 Daisy chaining 347
8.4.2 Polling 347
8.4.3 Independent requesting 348

8.5 Interconnection Topologies in a Multiprocessor System 349
8.5.1 Shared bus architecture 349
8.5.2 Multi-port memory 349
8.5.3 Linked input/output 350
8.5.4 Crossbar switching 350

8.6 Physical Interconnections Between Processors in a
 Multiprocessor System 351

8.6.4 Regular topology 352
8.6.5 Irregular topology 352

8.7 Operating System used in a Multiprocessor System 353
8.8 Typical Multiprocessor System having 8086 and 8087 353

8.8.1 Architecture of 8087 354

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

xviii Detailed Contents

8.8.2 Pin details of 8087 354
8.8.3 Interconnection of 8087 with 8086 356
8.8.4 Data types of 8087 358

8.9 Typical Multiprocessor System having 8086 and 8089 359
8.9.1 Pin details of 8089 360
8.9.2 Local and remote operation of 8089 362
8.9.3 8089 architecture 364
8.9.4 Communication between CPU (8086) and IOP (8089) 367

 9. 8086-based Systems 372
9.1 Introduction 372

9.2.1 Formation of separate address bus and data bus in 8086 372
9.2.2 Formation of buffered address bus and data bus in 8086 374
9.2.3 Connection of 8284A with 8086 375

9.4 8086 System Bus Timings 378
9.4.1 Timing diagrams for general bus operation in minimum mode 378
9.4.2 Timing diagrams for general bus operation in maximum mode 382
9.4.3 Interrupt acknowledgement (INTA) timing 383
9.4.4 Bus request and bus grant timing 384

9.5 Design of Minimum Mode 8086-based System 385

PART II: INTEL 8051—8-BIT MICROCONTROLLERS

 10. Introduction to 8051 Microcontrollers 391
10.1 Introduction 391
10.2 Intel’s MCS-51 Series Microcontrollers 392
10.3 Intel 8051 Architecture 392
10.4 Memory Organization 394
10.5 Internal RAM Structure 395

10.5.1 Special function registers 397
10.5.2 Processor status word 397

10.6 Power Control in 8051 399
10.6.1 Idle mode 399
10.6.2 Power down mode 400

10.7 Stack Operation 400
 11. 8051 Instruction Set and Programming 402

11.1 Introduction 402
11.2 Addressing Modes of 8051 402

11.2.1 Immediate addressing 402
11.2.2 Register direct addressing 402
11.2.3 Memory direct addressing 403
11.2.4 Memory indirect addressing 403
11.2.5 Indexed addressing 403

11.3 Instruction Set of 8051 404
11.3.1 Data transfer instructions 404
11.3.2 Arithmetic instructions 405

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Detailed Contents xix

11.3.3 Logical instructions 406
11.3.4 Branching instructions 407
11.3.5 Bit manipulation instructions 408

11.4 Some Assembler Directives 410
11.5 Programming Examples using 8051 Instruction Set 410

 12. Hardware Features of 8051 427
12.1 Introduction 427
12.2 Parallel Ports in 8051 427

12.2.1 Structure of port 1 428
12.2.2 Structure of ports 0 and 2 429
12.2.3 Structure of port 3 430

12.3 External Memory Interfacing in 8051 432
12.3.1 Program memory interfacing 432
12.3.2 Data memory interfacing 434
12.3.3 Timing diagram for external program and data memory access 435

12.4 8051 Timers 437
12.4.1 Timer SFRs 437
12.4.2 Timer operating modes 439
12.4.3 Timer control and operation 442
12.4.4 Using timers as counters 443
12.4.5 Programming examples 443

12.5 8051 Interrupts 445
12.5.1 Interrupt sources and interrupt vector addresses 445
12.5.2 Enabling and disabling of interrupts 446
12.5.3 Interrupt priorities and polling sequence 447
12.5.4 Timing of interrupts 448
12.5.5 Programming examples 450

12.6 8051 Serial Ports 453
12.6.1 Serial port control SFRs 453
12.6.2 Operating modes 455
12.6.3 Programming the serial port 457

 13. 8051 Interface Examples 464
13.1 Interfacing 8255 with 8051 464
13.2 Interfacing of Push Button Switches and LEDs 465
13.3 Interfacing of Seven-segment Displays 467
13.4 Interfacing ADC chip 469
13.5 Interfacing DAC chip 471

13.5.1 Square wave generation 472
13.5.2 Staircase wave generation 472
13.5.3 Ramp wave generation 473
13.5.4 Sine wave generation 474

13.6 Interfacing Matrix Keypad 475
13.7 Interfacing Stepper Motor with 8051 478
13.8 Interfacing LCD with 8051 482
13.9 Interfacing DC Motors/Servomotors 487

13.9.1 Bidirectional DC motor control 488
13.10 Microcontroller Application Example—Stopwatch 489

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

xx Detailed Contents

13.12 Microcontroller Application Example—Thermometer 495
13.13 RTC Interfacing using I2C Standard 498

13.13.1 Details of I2C bus 499
13.13.2 8051 Subroutines used to implement I2C bus 503
13.13.3 DS1307—Serial I2C real-time clock IC 505

PART III: INTEL 8096—16-BIT MICROCONTROLLERS

 14. Overview of Intel 8096 Microcontrollers 517
14.1 Introduction 517
14.2 Features of Intel 8096 Microcontroller 519
14.3 Functional Block Diagram 519

14.3.1 CPU section 519
14.3.2 8096 CPU buses 521
14.3.3 Register arithmetic and logical unit 521
14.3.4 Temporary register 521

14.3.6 Program status word 523
14.3.7 Memory controller 523
14.3.8 Internal timing 523
14.3.9 I/O section 524

14.4 Memory Structure 525
14.5 Power Down Mode of CPU 528

 15. 8096 Instruction Set and Programming 530
15.1 8096 Operand Types 530
15.2 Addressing Modes 531

15.2.1 Register direct addressing 531
15.2.2 Indirect addressing 531
15.2.3 Indirect addressing with auto increment 532
15.2.4 Immediate addressing 532
15.2.5 Short-indexed addressing 532
15.2.6 Long-indexed addressing 532
15.2.7 Zero register addressing 532
15.2.8 Stack pointer register addressing 533

15.3.1 Data transfer instructions 533
15.3.2 Arithmetic and logical instructions 533
15.3.3 Shift/rotate instructions 534
15.3.4 Branching instructions 535

15.4 Complete 8096 Instruction Set 536
15.5 Programming Examples using 8096 Instruction Set 540

 16. Hardware Features of 8096 549
16.1 Parallel Ports in 8096 and Their Structure 549

16.1.1 Port 0 549
16.1.2 Port 1 550
16.1.3 Port 2 550

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Detailed Contents xxi

16.1.4 Ports 3 and 4 551
16.2 Control and Status Registers 551

16.2.1 Input/output control register 0 551
16.2.2 Input/output control register 1 552
16.2.3 Input/output status register 0 552
16.2.4 Input/output status register 1 553

16.3 Timers 553
16.3.1 Timer 1 553
16.3.2 Timer 2 554

16.4 Interrupts 556
16.4.1 Interrupt sources 556
16.4.2 Polling routine 557
16.4.3 Vectored interrupt 557
16.4.4 Interrupt control 559
16.4.5 Interrupt pending register 560
16.4.6 Interrupt mask register 561
16.4.7 Global disable 561
16.4.8 Program status word 561

16.5 Serial Ports 562
16.5.1 Operating modes of serial port 563
16.5.2 Serial port control/status registers 564
16.5.3 Determining baud rate 564
16.5.4 Program for serial port data reception 565

16.6 Analog-to-digital Converter 566
16.7 Digital-to-analog Converter 569
16.8 High Speed Input Unit 570

16.8.1 HSI interrupts 573
16.8.2 Programming HSI 573

16.9 High Speed Output Unit 575
16.9.1 HSO status 578

16.10 Memory Expansion 578
16.10.1 Single-chip mode 579
16.10.2 Expanded mode 579
16.10.3 Choice of bus width 580
16.10.4 Bus control 581
16.10.5 ROM/EPROM lock 583

PART IV: ADVANCED TRENDS

 17. Microprocessor System Developments and Recent Trends 591
17.1 Introduction 591
17.2 Microcontroller Features and Developments 591
17.3 Microprocessor Development Systems 593

17.3.1 In-system programming 594
17.3.2 Debugger 594
17.3.3 Emulator 594

17.4 Cross Compiler for 8051 595
17.5 Programming 8051 in C Language 596

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

xxii Detailed Contents

 18. Advanced Microprocessors and Microcontrollers 604
18.1 Introduction 604
18.2 80186 Microprocessor 605

18.2.1 Architecture 605
18.2.2 Instruction set of 80186 606

18.3 80286 Microprocessor 607
18.3.1 Architecture 607
18.3.2 Register organization and real or protected addressing in
 80286 608
18.3.3 Privilege levels in protected mode of operation 611
18.3.4 Descriptor cache or program-invisible registers 613
18.3.5 Accessing memory using GDT and LDT 613
18.3.6 Multitasking in 80286 615
18.3.7 Addressing modes and new instructions in 80286 616
18.3.8 Flag register 617

18.4 80386 Microprocessor 618
18.4.1 Architecture of 80386 618
18.4.2 Register organization in 80386 620
18.4.3 Instruction set of 80386 623
18.4.4 Addressing memory in protected mode 624
18.4.5 Physical memory organization in 80386 625
18.4.6 Paging mechanism in 80386 626

18.5 80486 Microprocessor 629
18.6 Pentium Microprocessor 632

18.6.1 Architecture of Pentium 632
18.6.2 Protected mode operation of Pentium 637
18.6.3 Addressing modes in Pentium 637
18.6.4 Paging mechanism in Pentium 637

18.7 Other Versions of Pentium 637
18.7.1 Pentium Pro processor 637
18.7.2 Pentium II processor 638
18.7.3 Pentium III processor 638
18.7.4 Pentium 4 processor 638

18.8 Operating Modes of Advanced Processors 638
18.9 Mode Transition 639
18.10 Memory Management in Protected Mode 640
18.11 Segment Descriptor 640
18.12 Protection: Purpose 643

18.12.1 Type checking 644
18.12.2 Limit checking/restriction of addressable domain 644
18.12.3 Privilege levels 645

18.13 Protected Mode Instructions 647
18.14 Multitasking 649

 19. Embedded Systems 663
19.1 Introduction 663

19.1.1 Characteristics of embedded systems 663
19.1.2 Design metric 665
19.1.3 Evolution of embedded systems 667

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Detailed Contents xxiii

19.1.4 Design technology 667

19.3 Embedded Processor Architecture 669
19.3.1 RISC and CISC architectures 671
19.3.2 SISD/SIMD 673
19.3.3 The e200z6 core 673
19.3.4 Cell microprocessor 675
19.3.5 PowerPC architecture 675
19.3.6 PIC16F877 microcontroller 679
19.3.7 ARM processors 695

19.4 SUN SPARC Microprocessor 707
19.4.1 SPARC architecture 707

19.4.3 Data types in SPARC architecture 712
19.4.4 SPARC instruction format 713
19.4.5 Adressing modes in SPARC microprocessor 714
19.4.6 Instruction set in SPARC microprocessor 714
19.4.7 Load and store instructions 715
19.4.8 Arithmetic and logical instructions 716
19.4.9 Branch instructions 717
19.4.10 Special instructions 718

19.5 Software Embedded into System 721
19.5.1 Codesign 722

19.6 Bus Architectures 725
19.6.1 Parallel bus protocols 725
19.6.2 Serial bus protocols 726
19.6.3 Serial wireless protocols 727

19.7 Memory 727
19.7.1 Memory technologies 728
19.7.2 Memory hierarchy 728
19.7.3 Memory interfacing 729

19.8 I/O Interfacing 729
19.9 Smart Card Design 730

19.9.1 Vertical (concurrent) and horizontal (serial) codesign 731
19.9.2 Security extension 732

 20. Hybrid Programming Techniques using ASM and C/C++ 736
20.1 Combining Assembly Language with C/C++ 736
20.2 Calling Conventions 737

20.2.1 CDECL calling convention 738
20.2.2 STDCALL calling convention 739
20.2.3 FASTCALL calling convention 740

20.3 Passing Parameter Techniques 740
20.4 Techniques for 16-bit ALP Microsoft C/C++ for DOS 741

20.4.1 Inline assembly 741
20.4.2 Linked assembly 742

20.5 Using ALP with C/C++ for 32-bit Applications 743
20.5.1 Calling ALP procedure from C 744

20.6 32-bit Windows Programming 744

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

xxiv Detailed Contents

20.6.1 Console functions 745
20.6.2 Microsoft Win32 application programming interface 747

20.7 Program Development Methods 749

Appendix A: 8086 Case Studies 752

 Appendix B: 8051 Case Studies 758

 Appendix C: 8275 CRT Controller Chip 766

 Appendix D: Multiple Choice Questions 777

 Appendix E: 8086 Instruction Set 797

 Appendix F: 8051 Instruction Set 803

 Bibliography 811

 Index 812

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Microprocessors—Evolution and
Introduction to 8085

1

LEARNING OUTCOMES
After studying this chapter, you will be able to understand the following:

1.1 INTRODUCTION
The microprocessor is an electronic chip that functions as the central processing
unit (CPU) of a computer. In other words, the microprocessor is the heart of any
computer system. Microprocessor-based systems with limited resources are called
microcomputers. Today, microprocessors can be found in almost all consumer
electronic devices such as computer printers, washing machines, microwave ovens,
mobile phones, fax machines, and photocopiers and in advanced applications such

dozen microprocessors in different forms inside various appliances. The recent
developments in the electronics industry and the large-scale integration of devices
have led to rapid cost reduction and increased application of microprocessors and
their derivatives.
 Typically, basic microprocessor chips have arithmetic and logic functional units

all microprocessors use the basic concept of stored-program execution. Programs
or instructions to be executed by the microprocessor are stored sequentially in
memory locations. The microprocessor, or the processor in general, fetches the
instructions one after another and executes them in its arithmetic and logic unit. So
all microprocessors have a built-in memory access and management part as well
as some amount of memory.

and programmed by the user. Without a program, the microprocessor unit is a

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

2 Microprocessors and Interfacing

must also understand the instructions that a microprocessor can support. Every
microprocessor has its own associated set of instructions; this list is given by all
microprocessor manufacturers. The instruction set for microprocessors is in two
forms—one in mnemonic, which is comparatively easy to understand and the other

for us to understand. Generally, programs are written using mnemonics called
assembly-level language and then converted into binary machine-level language.
This conversion can be done manually or using an application called assembler.

real world data. Data are available in many forms and from many sources. To input
these data to the microprocessor, the microprocessor-based systems need some
input interfacing circuits and some electronic processing circuits. These circuits

This again needs interfacing circuits and ports. So a microprocessor-based system
will need a set of memory units and interfacing circuits for inputs and outputs.

microcomputer system.
The physical components of the microcomputer system are called hardware. The

software.
 The semiconductor manufacturing technology for chips has developed from
transistor–transistor logic (TTL) to complementary metal-oxide-semiconductor
(CMOS). Microprocessor manufacturing also has gone through these technological
changes. The other semiconductor manufacturing technology available is emitter-
coupled logic (ECL). TTL technology is most commonly used for basic digital
integrated circuits; CMOS is favoured for portable computers and other battery-
powered devices because of its low power consumption.

1.2 EXPLANATION OF BASIC TERMS
The terms relevant to the use of microprocessors are explained in this section. These
explanations will give the reader an understanding of various microprocessor-
related terms, technologies, and topics.

Chip
required circuits and transistors etched on it to perform a particular function.
Simpler processors may consist of a few thousand transistors etched onto a silicon
base just a few millimeters square.

Bit
unit of computer memory. In binary form, a bit can have only two values, 0 or 1,
whereas a decimal digit can have 10 values, represented by symbols 0 through 9.

Bit size The bit size of a microprocessor refers to the number of bits that can be
processed simultaneously by the basic arithmetic circuits of the microprocessor.

Word
microprocessors, a word refers to the basic data size or bit size that can be processed

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Microprocessors—Evolution and Introduction to 8085 3

Memory word The number of bits that can be stored in a register or memory
element is called memory word. Mostly, all memory units use eight bits for their
memory word.

Byte

Nibble

Kilobyte 10 bytes).

Megabyte bytes).

RAM or R/W memory Random access memory or read/write memory is a type
of semiconductor memory in which a particular memory location can be erased
and written with new data at any time. These memory units are volatile, which
means that the contents of the memory are erased when the power to the chip is
disrupted. The access of the individual memory location can be done randomly. In

DRAM Dynamic random access memory is a semiconductor memory in which
the stored contents need to be refreshed repeatedly at about thousands of times per
second. Without refreshing, the stored data will be lost. These memory chips are
preferred in a computer system as these are slower but economical.

SRAM Static random access memory

faster.

ROM Read only memory devices are memory devices whose contents are
retained even after removing the power supply.

Arithmetic and logic unit
to perform arithmetic and logic operations on digital data. The typical operations

will decide the processor’s functionality.

Microcontroller
memory, and input/output signal ports. Microcontrollers can be called single-chip
microcomputers.

Microcomputer The system formed by interfacing the microprocessor
with the memory and I/O devices to execute the required programs is called
microcomputer.

Bus a group of wires/lines that carry similar information.

System bus The system bus is a group of wires/lines used for communication
between the microprocessor and peripherals.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

4 Microprocessors and Interfacing

Firmware Software written for a microprocessor application without provision

of the computer system.

Input device The devices that are used for providing data and instructions to the
microprocessor or microcomputer system are called input devices. Keyboard and
mouse are the common input devices.

Output device The devices that are used for transferring data out of the
microprocessor or microcomputer system are called output devices. Display
screen, printer, and other forms of display are the common output devices.

Floppy disk

Disk drive The hardware component that is used to read or write data to devices

Computer architecture
digital computer are together called computer architecture.

Von–Neumann architecture The architecture in which the same memory is
used for storing programs as well as data.

Harvard architecture The architecture in which programs and data are stored
in two separate memory units.

CISC processor Complex instruction set computer is a processor architecture
that supports many machine language instructions.

RISC processor Reduced instruction set computer is a processor architecture
that supports limited machine language instructions. RISC processors are expected
to execute the programs faster than CISC processors.

High-level language

languages.

Assembly language
or the instruction set of a particular microprocessor is called assembly language.

understood as a high-level language program, but is easier than a machine language
program.

Machine language Machine language refers to binary code programs that are

language is the lowest level language and cannot be easily understood.

Assembler
program into machine-level language program.

Compiler
into machine-level language program.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Microprocessors—Evolution and Introduction to 8085 5

Interpreter
program one line at a time and converts it into machine-level program. Compiler

Algorithm

end points.

BIOS Basic input/output system is a set of programs that handles the input and

must be provided with the corresponding BIOS routines.

Clock The circuit in the computer that generates the sequence of evenly spaced
pulses to synchronize the activities of the processor and its peripherals is called

is in the range of megahertz (MHz) or gigahertz (GHz).

MIPS Million instructions per second is a measure of the speed at which the
instructions are executed in a processor.

Tri-state logic It is the logic used by digital circuits. The three logic levels used
are high (1), low (0), and high impedance state (Z). The logic high state of a digital

devices connected to it are not affected.

Operating system The program that controls the entire computer and its
resources and enables users to access the computer and its resources is called
operating system. It is required for any computer system to become operational and
user friendly. Under the control of the operating system, the computer recognizes
and obeys commands typed by the user. In addition, the operating system provides
built-in routines that allow the user’s program to perform input/output operations

microprocessor-based systems, the program that controls the hardware is called
monitor routine or monitor software.

1.3 MICROPROCESSORS AND MICROCONTROLLERS
The microprocessor (also called CPU) is the principal element of a computer
as it executes lists of instructions. These instruction lists are commonly called
programs. This programming language is complex to use since it is machine- or

 Two types of processors are manufactured—the microprocessor and the

The distinction comes from the established functionalities.
 The general-purpose microprocessors give the computers all the necessary
computing power. These microprocessors need additional circuitry elements such

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

6 Microprocessors and Interfacing

especially the start-up program that runs when the microprocessor is powered on.
There are numerous microprocessors developed by many companies. The

Microcontrollers are microprocessors designed specially for control
applications. Microcontrollers contain memory units and I/O ports inside a chip, in
addition to the CPU. Microcontrollers are otherwise called embedded controllers;
they are generally used to control and operate smart machines. Some of the
machines using microcontrollers are microwave ovens, washing machines, sewing
machines, automobile ignition systems, computer printers, and fax machines.

other advanced microcontrollers.

1.4 MICROPROCESSOR-BASED SYSTEM

called a microcomputer system. The system consists of CPU, memory, and I/O

Fig. 1.1

CPU Memory Input Output

Data bus

Control bus

processor with the other parts of the microcomputer system needs a three-bus
architecture. The three buses are data bus, address bus, and control bus.

to a postal address. In microprocessor systems, the addresses are all in binary,
and in general, represented in hexadecimal number format. The address is a

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Microprocessors—Evolution and Introduction to 8085 7

unique pattern used to identify a location
in the memory or an I/O port. The
address bus consists of many lines that
transport the digital data sent by the

corresponds to eight lines of addresses
different memory

locations. These addresses are written
in hexadecimal number format as 00H–

different addresses.

bus, the greater the number of locations the processor is able to manage.

or between the I/O device and the processor is done through the data bus. The

the peripherals. The control bus basically consists of signals for selection of the
correct memory or I/O device from the address, indication of the direction of data
transfer, and synchronization of data transfer between slow devices. Many of the
control signals are given by the processor itself because the processor is the master
of the computer system. Some control signals such as selection of the correct
memory chip can be generated externally by the logic circuits. The timing of the
control signal is very important; the entire timing of the operation is controlled by

1.5 ORIGIN OF MICROPROCESSORS
th century. Its evolution started

from the earlier mechanical calculating devices, in the 1930s. These devices used

the personal computer revolution in the 1970s.
The transistor technology led to the development of complex devices called

integrated circuits (ICs). The microprocessor, or microprocessing unit (MPU),
later evolved as an IC and was designed to fetch instructions and execute the

Input

Output

Input

Output

CPU

Fig. 1.2

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

8 Microprocessors and Interfacing

1.5.1 First Generation (1971–1973)
The microprocessors that were introduced from 1971 to 1973 were referred to

instructions serially—they fetched the instruction, decoded it, and then executed

(PMOS) technology, which provided low cost, slow speed, and low output currents.

microprocessors.

1.5.2 Second Generation (1974–1978)

chip grew. Very large-scale integration (VLSI) led to chips that had speeds up to

technology to fabricate chips. They were manufactured using n-channel metal-

execution speed and higher chip densities.

1.5.3 Third Generation (1978–1980)

was designed using high density metal-oxide-semiconductor (HMOS) technology.

1.5.4 Fourth Generation (1981–1995)
The microprocessors entered their fourth generation with designs containing more

They were fabricated using high density/high speed complementary metal-oxide-
semiconductor (HCMOS), a low-power version of the HMOS technology.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Microprocessors—Evolution and Introduction to 8085 9

1.5.5 Fifth Generation (1995–till date)

Table 1.1 Comparison of general-purpose processors

General-purpose processors Transistors CPU speed Data length (bits)

1.5.6 Timeline of Microprocessor Evolution

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

10 Microprocessors and Interfacing

difference was in the available number of data bits of the data bus.

operating systems, including Windows.

one for instructions and the other for data. It was based on dual pipeline

memory architectures.

 (xi) 1999—Intel Celeron processor and Intel Pentium III processor

companies have their own chips and architectures in addition to the regular Intel-
based architectures.

1.6 CLASSIFICATION OF MICROPROCESSORS

architecture.
 Based on the size of the data that the microprocessors can handle, they are

 (i) General-purpose processors
 (ii) Microcontrollers
 (iii) Special-purpose processors

 General-purpose processors are those that are used in general computer system
integration and can be used by the programmer for any application. Common

processors. Microcontrollers are microprocessor chips with built-in hardware
for the memory and ports. These chips can be programmed by the user for any
generic control application. Special-purpose processors

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Microprocessors—Evolution and Introduction to 8085 11

to handle special functions required for an application. Digital signal processors
are examples of special-purpose processors; these have special instructions to

also examples of this category of microprocessors.

 (i) RISC processors
 (ii) CISC processors
 (iii) VLIW processors
 (iv) Superscalar processors

 RISC is a processor architecture that supports limited machine language
instructions. RISC processors can execute programs faster than CISC processors.
CISC processors have about 70 to a few hundred instructions and are easier to
program. However, CISC processors are slower and more expensive than RISC
processors. Very long instruction word (VLIW) processors have instructions
composed of many machine operations. These instructions can be executed in
parallel. This parallel execution is called instruction-level parallelism. VLIW
processors also have a large number of registers. Superscalar processors use
complex hardware to achieve parallelism. It is possible to have overlapping of
instruction execution to increase the speed of execution.

1.7 TYPES OF MEMORY
Memory unit is an integral part of any microcomputer system. Its primary purpose is
to hold program and data. The main objective of the memory unit design is to enable

balance between cost and operating speed, a memory system is usually designed
using different materials such as solid state, magnetic, and optical materials.

 (i) Processor memory/register
 (ii) Cache memory
 (iii) Primary or main memory
 (iv) Secondary memory

 Processor memory refers to a set of CPU registers. Processor registers are the

are available within the processor, they are the fastest memory registers. The main
disadvantage is the cost involved, which restricts the number of registers and their
bytes.
 Cache memory is the fastest external memory; it is placed close to the processor.
The instructions to be executed are placed in the cache memory for access by

and if an instruction is not in cache, it refers to the primary memory.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

12 Microprocessors and Interfacing

Primary memory is the storage area from which all the programs are executed.

memory. The primary memory is much larger than the processor memory and the
cache memory but its operating speed is slower. The primary memory in a system
varies from few KB to a few MB.

Secondary memory
source codes, compilers, operating systems, etc. These are not accessed directly or
very frequently by the microprocessor in a computer system. Secondary memory

devices are called non-volatile memories.

Primary memory normally includes ROM

Fig. 1.3

Primary memory

ROM

Static Dynamic
PROM

OTP
ROM

EPROM EEPROM
memory

construction and hence larger size per unit storage. So they are more expensive.

they are powered. However, they have simpler construction and smaller size per
unit storage. These devices are less expensive and comparatively slower.

their contents are programmed by the manufacturer. Since they are mass
produced, they are inexpensive. The customer cannot erase or program it
afterwards.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Microprocessors—Evolution and Introduction to 8085 13

1.8 INPUT AND OUTPUT DEVICES

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

14 Microprocessors and Interfacing

1.9 TECHNOLOGY IMPROVEMENTS ADAPTED TO
 MICROPROCESSORS AND COMPUTERS

1.10 INTRODUCTION TO 8085 PROCESSOR

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Microprocessors—Evolution and Introduction to 8085 15

fetches instructions from the memory, decodes it (i.e., interprets the nature of

stored in consecutive memory locations. The execution steps are repeated for all
the instructions of the program until the execution is terminated by hardware or

the results of the program may be either stored in the memory or transferred out
through output ports.

the start of execution, the complete program must be stored in the memory. Let us

single-byte instructions) and so on until it reaches the end of the program.

processing unit (CPU), input and output units, and memory units, as shown in

Fig. 1.4

Memory

Processor

(ROM)
Read only memory

Random access memory

Control unit

Input
unit

Output
unit

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

16 Microprocessors and Interfacing

arithmetic and logical operations. The control unit translates the instructions and

1.11 ARCHITECTURE OF 8085

similarities.

(iii) Special-purpose registers (iv) Instruction register and decoder
(v) Timing and control unit

1.11.1 Arithmetic and Logic Unit

Interrupt control Serial I/O control

Temp reg.

data bus

Instruction

and logic

unit

Instruction
decoder

and
machine

cycle
encoding

Multiplexer

R
eg

. s
el

ec
t

Incrementer/Decrementer

}Register
array

Temp reg. Temp reg.

Temp reg. Temp reg.

Temp reg. Temp reg.

Temp reg. Temp reg.

Timing and controlCLK

CLK
OUT

RD
WR S0S1

IO/M
HOLD

RESET OUT

Control Status Reset

RST RST SID SOD

Fig. 1.5

Power
supply

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Microprocessors—Evolution and Introduction to 8085 17

the data used in arithmetic and logic operations must be stored in the accumulator.

arithmetic and logical operations are stored in the accumulator. If the operation
needs only one data, that data must be stored in the accumulator.

1.11.2 General-purpose Registers

Though the registers are all storage areas inside the microprocessor, they differ in
the purpose of storage. The general-purpose registers are used to store only the
data that is being used by the program under execution and the results obtained
from it. These general-purpose registers are user accessible through programs.

arithmetic and logical
operations, these registers
are used as the second

being the accumulator

registers but they can be

as well. This can be
achieved by combining
the register pairs B and C,
D and E, and H and L to

They are then named register pairs BC, DE, and HL, respectively.

location to which the HL pair is pointing, to the accumulator. The HL pair is pre-
loaded with the memory address in which data is available.

1.11.3 Special-purpose Registers

1.11.3.1 Accumulator

Data bus

Fig. 1.6 Registers of Intel 8085

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

18 Microprocessors and Interfacing

logical operations. The output of an operation is also stored in the accumulator.

communicates with input/output devices only through the accumulator.

1.11.3.2 Flag Register

others. In all other registers, each bit is part of a single binary byte value and hence

the status of a recent arithmetic or logical operation. It may be set or reset after an
arithmetic or logical operation according to the condition of the processed data. The

register remain unassigned;

show that they are not used
and are don’t cares.

be accessed externally.

the number. (It may be recalled that signed magnitude numbers use 1 to indicate

signed arithmetic operations.

sets, i.e., it changes to binary 1 if the result in the accumulator is zero; if not, it
remains reset, i.e., at binary 0.

of an arithmetic operation in the accumulator. When addition is carried out, it

value of the borrow in subtractions.

carry is generated in the process of an arithmetic operation in the accumulator,

to the higher nibble). This carry is also called half-carry. It may also occur in the

operation results in borrowing from the higher nibble.

S Z P CY

D7 D3 D1 D0

Fig. 1.7 Flag register

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Microprocessors—Evolution and Introduction to 8085 19

It is set for operation in the even parity mode.

1.11.3.3 Program Counter

next instruction to be executed. In other words, this register is used to sequence the

the memory location indicated by the PC is moved to the instruction register and

memory address from which the next byte is to be fetched, and hence the name
program counter.

1.11.3.4 Stack Pointer

store the return address of the main program when a subroutine is called. While

1.11.4 Instruction Register and Decoder

locations, before their actual execution. The content of the register is decoded by
the decoder circuitry, where the nature of the operation to be performed is decided
(interpreted). In addition, there are two temporary registers W and Z, which are
controlled internally and not available for user access.

1.11.5 Timing and Control Unit
The timing and control unit gets commands from the instruction decoder and
issues signals on the data bus, address bus, and control bus. The following sections
explain the operation of the various buses and the timing.

using buses. There are three types of buses—the address bus, the data bus, and the
control bus.

1.11.5.1 Data Bus

wires with common functions are grouped together and referred to as the data bus.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

20 Microprocessors and Interfacing

 The data bus (D0–D7) is a two-way bus carrying data around the system.
Information going into the microprocessor and results coming out of the
microprocessor are through this data bus. It is used for transfer of binary information
between the microprocessor, memory, and peripherals. The lower group of eight

count. Therefore, the multiplexed lower group of address lines and data lines is

1.11.5.2 Address Bus
The address bus carries addresses and is a one-way bus from the microprocessor to
the memory or other devices. It is a group of sixteen unidirectional lines that allows

 bytes

memory location.

(D0–D7) and hence, they are bidirectional. When the instruction is executed, these
lines carry the address bits during the early part, and the eight data bits during the
later part. To separate the address from the data, a latch is used externally to save
the address before the function of the bits changes.

1.11.5.3 Control Bus
The control bus carries control signals that are partly unidirectional and partly

vital. The control bus typically consists of a number of single lines that coordinate

will indicate whether memory is being written into or read from. Thus, they are
individual lines that provide a pulse to indicate the operation of the microprocessor.

which in turn are used to identify the type of device the processor intends to
communicate with. The following points describe the control and status signals

lines, thereby de-multiplexing the address bus and data bus.
(ii) RD

from the selected I/O or memory device and that they are available on the
data bus.

(iii) WR
bus are to be written into a selected memory or I/O location.

(iv) IO/M

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Microprocessors—Evolution and Introduction to 8085 21

operation (IO/M = 0) and a high on this line indicates an I/O operation (IO/M
= 1).

operation being performed. The status
signals combine with I/O signals to
govern various operations; they are

are low, the operation of the processor
tends to halt. If S0 is low and S1 is
high, the processor reads data. If S0 is high and S1 is low, the processor
writes data onto a memory or I/O device. If both S0 and S1 are high, the
fetch operation is performed.

how the movement of data within the computer is accomplished by a series of

inside the microprocessor as well as in the external system. Hence, the buses are
present both internally and externally.

priority externally initiated signals. When an interrupt signal is detected by the
processor, it suspends the execution of the current program and executes the

,
Hold, and Ready as inputs. The following points explain these signals in

active high signal.
(b)

signal.

Table 1.2 Status signals and
associated operations

S1 S0 States

0 0 Halt
0 1 Write
1 0 Read
1

Memory Input
Output

Data bus

Control bus

MPU

D7
D0

Real
world
data

Fig. 1.8

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

22 Microprocessors and Interfacing

interrupts.
(e)

counter is set to zero and the processor is reset. It is an active low signal.

are connected to the processor. It is an active high signal.

and data buses.

the Hold request. During the Hold state, the peripheral (I/O) devices
get control over the data and address buses for data transfer to and from

is useful when high-speed peripherals want to transfer data to and from
memory. The processor does not intervene during this period.

read/write signals until a slow-responding peripheral is ready to send or
accept data. If this signal goes low, then the processor is allowed to wait

Fig. 2.7

1

3

7

9
10
11

13

17

19

RESET OUT
SOD
SID

VSS

39

37

33

31
30

VCC
HOLD

CLK (OUT)

IO/M
S1
RD
WR

S0

Serial
I/O
signals

SID

CLK (OUT)RESET OUT

IO/M

S1

RD
WR

S0

Higher-order
address bus

 V

VCC

SOD

HOLD

RESET

VSS

(a) (b)

Multiplexed
lower-order
address/data
bus

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Microprocessors—Evolution and Introduction to 8085 23

 V
for power supply.

1.11.5.4 Serial I/O Signals
There are two signals to implement serial transmission. They are serial input data
(SID) and serial output data (SOD). The data bits are sent over a single line, one
bit at a time, in serial transmission.
 (i)

accumulator whenever a RIM instruction is executed.
 (ii)

instruction.

1.11.5.5 Power Supply and System Clock

 (i)

divided by two to give the operating system frequency. There are three
advantages in increasing the frequency of a crystal—as frequency increases,
the crystal size becomes smaller, and the crystal becomes lighter and cheaper.

frequency crystal can be used. So, to run the microprocessor at 3 MHz, a

the microprocessor cannot execute any program.
 (ii)

rest of the system.

 VCC V supply; VSS—ground reference.

1.12 MICROPROCESSOR INSTRUCTIONS
Every microprocessor has its own instruction set. Based on the design of the

instructions for every microprocessor manufactured. The instruction set consists
of both assembly language mnemonics and the corresponding machine code.

programs by the users. The instruction set is based on the architecture of the
processor. So to understand the instruction set of a processor, it is necessary to
understand the basic architecture of the microprocessor and the user-accessible

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

24 Microprocessors and Interfacing

instruction is a bit pattern that is decoded inside a microprocessor

these binary patterns so that the user can easily understand the functions performed
by these instructions. The entire group of instructions that a microprocessor
can handle is called its instruction set; this determines the microprocessor’s

Rs = Source register

Rp = Register pair (BC, DE, HL, and SP)

() = Contents of

1.13 CLASSIFICATION OF INSTRUCTIONS

functionality, length, and operand addressing.

1.13.1 Based on Functionality

 (iii) Logical operations (iv) Branching operations
 (v) Machine control operations

1.13.1.1 Data Transfer (Copy) Operations
This group of instructions copies data from a location called source register to
another location called destination register. Generally, the contents of the source

data transfer is used for the copy
operation, it is misleading because it implies that the contents of the source
memory location are destroyed. The various types of data transfer are listed in
Table 1.3 along with examples of each type.

Table 1.3 Types of data transfer

Type Example

and another register D to the accumulator

(Contd)

}

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Microprocessors—Evolution and Introduction to 8085 25

Table 1.3 Types of data transfer (Contd)

Type Example

and the accumulator device to the accumulator

1.13.1.2 Arithmetic Operations

operations is stored in the accumulator; the result is also stored in the accumulator.

a register or memory location with the contents of the accumulator. The result

addition, i.e., the content of the HL register pair can be added to that of another
register pair and the result stored in the HL register pair.

operation also uses the accumulator as reference, i.e., it subtracts the content of a
register or memory location from that of the accumulator and stores the result in
the accumulator.

Increment/Decrement These operations can be used to increment or decrement

and logical operations, the increment and decrement operations need not be based
upon the accumulator.

1.13.1.3 Logical Operations
Logical instructions are also accumulator-oriented, i.e., they require one of the
operands to be placed in the accumulator. The other operand can be any register or
memory location. The result is stored in the accumulator. The operations that use

The data can be rotated left or right, through the carry or without the carry.

is used to compare register or memory content with the accumulator content. The

1.13.1.4 Branching Operations
Branching instructions are important for programming a microprocessor. These

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

26 Microprocessors and Interfacing

instructions can transfer control of execution from one memory location to another,

instructions
(ii) Execution control can return to the point of branching, which is stored by the

1.13.1.5 Machine Control Operations
These instructions can be used to control the execution of other instructions. They
include halting the operation of the microprocessor, interrupting program execution,

1.13.2 Based on Length

 (i) One-byte instructions (ii) Two-byte instructions
 (iii) Three-byte instructions

storage and execution by the processor. So the length of the machine language
code instructions determines the length of the program. This in turn determines the
amount of memory required for the program.

1.13.2.1 One-byte Instructions
Instructions that require only one byte in machine language are called one-byte
instructions. These instructions just have the machine code or opcode alone to
represent the operation to be performed. The common examples are the instructions
that have their operands within the processor itself. Some examples of one-byte

content of a memory location to that of the accumulator, its machine code requires
only one byte.

Let us now understand the
instruction MOV Rd, Rs. This
instruction copies the contents of
source register Rs to destination
register Rd. (Rd Rs)

It is coded as 01dddsss. Here,
ddd is the binary code of one of the
seven general-purpose registers that is the destination of the data and sss is the
binary code of the source register.

Example:
 MOV A, B (coded as 01111000 = 78H)

1.13.2.2 Two-byte Instructions
Instructions that require two bytes in machine code are called as two-byte

Table 1.4

Opcode Operand Machine code/Opcode/
 Hex code

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Microprocessors—Evolution and Introduction to 8085 27

Table 1.5

 Opcode Operand Machine code/Opcode/Hex code Byte description

The instruction is stored in two consecutive memory locations.
 MVI R, data—(R data)

Example:
 MVI A, 32H (coded as 3E 32 in two contiguous bytes)
This is an example of immediate addressing.

is not the data itself, but points directly to where it is located, this is called

1.13.3.

1.13.2.3 Three-byte Instructions
Instructions that require three bytes in machine code are called three-byte

memory location. Some common examples of three-byte instructions are listed in

Table 1.6

 Opcode Operand Machine code/Opcode/Hex code Byte description

 90 Third byte

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

28 Microprocessors and Interfacing

example of immediate addressing.)

1.13.3 Addressing Modes in Instructions
Every instruction in a program has to operate on data. The process of specifying
the data to be operated on by the instruction is called addressing
software development for the microprocessor requires complete familiarity with
the addressing mode employed for each instruction.

the destination is a register. The source and destination are operands. The various
formats for specifying operands are called addressing modes

(i) Immediate addressing (ii) Memory direct addressing
(iii) Register direct addressing (iv) Indirect addressing
(v) Implied or implicit addressing

1.13.3.1 Immediate Addressing
Immediate addressing transfers the
operand given in the instruction—a byte
or word—to the destination register or
memory location. The operand is part of
the instruction. The format for immediate

Example:
MVI A, 9AH

(a) The operand is part of the instruction.
(b) The operand is stored in the register mentioned in the instruction.

Example:
ADI 05H

Immediate addressing has no memory reference to fetch data. It executes faster,
but has limited data range.

1.13.3.2 Memory Direct Addressing
Memory direct addressing moves a byte or word between a memory location and
register. The memory location address is given in the instruction. The instruction
set does not support memory-to-memory transfer. Memory direct addressing is

Instruction

 Opcode Operand

Fig. 1.10
addressing

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Microprocessors—Evolution and Introduction to 8085 29

Operand

Memory

Instruction

Fig. 1.11

Example:
LDA 850FH

accumulator.

Example:
STA 9001H

This instruction is used to store the contents of the accumulator in the memory
address 9001H.

In these instructions, the memory address of the operand is given in the instruction.
Direct addressing is also used for data transfer between the processor and

the input port and store it in the accumulator; the OUT instruction is used to send
the data from the accumulator to the output port.

Example:
IN 00H and OUT 01H

1.13.3.3 Register Direct Addressing
Register direct addressing transfers a copy of a byte or word from the source
register to the destination register. The operand is in the register named in the
instruction. It executes very fast, has very limited register space, and requires
good assembly programming. The operand is within in the processor itself; so the

Fig. 1.12Fi 1 12

Operand

Registers Opcode Register R

Instruction

R

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

30 Microprocessors and Interfacing

Example:
MOV Rd, Rs
MOV B, C

It copies the contents of register C to register B.

Example:
ADD B

It adds the contents of register B to the accumulator and saves it in the accumulator.

1.13.3.4 Indirect Addressing
Indirect addressing transfers a byte or word between a register and a memory
location. The address of a memory location is stored in a register and that register

In indirect addressing, the effective address is calculated by the processor using

access (or accesses) to retrieve the data which is to be loaded in the register.

Example:
MOV A, M

Here, the data is in the memory location pointed to by the contents of the HL pair.
The data is moved to the accumulator.

Operand

Memory

Opcode Register address R

Instruction

Memory address
to operand

Registers

R

Fig. 1.13

1.13.3.5 Implied or Implicit Addressing

1.14 INSTRUCTION SET OF 8085

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Microprocessors—Evolution and Introduction to 8085 31

1.14.1 Format of Assembly Language Instructions and Programs

converted into machine language code, and then stored in the memory of the
microprocessor-based system. The conversion of an assembly language program
into machine language code is called assembling; the application that performs this

by the programmers. To facilitate the process of assembling, the assembly language

 Memory address Machine code/Opcode Label Mnemonics with operands Comments

Fig. 1.14

In general, the assembly language mnemonics with their operands are written

label. The purpose of labels is to give the correct branch addresses in instructions.
Labels are separated from mnemonics with a colon.

The comments column is essential for any program as it helps the programmer
understand the logic of the program at any point in time. Without comments, it is

from the mnemonics with a semicolon.

language programming. These columns must contain only binary numbers, but for

columns automatically.

Table 1.7

Memory Machine code/ Label Mnemonics Comments
address Opcode with operands

 location

1.14.2 Data Transfer Instructions
Data transfer instructions are used to transfer data between two registers in the
microprocessor or between a peripheral device and the microprocessor. Some
instructions and their features are given in the following points. The complete list

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

32 Microprocessors and Interfacing

(iii) In direct addressing mode, MOV instruction is used for data transfer between
registers. In indirect addressing mode, MOV is used for data transfer between

the memory location pointed to by the HL pair is considered for data transfer.

Table 1.8 Data transfer instructions

Mnemonics Tasks performed on Addressing Instruction Example
 execution mode length

 to the register

 the register pair

 the source register to direct
 the destination register

 with the data from the direct
 memory location
 indicated by the

 registers directly from direct
 the two consecutive
 memory locations
 indicated by the

 the accumulator in the direct
 memory location
 indicated by the

 the H and L registers direct
 in two consecutive
 memory locations
 indicated by the

PUSH Rp Pushes the contents of Register One byte PUSH B
 the register pair onto direct

POP Rp Pops the top two memory Register One byte POP H

 onto a register pair

 accumulator to the port
 indicated by the

(Contd)

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Microprocessors—Evolution and Introduction to 8085 33

Table 1.8 Data transfer instructions (Contd)

Mnemonics Tasks performed on Addressing Instruction Example
 execution mode length

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

34 Microprocessors and Interfacing

1.14.3 Arithmetic Instructions

Table 1.9 Arithmetic instructions

Mnemonics Tasks performed on Addressing Instruction Example
 execution mode length

(Contd)

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Microprocessors—Evolution and Introduction to 8085 35

Table 1.9 (Contd)

Mnemonics Tasks performed on Addressing Instruction Example
 execution mode length

 register and the carry to direct
 the contents of the
 accumulator
SUB R Subtracts the contents of Register One byte SUB B
 the register from that of direct
 the accumulator
SBB R Subtracts the contents Register One byte SBB C
 of the register and the direct
 borrow from that of the
 accumulator

Register
 register pair to that of the direct
 H and L registers

Register
 by 1 direct

Register
 pair by 1 direct
DCR R Decrements the register Register One byte DCR E
 by 1 direct

Register
 pair by 1 direct

 memory location pointed
 to by the HL register pair
 to that of the accumulator

 memory location pointed
 to by the HL register pair
 and the carry to that of
 the accumulator
SUB M Subtracts the contents of Indirect One byte SUB M
 the memory location
 pointed to by the HL
 register pair from that
 of the accumulator
SBB M Subtracts the borrow and Indirect One byte SBB M
 the contents of the
 memory location pointed
 to by the HL pair from
 that of the accumulator

(Contd)

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

36 Microprocessors and Interfacing

Table 1.9 (Contd)

Mnemonics Tasks performed on Addressing Instruction Example
 execution mode length

 location pointed to by the
 HL register pair by 1
DCR M Decrements the memory Indirect One byte DCR M
 location pointed to by the
 HL register pair by 1

 the accumulator from
 binary to BCD (Decimal-

and the other given or addressed in the instruction.

addition.
 (iii) Similarly, subtract-with-borrow instructions are used in multi-byte and

higher-order byte subtraction.
 (iv) Increment and decrement instructions can be operated not only on the

accumulator, but also on other registers including memory locations.

used to convert the result of the binary addition of BCD numbers into a BCD
number. This instruction cannot be used to directly convert binary numbers
into BCD numbers.

1.14.4 Logical Instructions

Table 1.10 Logical instructions

Mnemonics Tasks performed on execution Addressing Instruction Example
 mode length

 with the contents of the accumulator.

 with the contents of the accumulator.

 with the contents of the accumulator.

(Contd)

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Microprocessors—Evolution and Introduction to 8085 37

Table 1.10 Logical instructions (Contd)

Mnemonics Tasks performed on execution Addressing Instruction Example
 mode length

 of the accumulator.

 of the accumulator.

 logically ORed with the contents direct
 of the accumulator.

 location pointed to by the HL

 with the contents of the accumulator.

 location pointed to by the HL

 with the contents of the accumulator.

 location pointed to by the HL
 register pair is logically ORed
 with the contents of the accumulator.
RLC Rotates the bits of the accumulator Implicit One byte RLC
 left by one position
RRC Rotates the bits of the accumulator Implicit One byte RRC
 right by one position

 left by one position, through the carry

 right by one position, through the carry

 contents of the accumulator
CMP R Compares the contents of the register Register One byte CMP B
 with that of the accumulator direct
CMP M Compares the contents of the memory Indirect One byte CMP M
 location pointed to by the HL register
 pair with that of the accumulator

 accumulator
CMC Complements the carry Implicit One byte CMC
STC Sets the carry Implicit One byte STC

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

38 Microprocessors and Interfacing

other given or addressed in the instruction. Logical operations can be performed
with immediate data, data stored in a register, or indirectly addressed memory
location content.
 Besides the instructions already mentioned, two types of rotate instructions

contents within itself. The RLC instruction shifts the accumulator content left by

one bit.

the accumulator.

the magnitude of two binary numbers. The compare instructions are used to

CPI instruction uses immediate addressing and CMP uses registers or indirectly
addressed memory location for comparing with the accumulator. The result of the

1.14.5 Branching Instructions
Branching instructions are used to transfer the program execution to a different
address. Branching instructions are of two types—jump instructions and
subroutine instructions. The jump instructions merely transfer the execution from
one location in the program to another, whereas the subroutine instructions in the
main program transfer execution to a new location and also return to the main

Table 1.11. PCHL instruction is a special instruction used to branch to the address
stored in the HL register pair.
 RST n
RST n instruction, the program execution will be transferred to the address given
by n

instructions are given such that the lower-order byte of the address follows the

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Microprocessors—Evolution and Introduction to 8085 39

Table 1.11 Branching instructions

Mnemonics Tasks performed on Instruction Example
 execution length

RET Return unconditionally One byte RET
RC Return on carry One byte RC

RP Return on positive One byte RP
RM Return on minus One byte RM
RZ Return on zero One byte RZ

RPE Return on parity even One byte RPE
RPO Return on parity odd One byte RPO
PCHL Copy HL contents to One byte PCHL
 the program counter

1.14.6 Machine Control Instructions
Machine control instructions are used to control the microprocessor execution

no changes occur in the contents of the registers. The program counter alone
is incremented to fetch and execute the next instruction.

 (ii) HLT instruction is used to halt the execution of the program. The operation
of the microprocessor is suspended when HLT instruction is executed. The
only way to exit the halt state is to apply the hardware reset signal.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

40 Microprocessors and Interfacing

 (iii) Interrupts are disabled and enabled using DI and EI signals, respectively.
Once the DI instruction has been executed, the processor ignores any
interrupt request received. To enable interrupts again, the EI instruction has
to be executed.

 (iv) The SIM instruction is used to send serial data on the serial output data
(SOD) line of the microprocessor and the RIM instruction is used to receive
serial data on the serial input data (SID) line of the processor. The SIM and
RIM instructions are also associated with the setting and reading of interrupt

Table 1.12 Machine control instructions

Mnemonics Tasks performed on execution Addressing Instruction
 mode length

HLT Halts the microprocessor execution Implicit One byte
DI Disables interrupts Implicit One byte
EI Enables interrupts Implicit One byte

1.15 SAMPLE PROGRAMS
1. Write an assembly language program to add two numbers.

The program given in Table 1.13 uses immediate addressing for the two data to be

carry is generated from the addition.

Table 1.13

Memory Machine code/ Labels Mnemonics with Comments
address Opcode operands

This program also uses immediate addressing for loading the data in the processor

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Microprocessors—Evolution and Introduction to 8085 41

Table 1.14

Memory Machine Labels Mnemonics with Comments
address code/ operands
 Opcode

 double addition instruction.

3. Write an assembly language program to add the two numbers stored in the

This program uses indirect addressing instructions to load the numbers to be
added in the processor registers. The carry, if generated, is ignored. The program

Table 1.15

Memory Machine Labels Mnemonics with Comments
address code/ operands
 Opcode

 accumulator.

 the memory location of the next
 number.

 the next memory location.

 accumulator in the memory location
 pointed to by the HL register pair.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

42 Microprocessors and Interfacing

1.16 INSTRUCTION EXECUTION

program counter, and then decode and execute the instruction within the processor.

is an object to be operated on, such as a byte or the contents of a register.
 Instruction cycle

 Machine cycle is the time required to complete one operation—accessing either

 T-state

a processor.

operand fetch, and memory read/write or I/O read/write. The microprocessor’s

 (i) Memory read/write (ii) I/O read/write

 POINTS TO REMEMBER

The microprocessor is an electronic circuit that functions as the central processing
unit (CPU) of a computer, providing computational control.
The microprocessor is the controlling element in a computer system. The
microprocessor performs data transfers, does simple arithmetic and logical

The basic operation of the microprocessor is to fetch instructions stored in the
memory and execute them one by one in sequence.
Microprocessors are used in almost all advanced electronic systems.
Microcontrollers are advanced forms of microprocessors, with memory and ports
present within the chip.

microprocessor.

The microprocessor is a semiconductor device consisting of electronic logic
circuits manufactured using either large-scale integration (LSI) or very large-scale

 is a collection of wires connecting two or more chips.

devices using three buses—address bus, data bus, and control bus.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Microprocessors—Evolution and Introduction to 8085 43

signal.
The data bus is a group of eight lines (D0–D7).
It supports external interrupt request.

DE, and HL.

 The microprocessor operations related to data manipulation can be summarized in

 (i) Transferring data
 (ii) Performing arithmetic operations
 (iii) Performing logical operations
 (iv) Testing for a given condition and altering the program sequence

and three-byte instructions.

registers, or implicit in the opcode. The method of specifying an operand (directly,
indirectly, etc.) is called addressing mode.
The instructions are executed in steps of machine cycles and each machine cycle
requires many T-states.

 KEY TERMS

Accumulator

The output of an operation is also stored in the accumulator. The accumulator is

Address bus This bus carries the binary number (i.e., the address) used to access
a memory location. Binary data can then be written into or read from the addressed

bits.
Addressing mode It is the method of specifying the data to be operated on by the
instruction.
Bus It is a group of conducting lines that carry data, address, and control signals
Clock speed This determines how many instructions per second the processor can

Control bus This bus has various lines for coordinating and controlling
RD and WR lines.

Data bus This bus carries data in binary form between the microprocessor and

DMA controller
on the Hold pin.
Flag
the status of the instruction executed most recently.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

44 Microprocessors and Interfacing

Hold and HLDA

signal.
Immediate addressing It transfers the operand given in the instruction—a byte or
word—to the destination register or memory location.
Implied addressing
to be operated on.
IN This instruction is used to move data from an I/O port to the accumulator.
Indirect addressing It transfers a byte or word between a register and a memory
location addressed by another register.
Instruction cycle It is the time required to execute an instruction.
IO/M signal
input/output instructions it is high; for memory reference instructions it is low.
JMP and CALL

sequence can be resumed.
Machine cycle It is the time required to access the memory or input/output devices.
Memory direct addressing It moves a byte or word between a memory location
and a register.
Opcode
Operand It is the data on which the operation is performed.

This instruction is used to move data from the accumulator to an I/O port.
Ready It is an input signal to the processor. It is used by the memory or I/O devices
to get extra time for data transfer or to introduce wait states in the bus cycles.
Register direct addressing It transfers a copy of a byte or word from a source
register to a destination register.
Timing diagram
for execution. The execution time is represented in T-states.
Trap
or after reorganization of interrupt.
T-state

 REVIEW QUESTIONS

 1. What is the main function of a computer?

 11. What are the basic units of a microprocessor?

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Microprocessors—Evolution and Introduction to 8085 45

address lines?

 17. What is the role of CPU in a computer?

from an I/O access (read/write) signal?

other interrupts?
 33. When and where is the Ready signal used?

diagram.

MOV H, L.

instructions.

microprocessor.

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

46 Microprocessors and Interfacing

 THINK AND ANSWER

possible to write subroutines? How would the subroutine be called? How would
one return to the main program?

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

L@\Based on the addressing of the device

A

Methods of Data Transfer and
Serial Transfer

LEARNING OUTCOMES
After studying this chapter, you will be able to
* Different approaches to data transfer

Different data transfer mechanisms
.

* Serial data transfer protocols

Protocols

understand the following:

Data transfer for slow Peripheral devices
Interrupt structure in microprocessors

2.1 DATA TRANSFER MECHANISMS
Data transfer is essential in any microprocessor-
between the processor and the memo
ort €

(1) Programmed data transfer
(@) Polled mode of data transfer

(11). Direct memory access
(a) Burst mode

\Based on the method of data tr
(1) Parallel data fransfer

(a) Simple data transfer
(ii) Serial data transfer

(@) Synchronous data transfer

2.2 MEMORY-
In I/O-mapped device data transfer
Separately. A separate address range
control signals are used for memory

Based on the program and hardware in

among the

ty_pes:

(ii) Memory-mapped I/O access

volved

(b) Interrupt-driven data transfer

(b) Cycle stealing mode

ansfer and access

(b) Handshake mode data transfer

(b) Asynchronous data transfer

MAPPED AND I/O-MAPPED DATA TRANSFER
method, I/0 devices and memory are handled is assigned for input/output devices. Separate access and for I/0 device read/write operation.

48 Microprocessors and Interfacing

The microprocessor has separate instructions for input and output device access,

such as the IN and OUT instructions of the 8085. As memory and I/O device

accesses are governed by separate control signals, a single address can be assigned

to both an I/O device and a memory location.

-= In memory-mapped I/O, each input/output device is treated like a memory

location. The same control signals are used for /O device read/write operation and

for _Memory access. Each input or output-device-is- identified by a unique address

in the memory address range. All _memory- -related instructions that are used to
e e e e

read data from memory are used to access input and output devices. Since the /O

devices use some of the memory address space, the maximum memory addressing

capacity is reduced in this system.

2.3 PROGRAMMED DATA TRANSFER

The instructions for programmed data transfer are written and controlled by the

programmer and executed by the processor. The data transfer between the processor

and I/O devices (and vice versa) takes place by executing the corresponding

instructions. Programmed I/O data transfers are identical to read and write

operations for memories and device registers. An example of programmed /O is a

device driver writing one data byte at a time directly into the device’s memory.

Programmed data transfer can take pl tatime determined by the programmer.

Based on the time of execution of the data transfer instruction, programmed data

transfer is divided into two types—polled mode of data transfer and interrupt-
driven data transfer.

In polled mode of data transfer, data is read from an input device when the

processor or CPU is ready. The processor then executes the data transfer instruction.

If the input device is not ready, the processor waits until the device is ready with

data. Similarly, data is written into an output device by the flpro_cgswvlfn it

executes the write instruction corresponding to that output device. The program is

written in such a way that the processor waits in a loop until the output device is

ready to receive data. Clearly, in waiting for the device to be ready, processor time

is wasted in this mode of data transfer.

In mterrupt—dnven data\transfer data is read from the mput dev1ce only when

(ISR), a program is executed to read d the data from the correspondmg mput device.

Similarly, the output device gives an interrupt to the processor when it can accept

dayT he programmers have to write an ISR for data transfer to the corresponding

5 output device. Interrupt-driven data transfer is advantageous as data transfer is

done only when the device is ready; the processor need not wait until the device

is ready. The processor can execute some other main routines and data transfer

program will be executed as ISRs. It is an efficient technique because processor

time is not wasted in waiting while an I/O device is getting ready or not ready.

Slow I/O devices can be interfaced for data transfer using the interrupt-driven
technique.

Methods of Data Transfer and Serial Transfer Protocols 49

2.4 DIRECT MEMORY ACCESS =

In programmed I/O data transfer, the processor is acfiv‘ely involfized in the entire

data transfer process. So, the data fransfer rate is limited. The | processor is tied up

and processor time is wasted. To overcome these disadvantages, the direct memory

access (DMA) method of data transfer is used.
Direct memory access is a technique to transfer data between the peripheral I/O

dev1ces and the memory, w1thout the“ 1ntervent10n “of the proces’sor ’lIh@J)a51c idea

is to transfer / bioficflks"of data dlrectly Between the memory and the perlpherals ‘Even
though the transfer is done without the processor, the processor initiates the DMA

operation. This technique is generally used to transfer large blocks of data between
‘memory and I/O. During DMA data transfer, the processor/CPU is kept in an idle

suspended state called as Hold state. DMA performs high-speed data transfer to

and from mass storage peripheral devices such as hard disk drives, magnetic tapes,
CD ROMs, and video controllers. A hard disk may have a transfer rate of 5 Mbps,

i.e., one byte every 200ns. Performing such data transfer using the CPU is not

only undesirable but also unnecessary, since the CPU transfer rate is limited by the

speed of the memory and peripheral devices.

Under normal circumstances, the CPU has full control of the address and data

buses in the system. When direct memory access occurs, an external device or

DMA controller takes over the temporary control of the system bus from the CPU.
The CPU writes necessary control words into the DMA controller, to indicate the

following details about the data transfer: read or write operation, device address

involved, starting address of the data memory block and the amount of data to

be transferred. After this initialization, the DMA controller takes care of the data

transfer. In the 8085, the hold request is received and acknowledged using the
HOLD and HLDA pins, respectively.

The sequence of events in a typical DMA process is as follows:

(i) The peripheral or the DMA controller asserts one of the request pins (such
as HOLD) for holding the processor.

(ii) The processor completes its current instruction and enters into the Hold

state. In the Hold state, the processor temporarily stops the execution of the

instruction and releases the address and data buses by making them enter
into a high impedance state.

(iii) The processor issues a Hold Acknowledge (HLDA) signal to indicate the

release of bus control to the peripheral or the DMA controller.

(iv) The DMA operation starts.

(v) Upon completion of the DMA operation, the peripheral or the DMA

controller removes the Hold signal applied to the processor and relinquishes

bus control.

In general, a DMA controller can interface several peripherals that may

request DMA with the processor. It is the controller that decides the priority of

DMA requests that are received simultaneously from many peripherals. It then

communicates with the peripheral device and the processor, and provides memory
addresses for transferring data. The 8237 programmable DMA controller is the

50 Microprocessors and Interfacing

controller device that is most commonly used with the 8085 and 8088. It is a

four-channel device, with each channel being dedicated to a particular peripheral

device. In addition, each channel is capable of addressing 64 KB of memory.

DMA data transfer can be divided into two types:

~i) Burst or block transfer mode

“Yii) Cycle stealing or interleaved mode

In burst mode of DMA data transfer, a complete block of data is transferred in a

single DMA cycle: The system bus is released by the peripheral or DMA controller

only after the required bytes of data are transferred. In cycle stealing mode of data

transfer, a block of data is transferred over many DMA cycles. The system bus is

released to the processor after a byte or a set of bytes are transferred in one DMA

cycle. Thus, the processor is not suspended from its activities for a long time. It

takes several DMA cycles to complete the transfer of one block of data.

2.5 PARALLEL DATA TRANSFER

In parallel mode of data transfer, all the bits in a word are simultaneously

transmitted. Since the 8085 word consists of eight bits, all the eight bits are

transmitted and received in parallel form. In some special cases, the number of

data bits transferred will be lesser than eight. In general, parallel data transfer

is used for transfer of data over short distances such as within a system, within

a printed circuit board (PCB), etc. It can be done either in polled mode or in

interrupt-driven mode. In polled method, data is read from the input device by the

processor at a time determined by the processor. This polled mode of data transfer

can be done in two ways—synchronous or simple I/O and handshake 1/O.

In simple or synchronous mode, data is read from the input device by the

processor irrespective of the status of the input device. It is assumed that the

input device is in synchronism with the processor and that it is ready with data

whenever the processor reads the data. Similarly, the data is written into the output

device irrespective of its status. The processor assumes that the output device is in

synchronism with the processor.

In handshake I/O mode, the processor checks for the status of the I/O devices

before data transfer. An input device gives a signal to the processor, indicating that

it is ready with the data. The processor checks continuously for the reception of

this signal and upon reception can read the data. Similarly, an output device gives

a signal to the processor, indicating that it can accept data. The processor, before

writing data to the output device, checks for this signal. If the signal indicating

readiness of the output device is available, the processor can write the data to

the output device. The signals that are transferred between the devices and the

processor are called handshake signals.

2.6 SERIAL DATA TRANSFER

Parallel data transfer has the drawback of needing several wires to transfer all the

bits of data. So, it can not be used effectively for long distance transfers. As one

wire is used for each bit, byte-wise data transfers are eight times more expensive

Methods of Data Transfer and Serial Transfer Protocols 51

than a single bit transfer.(Serial data transfer is the solution for data transfers over

long_distances. It is a low-cost way to send-data over long distances. In serial

data transfer, only one bit is transferred over a data transfer line<All the bits in

a data word can be transmitted by using i ister-and transferring the data

bit by bit. ?Parallel to-serial data conversion is done by a device called universal

asynchrbnous receiver—transmitter (UART).

In serial data transfer, the following three aspects are important: First, the speed

or frequency at which the bits are transmitted into the serial data line. The frequency

at which the data is transmitted serially is technically called baud rate. Baud rate

is the measure of the number of bits transmitted over a second. Second, the mode

of data transfer. Serial data transfer can be done in two modes—synchronous

and asynchronous. Third, the voltage levels for logic 1 and logic 0 for the data

being transmitted. Various serial communication protocols define these aspects as

standards for proper communication.
In synchronized data transfer, the device that sends the data and the device that

receives the data are synchronized with the common clock. In synchronous mode,

data transfer takes place with a fixed and known time frame. In asynchronous

data transfer, data words are transmitted with a random time frame between them.

Most microprocessor- and computer-related data communications are based on

the asynchronous mode of transmission. Microprocessors use interrupts and other

software techniques to synchronize random timing between data words, so as to

receive the data completely.
The modem plays an important role in serial transmission. It is a device that

allows transmission of serial data over communication lines such as telephone

lines. In general, communication lines are incapable of carrying the voltage changes

required for a direct digital connection. A modem overcomes this limitation by

modulating digital information into analog signals using one of the modulation

techniques and demodulating it back into digital information upon reception.

The computer or a microprocessor terminal that initiates the serial

communication is called data terminal equipment (DTE). The final equipment

that receives the serial data is also called data terminal equipment. Data

communication equipment (DCE) is a device that connects the DTE to a

transmission line. So, the transmitting DTE sends the serial data to the DCE.

The DCE is generally a modem. This helps in level shifting and transmitting the

serial data over the chosen transmission line. Similarly, at the receiving station,
a DCE (generally a modem) receives the signal and transfers the serial data to. S

the receiving DTE. B S
This section introduces the RS-232, RS-485, general-purpose interface bus

(GPIB), and IEEE 488 standards, which are used for data transfer between two

computer or processor systems. RS-232 is a common serial communication

protocol used in computer systems.

2.6.1 Introduction to RS-232 Standard

RS-232 is a serial communication standard given by the Electronic Industnes

Association (EIA), an organization represented by a group of electronic industries.

52 Microprocessors and Interfacing

It is used for one-to-one communication between two computers or processor

systems. RS-232 standard can also be used with modems. RS-232 can be used to

interface a processor system or DTE with a modem/DCE. It is the standard used

on personal computers’ COM port. The maximum possible speed with RS-232 is

20kbps and the maximum possible cable length is 50 feet.

Logic 1 is represented by voltages in the range —3V to —25'V, and typically by

—12V. Logic 0 uses the voltage range from 3V to 25V, and typically 12 V. When

no data is sent over the transmission line and the transmitter is inactive, the voltage

level on the line is kept at a logic high level, i.e., =12 V. Figure 2.1 shows the RS-

232 voltage levels.

‘”’ T T gy et 4] AInactlve condmon 0 ; s ik

“Fig.2.1 RS-232 voltage levels

RS-232 is a serial communication standard for asynchronous communication.

The transmitter places logic 1 on the data bus when it is inactive. To start

transmission, the transmitter sends a logic 0 as the start bit. The start bit makes the

receiver wake up from idle mode and start receiving data. After the start bit, data

bits are transmitted on the serial transmission line. The length of the data bits can

be five, six, seven, or eight depending on the transmitting equipment. The least

significant bit of the data byte is transmitted first in the data line. The data bits are

succeeded by a parity bit or any other error correcting bit set by the programmer.

After this, the stop bit is sent by the transmitter to indicate the end of the data bits.

Logic 1 is used as the stop bit in RS-232 communication standard. The format of

the signal transmitted is shown in Fig. 2.2. Here, the ASCII code for the character

A is shown being transmitted on the line with the parity bit as 1. The format uses

two stop bits of logic 1 consecutively.

lfo : . i B(d B1 l B2 B3 B4 B5 B6 P S1 S1 1 l

& Whangs | SR 4% \ . tS g

L i ASCI charadter Parity bit Stop bi

AP A0 10 e B o
\ ‘A (100 000/ Bmary levels transmitted

e

Flg 2 2 RS 232 bit format for transmitting character ‘A

Methods of Data Transfer and Serial Transfer Protocols 53

Another parameter specified by the RS-232 communication standard is the

baud rate. It is the rate at which data is transmitted and received. The baud rate

and the timing for each bit is related by the following formula:

Time period for each bit in seconds = 1/baud rate

Table 2.1 lists the standard baud rate used by the RS-232 communication

standard and the corresponding bit duration.
RS-232 communication connection Table 2.1 Bit timings for standard

is done through standard connectors. baud rates

Two types of RS-232 connectors are
: , Baud rate Time for each bit in

available. One has 25 pins and the other o7 ~ microseconds

has nine. Details of the DB25S and DB9S CREE
connectors are shown in Fig. 2.3. A cable 1200 8ee

with any one of these connectors is used 2400 417

to connect the DTE (computer) with the 9600 104
DCE (modem). 19,200 52

(a))
Pin Signal Pin Signal

T T 2 TXData’ 2 RXData @
© 00 0 O 3 RXData 3 TXData
5.0 0 .0 4 RTS 4 o PDTR
QR Y g 5 CTS 5 GND

6. DSK 6 DSR
(b) 7 GND ST RS

20 DTR 8. IS

Fig. 2.3 Basic details of RS-232 (a) DB25S and (b) DB9S cbnnectors

The basic signals used in these connectors are given in Table 2.2.

Table 2.2 Signals of RS-232 connection

‘Signal name ~ Function

Receive data line (RXD) Data is received by tho processor on this line

Transmit data line (TXD) Data is sent by the processor through this line

Data Terminal Ready (DTR) Signal sent out b
ready for comm

pata Set Ready (DSR) Signal sent b

Y the processor to indicate that it is

Unication

Y the modem to the processor to

t to Send (RTS) lsn-dlcalte that itis ready to transmit or receive
s

A inlfiztesetrli;? ?tt by the processor to the modem to

i 'S ready to send data
Clear to Send (CTS) Signal sent by gp y to send da

Modem to the processor to indicate th
:

accept data for transmission

54 Microprocessors and Interfacing

Figure 2.4 shows the standard connection for RS-232 communication between

two DTEs through two modems.

TXD > |~ Transmission line < XD {

RXD [« > RXD

RTS > <€— RTS

CTS < =2 CTS

DTR > <— DTR

DSR —> DSR

GND <— GND

DTE DCE modem DCE modem DTE

Figl 2.4 RS-232 communication connection using modems and line

The system uses all handshake signals such as RTS, CTS, DTR, and DSR

mentioned in Table 2.2. Although the figure does not indicate the handshake signals

between the two modems, some amount of signal transfer takes place between the

modems also.

If there is no modem, and two processors or computer systems are directly

connected using the serial communication line, the connection shown in Fig. 2.5 is

used. Here, the handshake signals are not used, since they are connected within the

DTE system itself. The communication assumes that the receiver is always ready

to receive data.

9-pin 9-pin

3 3l
TXD

5
B

RXD

g
U

5
%

u
-
T
o
x
l
.
n

o
|

u
.
o
x
.
b
l
o
o
l
q

0
=

A
@

Fig.2.5 RS-232 connections with no handshaking and DCE (modem)

2.6.2 Introduction to RS-485 Standard

RS-485 is another serial communication standard defined by the EIA. The major

difference between RS-232 and RS-485 is that RS-232 is used for one-to-one

communication, whereas RS-485 is used in a network environment. The major

features of RS-485 standard are as follows:

(i) RS-485 can connect several processors or DTEs in a network structure for

communication.

Methods of Data Transfer and Serial Transfer Protocols 55

(i) RS-485 can be used for communication over longer distances than RS-232
(i) RS-485 can communicate with higher baud rates, i.e., faster than RS-232.
(iv) One RS-485 transmitter can drive up to 32 receivers in a network.
(v) RS-485 transmitter uses two signal lines—+sig and —sig. The RS-485

receiver senses the voltage difference between these lines. So, any voltage
difference on the ground line between the transmitter and the receiver does
not affect the reception. However, RS-232 receiver senses the voltage level
of the signal with respect to the ground and so, the noise voltage level may
affect the data sensed.

By default, all the senders on the RS-485 bus are tri-stated, i.e., in high
impedance state. In higher-level protocols, one of the nodes is defined as a master
that sends queries or commands over the RS-485 bus. All other nodes receive these
data. Depending of the information contained in the data sent, zero or more nodes
on the line respond to the master. In this situation, bandwidth of almost 100% can
be used. There are other ways of implementing the RS-485 network, where every
node can start a data session on its own. This is comparable to the way Ethernet
networks function. Since there is a possibility of data collision in this type of
implementation, theoretically only 37% of the bandwidth will be effectively used.

With such an implementation of an RS-485 network, it is necessary to implement
error detection in the higher-level protocol so as to detect data corruption and
resend the information later.

2.6.3 GPIB/IEEE 488 Standards

Hewlett-Packard designed the Hewlett-Packard Interface Bus (HP-IB) to connect
their programmable smart instruments to computers. This standard supports many

devices connected to'a common bus and forming a network. Communication can

take place between all the devices connected to the bus. This standard has a higher
transfer rate of up to 1 Mbyte/s, in comparison with the RS-232 and RS-485. This

standard has been named IEEE Standard 488. HP-IB is also called GPIB. The

devices in the GPIB bus can be connected in a linear network, star configuration,
or a combination of both.

GPIB standard categorizes the devices connected together into three types—
talkers, listeners, and controllers. A talker can send data to other devices. A listener

is a device that can receive data from other devices connected in the bus. A controller

is a device that determines which of the devices should be listeners and which of
them should be talkers. In general, a GPIB bus has one controller and many talkers
and listeners. Some of the devices in the bus network can act as both talkers and
listeners. Communication can take place from one talker to one listener or from

one talker to many listeners in the bus. The controller decides the data transfers

and also issues commands to other devices. A bus system with only one talker
does not need any controller. The talkers and listeners are generally computer or

microprocessor systems. The microprocessor systems can be configured as talkers

or listeners by interfacing it to the Intel 8291 GPIB talker—listener. Similarly, Intel
8292 GPIB controller can be interfaced to the microprocessor or computer systems

to manage the GPIB communication.

56 Microprocessors and Interfacing

The GPIB interface system

uses 24-pin connectors, as

shown in Fig. 2.6.

Among the 24 pins, eight

lines are bidirectional data

lines and eight are ground

lines. Among the remaining

eight lines, three pins are

for handshake signals and

five are for bus interface

management signals. The

eight data lines are used for

transmission and reception of

data, addresses, commands,

and status bytes.

The five bus interface

management lines and their

functions are as follows:

(i) IFC (Interface

Clear)—The con-

troller in the bus sends

this signal to all other

devices in the bus to

'SHIELD | || 12 | 24 ||| SIGNAL GROUND
O

13 ||| DIOS

14 ||| D106

15 ||| DI07

16 ||| D108
17 ||| REN
18 ||| GND (Twisted pair with DAV)

GND (Twisted pair with NRFD)

20 ||| GND (Twisted pair with NDAC)
21 ||| GND (Twisted pair with IFC)
22 ||| GND (Twisted pair with SRQ)

23 ||| GND (Twisted pair with ATN)

@)

S
l
a
l
v
|
e
|
R
]
|
a
u
n
l
s
|
w
—

p
—

©o

Fig. 2.6 GPIB bus connector and signals

initialize the bus and reset the system communication upon powering on.

(ii) ATN (Attention)—The controller sends an active low ATN signal to indicate

that it is sending a universal command or an address on the bus. This signal

is made high for data transfers.

(iii) REN (Remote Enable)—The controller makes this signal active to directly

control a device instead of the front panel controllers in the device.

(iv) EOI (End or Identify)—The EOI signal is issued by the talker to indicate

the end of block transfer of data. The controller uses the EOI line to make

devices identify themselves in a parallel poll.

(v) SRQ (Service Request)—This signal is made active by any device that

requires to transfer data on the bus.

Three lines are used as handshake signals to control the transfer of message

bytes between devices. The process is called a three-wire interlocked handshake

and it is used to transfer data from different devices at different transfer rates.

It guarantees that message bytes on the data lines are sent and received without

transmission error.

(i) NRFD (Not Ready for Data)—This signal is sent by all devices when they

are not ready to receive a message byte. When receiving data, the devices

make this line inactive by making it low.

(i) DAV (Data Valid)y—The controller makes DAV low while sending

commands, and the talker drives DAV low while sending data messages.

(iii) NDAC (Not Data Accepted)—The active low NDAC signal is low until the

Methods of Data Transfer and Serial Transfer Protocols 57

transmitted data is received by the slowest listener. This signal indicates

that a device in the bus has not received a message byte. Usually, the talkers

wait for this signal and once the NDAC is high, the DAV signal is removed

by the talkers.

The GPIB uses active low logic with standard TTL levels. For example, when

DAV is active, the devices send a TTL low level (<0.8 V), and when DAV is made

inactive, the line has a TTL high level (>2.0V).

2.7 INTERRUPT STRUCTURE OF A MICROPROCESSOR

Interrupt is a mechanism by which the processor (CPU) is made to transfer control

from its current program execution to another program of more importance or

higher priority. The interrupt signal may be given to the processor by any external

peripheral device. In general, interrupts are generated by a variety of sources,

either internal or external, to the CPU. Interrupts are the primary means by which
input and output devices obtain the services of the CPU.

The program or the routine that is executed upon interrupt is called interrupt
service routine (ISR). The processor must temporarily stop its current task and

execute the ISR, which relates specifically to the event or device that issues
the interrupt signal. After execution of the ISR, the processor must return to

the interrupted program. Processors have many interrupt signals and proper
identification of interrupt signals is done internally by the processor.

The key features in the interrupt structure of any microprocessor are as follows:

(1) The number and types of interrupt signals available.

(i) The address of the memory where the ISR is located for a particular interrupt

signal. This address is called interrupt vector address.

(iii) The masking and unmasking feature for the interrupt signals. This feature
allows the programmer to execute the ISR only when required.

(iv) The priority of interrupts when more than one interrupt signals are available
(v) The timing of the interrupt signals

(vi) The handling and storing of information about the interrupted program

(status information). This information must be loaded into the CPU when

the ISR is executed. When the return instruction is executed, control is

transferred back to the interrupted program.

2.8 TYPES OF INTERRUPTS

Interrupts are classified based on their maskability, interrupt vector address, and
source. These classifications are discussed in Sections 2.8.1-2.8.3.

2.8.1 Vectored and Non-vectored Interrupts

The vectored and non-vectored interrupts are as follows:

(1) Non-vectored interrupts have fixed interrupt vector address for ISRs of

different interrupt signals. They are useful for small systems, where there

are few interrupt sources and the software structure is not complicated.

(if) Vectored interrupts require the interrupt vector address to be supplied by

58 Microprocessors and Interfacing

the external device that gives the interrupt signal. This technique, called

vectoring, 1s implemented in a number of ways.

2.8.2 Maskable and Non-maskable Interrupts

The maskable and non-maskable interrupts are as follows:

() Maskable interrupts are interrupts that can be blocked; the corresponding ISRs

are not executed. The masking can be done by software or hardware means.

(i1) Non-maskable interrupts (NMIs) are interrupts that are always recognized,;

the corresponding ISRs are executed.

2.8.3 Software and Hardware Interrupts

The software and hardware interrupts are as follows:

(1) Software interrupts are special instructions, which after execution transfer

the control to a predefined ISR. These instructions are included in the

program by the programmer.

(1) Hardware interrupts are signals given to the processor from external devices,

for recognition as an interrupt and execution of the corresponding ISR.

2.9 INTERRUPT HANDLING PROCEDURE

When an interrupt signal is recognized, the processor will have to store information

about the current program before executing the ISR. The processor checks for the

interrupt request signals at the end of every instruction execution. If the interrupt is

masked, it will not be recognized until interrupts are re-enabled. The CPU responds

to an interrupt request by a transfer of control to another program, in a manner

similar to a subroutine call. This is shown pictorially in Fig. 2.7. The sequence of

operations that take place when an interrupt signal is recognized is as follows:

(1) Save the program counter (PC) contents (address of the next instruction)

and supplementary information about the current state (flags, registers, etc.)

in the stack.

(i) Load PC with the beginning address of an ISR and start to execute it.

(iii) Finish ISR when the return instruction is executed.

(iv) Return to the point in the interrupted program where execution was

interrupted by reloading the saved program counter content from the stack.

ISR ISR ISR

_ Y Y \

‘ Main Main Main Main ‘

Fig.2.7 Transfer of control from main memory to ISR

Interrupts and stack memory Stack is a special memory organization that

operates on the last-in, first-out (LIFO) principle. The data stored recently is retrieved

first. Similarly, data stored first in the stack is read last. Stack is a temporary storage

memory in the RAM area. It is basically administered by a special register called

Methods of Data Transfer and Serial Transfer Protocols 59

stack pointer (SP). SP register always contains the address of the top of the stack

(ToS). Storing a data in the stack memory pointed to by the stack pointer is called

push operation. Reading a data from the stack is called pop operation.

Stack is used by the interrupt system of the microprocessor for implementing

the subroutine call and return mechanism, passing parameters to subroutines, etc.

When the transfer of control takes place from the interrupted program to the ISR,

the program counter content is stored in the stack, because after the execution of

the ISR, the control must return to the program counter content. To facilitate this

control transfer, the stack pointer must be properly initialized to a physically available

memory with sufficient memory range. In the 8085, the stack memory grows towards

lower addresses and so, the stack pointer must be initialized with the highest memory

address allotted for the stack operation.
The stack can be accessed by the instructions PUSH and POP. The ISRs should

not disturb the return address stored by the processor in the stack. So, the ISRs

should have equal number of PUSH and POP instructions. This condition ensures

that the return address stored in the stack is retrieved properly by the processor.

POINTSTO REMEMBER

Different data transfer schemes are available for data transfer between two

processors or between a processor and an I/O device.

The different data transfer schemes are programmed data transfer and DMA, polled

and interrupt-driven, and serial and parallel data transfer.

Various serial port standards such as RS-232, RS-485, IEEE488, and GPIB are used

for data transfer in different applications.

Interrupts are an important mechanism available in the processors to temporarily

stop current program execution and execute a program of higher priority.

Interrupt vector addresses and the source, priorities, and timing of interrupts are very

important to program and understand the operation of interrupts in a processor.
e Interrupts can be either hardware generated and random, or software generated and

programmed.
e The processor can be interrupted before the completion of an interrupt service

routine (ISR) if the program has executed the EI instruction. This enables nested

ISR execution.

KEY TERMS

DMA It is a special method of data transfer between I/0O devices and memory

without the need of processor for data transfer.

I/O-mapped I/0O scheme This scheme uses special control lines and different
address space for accessing I/O devices. The processor needs separate instructions for
I/O-mapped I/O access.

Interrupt priorities The sequence or order in which the interrupts are sensed by the

microprocessor. This order decides which ISR will be executed first, when more than

one interrupt is applied simultaneously to the processor.

Interrupt service routine The routine executed by the processor upon sensing an

interrupt signal is called interrupt service routine.

60 Microprocessors and Interfacing

Interrupt vector address It is the location to which program control is transferred,

upon receipt of an interrupt.
Interrupt-driven I/O scheme This scheme uses a special signal from the /O

devices to initiate a data transfer by the processor.
Memory-mapped I/O scheme This scheme uses the same instructions and hardware

used for memory accesses, for accessing I/O devices.
Parallel data transfer It is the method in which all the bits of a word are transmitted

simultaneously.

Polled I/O transfer This method uses a software routine to access and transfer data

between processor and I/O devices.

Serial data transfer It is the method of transferring a single bit at a time over a

transmission line.

REVIEW QUESTIONS |

1. Explain memory-mapped I/O.
2. What is I/O-mapped I/O?

3. Compare memory-mapped I/O with peripheral-mapped I/O.

4. What are the various schemes of data transfer?

5. Discuss interrupt-driven data transfer scheme.

6. Explain DMA method of data transfer.

7. Ifthe speed of the I/O devices is lesser than that of the processor, what type of data

transfer scheme can be used?

8. What are the advantages of serial data transfer?

9. Compare synchronous and asynchronous modes of data transfer.

10. Explain the RS-232 method of serial data transfer.

11. What is meant by “priority of interrupts’? Explain the operation of the interrupts

structure of the 8085, with the help of a circuit diagram.

12. Distinguish between (i) vectored and non-vectored interrupt, (ii) maskable and

non-maskable interrupt, (iii) software and hardware interrupt.

13. Explain interrupt-driven /O technique. How does the 8085 respond to the INTR

interrupt?

THINK AND ANSWER

What are the ways to identify the device that has interrupted the processor in a

microprocessor-based system?

e

INTEL 8086—16-BIT MICROPROCE
SSORS

Intel 8086 Microprocessor Architecture, Features, and Signals

e Addressing Modes, Instruction Set, and Programming of 30’6

e 8086 Interrupts

e Memory and VO Interfacing

Features and Interfacing of Pro grammable Devices for

2086-based Systems

o Multiprocessor Configuration

o 8086-based Systems

Intel 8086 Microprocessor

Architecture, Features, and Signals

LEARNING OUTCOMES

After studying this chapter, you will be able to understand the following:
* Internal architecture of the 8086, which consists of an execution unit and a bus interface

unit

Different general-purpose and segment registers and their functions

Accessing of instructions and data from the memory using the segment and offset
addresses

Pin details of the 8086

Functions of the maximum mode and minimum mode signals

Differences between the 8086 and 8088

3.1 INTRODUCTION

In 1978, Intel released its first 16-bit microprocessor, the 8086, which executes the

instructions at 2.5 MIPS (million instructions per second). The execution time for

one instruction is 400 ns (= 1/MIPS = 1/(2.5 x 10°)). The 8086 can address 1 MB

(1MB = 220 bytes) of memory, as it has a 20-bit address bus. The width of the data

bus in the 8086 is 16 bits. This higher execution speed and larger memory size

have enabled the 8086 to replace the smaller minicomputers in many applications.

Another feature in the 8086 is the presence of a small six-byte instruction queue
in which the instructions fetched from the memory are placed before they are
executed.

3.2 ARCHITECTURE OF 8086

The functional block diagram of the 8086 is shown in Fig. 3.1. It is subdivided into
the following two units:

(1) An execution unit (EU), which includes the ALU, eight 16-bit general-
p@ose reglsters ‘a 16-bit flag register, and a control unit.

(if) Abus interface unit (BIU), which includes an adder for address calculations,
four 16-bit segment registers (CS, DS, SS, and ES), a 16-bit instruction

pointer (IP), a six-byte instruction queue, and bus control logic.

3.2.1 Execution Unit

The EU consists of eight 16-bit general-purpose registers—AX;-BX, CX, DX,
I, and DI. Among these registers, AX, BX, CX, and DX can be further

divided into two 8-bit registers—AH and AL, BH and BL, CH and CL, and DH
and DL, respectively, as shown in Fig. 3.1. The general-purpose registers can

(g

64 i Mlcroprocessors
and Interfacing

e CS . G gmamq‘} (G

Mf‘/v* e
Address bus

General-purpose
registers

16 bits
s ALU data bus

EN {6 bits

Temporary
registers

l 1 Six bytes
EU Instruction queue

w control
system

o : s A . J.\:.w I @ ~p » Executionunit(EU) : Bus interfacing unit (BIU)

Fig.3.1 Functional block diagram of the 8086

be used to store 8-bit or 16-bit data during program execution. In addition, each
register has the following special functions:

—i) AX/AL: AX or AL is used as the accumulator. It is used in the multiply,

divide, and input/output (I/O) operations, and in some decimal and ASCII
adjustment instructions.

—i) BX: The BX register holds the offset address of a location in the memory.

It is also used to refer to the data in the memory using the look-up table

technique, with the help of the XL AT instruction.

~—~—{ii) CX/CL: CX is used to hold the count value while executing the repeated

¢ e sfe-string instructions (REP/REPE/REPNE) and the LOOP instruction. CL is
used to hold the count value while executing the shift/rotate instructions.

The count value indicates the number of times the same code has to be

executed when the LOOP instruction is used, and the number of times the

data item has to be shifted/rotated when the shift/rotate instruction is used.

~(iv) DX: DX s used to hold a part of the result during a multiplication operation

and a part of the dividend before a division operation. It is also used to hold

the I/O device address while executing the IN and OUT instructions.

SP: The SP register or the stack pointer is used to hold the offset address of

the data stored at the top of the stack segment. SP is used along with the SS

register to decide the address at which the data is to be pushed or popped,

during the execution of the PUSH or POP instruction, respectively.

(v

N
’

Intel 8086 Microprocessor Architecture, Features, and Signals 65

(vi) BP: The BP register is called base pointer. It is also used to hold the offset

address of the data to be read from or written into the stack segment.

(vii) SI: The SI register is called source index register. It is used to hold the

offset address of the source data in the data segment, while executing string

instructions.
(viii) DI: The DI register is called destination index register. It is used to hold the

offset address of the destination data in the extra segment, while executing

string instructions.

Here, the term segment refers to a portion of the memory where the data, code,

or stack for a program is stored. In the 8086, the maximum size of a segment can

be 64 KB and the minimum size can be even 1 byte. A segment always begins at a

memory address divisible by 16. This means that the starting address of a segment

in the memory in hexadecimal form is XXXXOH. The reason for this is explained

in Section 3.2.2.
The flag register of the 8086 is shown in Fig. 3.2.

DIs (D14 D13 |D12 |DI1 |D10 [D9 |D8 D7 |Dé |D5 |D4 |D3 |D2 |DI |DO

el L lor |DF B |TF [SF: |ZE |- JAE |—c BE. = EE

tel-reserved bits (normally setto 0)

Fig.3.2 Flag register of the 8086

The flags in the flag register can be classified into status flags and control flags.

The flags@F, PF, AF, ZF, SF, and O-I*}re called status flags, as they indicate the

status of the result that is obtained after the execution of an arithmetic or logic

instruction. The flags DF, IF, and TF are called control flags, as they control the

speration of the CPU. The functions of the different flags are as follows:

(i) CF (carry flag): CF holds the carry after an 8-bit or 16-bit addition or the

borrow after an 8-bit or 16-bit subtraction operation.

(ii) PF (parity flag): If the lower eight bits of the result have an odd parity (i.e.,

odd number of 1s), PF is set to 0. Otherwise, it is set to 1.

(ili) AF (auxiliary carry flag): AF holds the carry after addition or the borrow

after subtraction of the bits in the bit position 3 (the LSB is treated as bit

position 0). This flag is used by the DAA or the DAS instruction to adjust

the value in AL after a BCD addition or subtraction, respectively.

(iv) ZF (zero flag): ZF indicates that the result of an arithmetic or logic operation

is zero. If Z = 1, the result is zero and if Z = 0, the result is not zero.

(v) SF (sign flag): SF holds the arithmetic sign of the result after an arithmetic

or logic instruction is executed. If S = 0, the sign bit is 0 and the result is

positive.
(vi) TF (trap flag): TF is used to debug a program using the single-step

- technique. If it is set (i.e., TF = 1), the 8086 gets interrupted (trap or single-

oe? step interrupt) after the execution of each instruction in the program. If TF

is cleared (i.e., TF = 0), the trapping or debugging feature is disabled.

66 Microprocessors and Interfacing

(vii) DF (direction flag): DF selects either the increment or decrement mode for

the DI and/or SI register, during the execution of string instructions. If D

= 0, the registers are automatically incremented; if D = 1, the registers are

automatically decremented. This flag can be set and cleared using the STD

and CLD instructions, respectively.

(viii) IF (interrupt flag): IF controls the operation of the INTR interrupt pin of

the 8086. If IF = 0, the INTR pin is disabled and if IF = 1, the INTR pin is

enabled. This flag can be set and cleared using the STI and CLI instructions,

respectively.

(ix) OF (overflow flag): Signed negative numbers are represented in the 2’s

complement form in the microprocessor. When signed numbers are added

or subtracted, an overflow may occur. An overflow indicates that the result

has exceeded the capacity of the machine. For example, if the 8-bit signed

data 7EH (= +126) is added with the 8-bit signed data 02H (= +2), the

result is 80H (= —128 in the 2’s complement form). This result indicates

an overflow condition and the overflow flag is set during the given signed

addition operation. In an 8-bit register, the minimum and maximum value

of the signed number that can be stored is —128 (= 80H) and +127 (= 7FH),

respectively. In a 16-bit register, the minimum and maximum value of

the signed number that can be stored is —32,768 (= 8000H) and +32,767

(= 7FFFH), respectively. For operations on unsigned data, OF is ignored.

3.2.2 Bus Interface Unit

There are four segment registers CS, DS, SS, and ES in the 8086. The function

of these registers is to indicate the starting or base address of the code segment,

data segment, stack segment, and extra segment, respectively, in the memory. The

code segment contains the instructions of a program and the data segment contains

data for the program. The stack segment holds the stack of the program, which

is needed while executing the CALL and RET instructions and also to handle

interrupts. The extra segment is an additional data segment that is used by some

string instructions.
The base address of any segment can be obtained by appending four binary 0Os

to the farthest right portion of the content of the corresponding segment register,

which is the same as appending the hexadecimal digit 0. It is also equivalent to

shifting the content of the segment register left by four bits. Hence, a segment in the

8086 always starts at a memory address that is divisible by the decimal number 16

(also known as 16-byte boundary). This is illustrated with an example as follows:

Example 3.1

Let us assume that the segment registers have the following values stored in them:

cs DS SS ES

[2000H | [4000H |

The base address of the code segment is obtained by appending four binary

0s (same as the hexadecimal digit 0) to the content of CS. Therefore, the base

‘(”.- 0{% Ve " -«/fi :, e S 2 é SeeA e n £ #

{ = - \ \5) - W
SR =~ - jtecture,

\ — Intel-8086-Microprocessor Archite

address is 20000H. Similarly, the Memory 3‘3353;;

Features, and Signals 67

base address of the data segment,

stack segment, and extra segment

are 40000H, 60000H, and 80000H, 20000H ;(Jy eSS

respe.ctively. Figure 3.3 shows the ol K (Max.) N e

location of these segments in the segment i c} ¢

memory.
,

If the size of two different segments e 1 MB

is less than 64KB, it is possible ?eagt& = 64K (Max.) Memory

that the two segments may overlap 2S(I;FFH

(i.e., another segment may begin ; , 00H

within the 64KB allocated to Stack 64K (Max.) :

a segment). For example, let a fl/__i__—— 6FFFFL

particulaf application in the 8086 80000H

require a code segment of size 1 KB Extra 64K . (Max.) ,,

and a data segment of size 2KB. If segment SFFFFH | ' €
ent is stored in the B

memory from the address 20000H,
FFFEFH

it witl end at-the-memaory address

203FFH. The data segment can be
sfored_from the address 20400H
(which is the next immediate 16-
byte boundary in the memory). The CS and DS registers are loaded with the values

2000H and 2040H, respectively, for running this application in the 8086. ‘

.Fig.‘ 3.3 Location of various segments

in memory

3.2.3 Minimum and Maximum Mode Operations

The 8086 can be operated in either minimum or maximum mode. By connecting

the MN/MX pin to logic 1, the 8086 is operated in minimum mode. In the

minimum mode of operation, the 8086 itself generates all the control signals.

There is a single 8086 in the minimum mode system. The other components in a

minimum mode 8086 system are latches, transceivers, clock generator, memory,

and I/O devices. Chip selection logic may be required for selecting memory or /O

devices, depending upon the address map of the system.

The 8086 is operated in the maximum mode by connecting the MN/MX pin
to the ground. In this mode, the 8086 generates the status signals and another

chip called bus controller (8288) generates the control signals using this status
information. In the maximum mode, there may be more than one 8086 in the

system configuration. The other components in the system are the same as in the
minimum mode 8086 system.

3.3 ACCESSING MEMORY LOCATIONS

Each address in the physical memory (ROM/EPROM) is called a physical address.
s

To -access an operand (either data or instruction) from a particular segment of the
memory,' the 8086 has to first calculate the physical address-of that operand. To
accomplish this task, the 8086 adds the base address of the corresponding segment

68 Microprocessors and Interfacing

with an offset ad- Table 3.1 Segment registers and default offset registers in

dress, which may the 8086

be the content of
a register, an 8-bit Segment registers Default offset registers s

or 16-bit displace- CS IP

ment given in the DS BX, SI, DI, 8- or 16-bit displacement

L R N AL T SP and BP
combination of

ES DI for string instructions
both, depending

upon the address-
ing mode used by the instruction. The designers of the 8086 have assigned certain

register(s) as default offset register(s) for the segment registers, as shown in Table

3.1. However, this default assignment can be changed by using the segment over-

ride prefix in the instruction, which is explained in Chapter 4 (Section 4.2).

Example 3.2

The fetching of an instruction from the memory in the 8086 is explained in this

example.

Let us assume that the CS register has the value 3000H and the IP register has

the value 2000H. To fetch an instruction from the memory, the CPU calculates the

memory address from which the next instruction is to be fetched, as follows:

CS x 10H = 30000H Base address of the code segment

+IP= 2000H —> Offset address

32000H—> Memory address from where the next instruction is taken

SRR

Example 3.3

Let us see the fetching of data from the memory using the DS and BX registers,

with an example. Consider the execution of the instruction MOV AX, [BX].

The square bracket around BX in this instruction indicates that the data specified

by the BX register is in the memory; the BX register holds the offset address of

Memory Address

SRS 10000H
AH /

_ r i ’ 4 AHJ 3000H (offset)
- |

3AH 13000H
: 4BH 13001H

e byte—— >

N o TS

Fig. 3.4 Execution of the instruction MOV AX [BX]

Intel 8086 Microprocessor Architecture, Features, and Signals 69

the data in the data segment. The data obtained from the memory is moved to the

AX register. Let us assume that DS and BX have the values 1000H and 3000H,

respectively. To calculate the memory address from where the data has to be taken,

the CPU does the following operation:

DS x 10H =10000H —> Base address of the data segment

+ BX = 3000H —> Offset address

13000H —> Memory address from where the data is taken

This is also explained in Fig. 3.4.

Example 3.4 .

Let us see the pushing of data into the stack segment using the PUSH instruction,

with an example.

Assume that the SS and SP registers have the values 3000H and 0105H,

respectively. Consider the execution of the instruction PUSH AX by the 8086. The

steps carried out by the 8086 to execute the PUSH AX instruction are as follows:

(i) SPis decremented by 1 (i.e., SP=0104H) and the content of the AH register

(higher byte of AX) is pushed into the offset address specified by SP in the

stack segment, as shown in Fig. 3.5 (a).

(i) SP is again decremented by 1 (i.e., SP = 0103H) and the content of the AL

register (lower byte of AX) is pushed into the offset address specified by SP

in the stack segment, as shown in Fig. 3.5 (b).

' Memory ~ Address

L RS e e 30000H—Base address of |
AE AL ’ A stack segment (=SS X 10H)

| 3w ZBHJ i <} SE=0104H k

e > 3CH 30104H—SS X 10H + SP)

' (a)

Al b Memory Address

S \ 30000H—(SS X 10H O e o X el)

IJCH : I e I SP=0103H

i :
> 2BH 30103H—(SS X 10H +SP) |
» 3CH 30104H i

(b)
=

Fig.3.5 PUSH AX (a) Pushing the first byte of AX onto the stack segment
(b) Pushing the second byte of AX onto the stack segment

70 Microprocessors and Interfacing

The instruction queue is six bytes long and stores the pre-fetched instructions

from the code segment. From there, the instruction is taken to the instruction

decoder, where it is decoded. The decoder passes the decoded information to the

timing and control circuit, which in turn generates the various control signals to

execute the instruction. Whenever this decoded instruction requires branching

(which arises when conditional or unconditional jump instructions are decoded),

the instruction queue is flushed and the instruction bytes from the branch address

are fetched into the queue. The BIU fetches the instruction bytes from the memory

whenever the EU is not using the address/data bus and puts them in the instruction
queue. Hence, fetching and execution of instructions can take place simultaneously.

Thus the instruction queue reduces the execution time of a program.
The segment and offset mechanism for accessing the memory in the 8086 allows

the programmer to write relocatable programs or data structures. A relocatable

program or data structure is one that can be placed anywhere in the memory map

of the 8086 and executed without any modification. This is not possible in the 8085

microprocessor. In a relocatable program, the jump instructions use only relative

values (positive or negative) with respect to the program counter, using which the

jump address is calculated. In addition, in a relocatable data structure, the data is

referred to using the offset address in the data segment or the extra segment.

3.4 PIN DETAILS OF 8086

The 8086 can operate in any one of the following two modes—minimum mode and

maximum mode.[fn the minimum mode, all the control signals for the memory and

I/O are generated by the 8086. In the maximum mode, some control signals must

be externally generateci; This requires the addition of an external bus controller

such as the 8288 to the 8086. Some pins in the 8086 have the same function in both

modes; other pins have different functions. Figure 3.6 shows the pin details of the

8086.

3.4.1 Function of Pins Common to Minimum

and Maximum Modes

The pins that have a common function in both the modes are as follows:

(1) ADI15-ADO0: These pins act as the multiplexed address and data bus of the

microprocessor. Whenever the ALE (address latch enable) pin is high (i.e.,
1), these pins carry the address, and when the ALE pin is low (i.e., 0), these

pins carry data. Using two external octal latches such as two 74373s along

with the ALE signal, these pins can be de-multiplexed into the address bus

(A15-A0) and data bus (D15-DO0).
(i) A19/S86-A16/S3: These pins (address/status bus) are multiplexed to provide

the address signals A19—A16 and the status bits S6-S3. When ALE = 1,

these pins carry the address and when ALE = 0, they carry the status lines.

Using one external octal latch (74373) along with the ALE signal, these

pins can be de-multiplexed into the address bus (A19—A16) and the status

bus (S6-S3). S3 and S4 indicate the segment accessed by the 8086 during

the current bus cycle. This is shown in Table 3.2.

Intel 8086 Microprocessor Architecture, Features, and Signals 71

Max. mode (Min. mode) L

= GND 1 N 400 V_,
SADI4]2 ; 390 ADI15

'AD13 []3 38[1 A16/S3
AD12 [4 370 A17/84
AD11 5 36[1 A18/S5
AD10 6 35[0 A19/S6
AD9 []7 34[] BHE/S7
ADS8 []8 330 MN/MX

AD7 09 2 ®p MN o
 AD6 []10 g085 31 RQ/GTO/ (HOLD) |

9 ADS [11 3001 RQ/GTI| (HLDA) \
AD4 [J12 291 LOCK | (WR)

% AD3: [13 28782 | M/10) 1

AD2 14 270 ST - |+ (DT/B) Lo K B
AD1 [J15 2601 50, .,/ (DEN)ces mimbes & B
ADO []16 25[1 QS0 = (ALE)
NMI []17 241 QS1 i (INTA)

- INTR [J18 230 TEST
RCLEKAE 19 221 READY

GND []20 21[1 RESET

Fig.3.6 Pin details of the 8086

Table 3.2 Function of status bits S4 and S3

- Y TR TR

SN R N

Exfia ségménf

Stack segment

Code segment or no segment

Data segment

The status bit S5 indicates the condition of the IF bit; S6 always remains at logic

0

(iii) NMI: The non-maskable interrupt (NMI) input is a hardware interrupt. It

|
|

(iv)

™)

(vi)

(vii)

cannot be disabled by software. It is a positive edge-triggered interrupt and

when it occurs, the type 2 interrupt occurs in the 8086.

INTR: The interrupt request (INTR) is a level-triggered hardware interrupt,

which depends on the status of IF. When IF = 1, if INTR is held high (i.e.,

logic 1), the 8086 gets interrupted. When IF = 0, INTR is disabled.

CLK: The clock signal must have a duty cycle of 33% to provide proper

internal timing for the 8086. Its maximum frequency can be 5, 8, and

10 MHz for different versions of the 8086—the 8086, 8086-2, and 8086-1,

respectively.

V c: This power supply pin provides a +5V signal to the 8086. The variation

allowed in the power supply input is £10%.

BHE/S7: The bus high enable (BHE) pin is used in the 8086 to enable the

72 Microprocessors and Interfacing

(viii)

(ix)

(xi)

(xii)

(xiii)

most significant data bus (D15-D8) during a read/write operation. The state

of the status line S7 is always logic 1.

MN/MX: The MN/MX pin is used to select either the minimum mode or
the maximum mode operation for the 8086. This is achieved by connecting

this pin to either +5V directly (for minimum mode) or to the ground (for

maximum mode).

RD: Whenever the Read signal (RD) is at logic 0, the 8086 reads the data

from the memory or I/O device through the data bus. .
TEST: The TEST pin is an input that is tested by the WAIT instruction. If

the TEST pin is at logic 0, the WAIT instruction functions as a NOP (no

operation) instruction. If the TEST pin is at logic 1, the WAIT instruction

waits for the TEST pin to become logic 0. This pin is often connected to
the BUSY pin of the 8087 (numeric coprocessor) to perform floating-point

operations.
READY: This input is used to insert wait states into the timing cycle of the

8086. If the READY pin is at logic 1, it has no effect on the operation of the

microprocessor. If it is at logic 0, the 8086 enters the wait state and remains

idle. This pin is used to interface the slowly operating peripherals with the

8086.
RESET: This input causes the 8086 to reset, if it is held at logic 1 for a

minimum of four clocking periods. Whenever the 8086 is reset, CS and IP
are initialized to FFFFH and 0000H, respectively, and all other registers are
initialized to 0000H. This causes the 8086 to begin executing instructions

from the memory address FFFFOH.
GND: The GND connection is the return for the power supply (V). The
8086 has two GND pins and both must be connected to ground for proper

operation.

3.4.2 Function of Pins used in Minimum Mode

The pins LECd in the minimum mode are as follows:
() OM/IO: This pin indicates whether the 8086 is performing memory read/

(ii)

(iii)

(iv)

v)

(vi)

write operation (M/IO = 1) or I/O read/write operation (M/IO = 0).
WR: The Write signal indicates that the 8086 is sending data to a memory

or I/O device. When WR s at logic 0, the data bus contains valid data for

the memory or I/O.

DT/R: The Data Transmit/Receive signal indicates that the 8086 data bus is

transmitting (DT/R = 1) or receiving (DT/R = 0) data. This signal is used to

control the data flow direction in external data bus buffers.

DEN: The Data Bus Enable signal activates external data bus buffers. When
data is transferred through the data bus of the 8086, this signal is at logic 0.

When DEN is high, no data flows in the data bus.
ALE: When the Address Latch Enable (ALE) signal is high, it indicates

that the 8086 multiplexed address/data bus (AD15-AD0) and multiplexed

address/status bus (A19/S6-A16/S3) contain an address, which can be

either a memory address or an I/O port address.

INTA: The Interrupt Acknowledge signal is a response to the INTR input

(vii)

(viii)

3.43

Intel 8086 Microprocessor Architecture, Features, and Signals 73

pin. The INTA signal is used to place the interrupt type or vector number in
the data bus, in response to the INTR interrupt.

HOLD: The Hold input requests a direct memory access (DMA) and is
generated by the DMA controller. If the Hold signal is at logic 1, the 8086
completes the execution of the current instruction and places its address,
data, and control buses in the high impedance state. If the Hold signal is at

logic 0, the 8086 executes the instructions normally.

HLDA: The Hold Acknowledge signal indicates that the 8086 has entered
the hold state and is connected to the HLDA input of the DMA controller.

Function of Pins used in Maximum Mode

The pins used in the maximum mode are as follows:

(1) S2, S1, and SO: The status bits indicate the function of the current bus cycle.
These signals are normally decoded by the 8288 (bus controller). Table 3.3

shows the function of these three status bits in the maximum mode.

Table 3.3 Function of S2,SI, and SO pins

s2 - Sl S0 Function

0 0 0 Interrupt acknowledge

0: 0 1 I/O read

0 1 0 I/O write

0 1 1 Halt

1 0 0 Opcode fetch

1 0 1 Memory read

1 1 0 Memory write

1 1 1 Passive (inactive)

(i) LOCK: The Lock output is used to lock peripherals off the system. This pin

(iii)

(iv)

is activated by using the LOCK prefix on any instruction.

RQ/GTO0 and RQ/GTI: The request/grant pins request DMA during the
maximum mode operation of the 8086. These lines are bidirectional and are

used to request and grant a DMA operation.

QS1 and QSO0: The queue status bits show the status of the internal

instruction queue in the 8086. These pins are provided for access by the
numeric coprocessor (8087). Table 3.4 shows the function of the QS1 and

QSO bits.

Table 3.4 Function of QS| and QSO pins

Qs1

—

-

O

O

QS0 Function

Queue is idle (or no operation).

First byte of opcode is read from the queue.

Queue is empty.

_
O
l

=

O

Subsequent byte of opcode is read from the queue.

74 Microprocessors and Interfacing

3.5 DIFFERENCES BETWEEN 8086 AND 8088

Intel 8088 is the predecessor of the 8086 processor. Both the processors are 16-bit
processors with identical architectures and instruction sets, but they have minor
differences. Both the processors are made with the high performance metal oxide

semiconductor (HMOS) technology with the 40-pin dual in-line package. The data
in the 8088 is 8 bits whereas it is 16 bits in the 8086. The 8088 is developed with
the provision of connecting external interfaces such as the 8255, 8253, 8259, etc.
so that all the existing circuits built around the 8085 can work as before with the
8088 but with more flexibility in programming and all other features of the 8086.

The differences between the 8086 and 8088 are listed in Table 3.5.

Table 3.5 Differences between the 8086 and the 8088

Intel 8088

* Data bus is 8 bits wide.

Int’el_, 8086 :

« Data bus is 16 bits wide.

* The 8086 has the signal M/IO in pin
28.

« Pin number 34 is BHE/S7—bus high
enable/status signal.

« The 8086 has a 6-byte instruction
queue. At least two bytes must be free
to fetch the next instruction into the

queue.

o There are two memory banks in the
8086, namely, odd and even banks, and
the total memory size is 1 MB, which is
accessed by segment-offset mechanism.

« There are two 1/O banks in the 8086,
namely, odd and even banks, and
the total I/O address space is 64 KB.
Both 8-bit and 16-bit I/O ports can be
interfaced with the 8086.

* The corresponding signal in the 8088
is the [O/M pin (complement of that in
the 8086).

* Pin number 34 is SSO—status output
signal. In the maximum mode, it is
always high. In the minimum mode,
the pin is logically equivalent to S0 in
the 8086.

*» The 8088 has a 4-byte instruction
queue. A single free byte in the
instruction queue is enough to fetch
the next instruction into the queue.

* There is a single memory bank in the
8088, and the total memory size is |
MB, which is accessed by segment-
offset mechanism.

* There is a single I/O bank in the 8088,
and the total I/O address space is
64 KB. Only 8-bit I/O ports can be
interfaced with the 8088.

Figures 3.7 and 3.8 show the pin details of the 8086 and 8088 processors,

respectively.
Both the processors can be operated in the minimum and maximum modes.

The difference between the two processors lies in the pin numbers 28 and 34. The

8088 has only an 8-bit data bus and so, the bus AD0O-AD7 acts as the multiplexed

address and data bus. In the 8086, the bus ADO-AD15 acts as the multiplexed
address and data bus as the data bus is 16 bits wide.

The instruction sets for the 8086 and the 8088 are common; hence the programs
written for one processor can be executed in the other. Both the processors are said

to have software compatibility.

Intel 8086 Microprocessor Architecture, Features, and Signals 75

Min. mode (Max. mode)

{
‘

o

:I Vcc

AD14]2 390 ADI5
AD13 [13 381 A16/S3
ADI12 4 3700 Al17/S4

AD11 O5 361 A18/S5
AD10 6 35[0 A19/S6

~AD9 [O07 347 BHE/S7

ADS [18 330 MN/MX
AD7 9 320 RD
AD6 []10 8086 310 HOLD (RQ/GTO)
AD5 11 30J HLDA (RQ/GTT)
AD4 []12 290 WR (LOCK)
AD3 []13 280 MO (32)
AD2 []14 270 DTR @&0)
AD1 []15 261 DEN (30)
ADO []16 250 ALE (QS0)
NMI 17 240 INTA (QS1)
INTR []18 230 TEST :
CLK 19 22 [0 READY
GND []20 21 [0 RESET

Power supply

V.., GND
T T Address/data bus

INIR ADO0-AD15, A16/S3-A19/S6
INTA €«—

Interrupt
interface TEST »

NMI ———»
L——» ALE

o il 8086 ————> BHE/S7

—— M/I0
S HOLD ——>» 3 DT/R Memory/IO controls

e e

CTLK
Clock

Fig. 3.7 Pin details of the 8086 processor

The major difference between the two processor-based systems lies in the

design of the interface between the memory and the I/O devices. The 8086 uses

two banks of memory, namely, lower or even memory bank connected to the data

bus D7-DO0, and higher or odd memory bank connected to the data bus D15-D8.

This is because the 8086 has a 16-bit data bus and the memory chips are available

with 8-bit data bus only. In the 8088, only one memory bank is interfaced with the

76 Microprocessors and Interfacing

i (N P SRR T
Al4 []2 39 I

A13 O3 38 J

A12 (4 374

A1l 05 36 1
A10 6 35

A9 []7 34 1

A8 []8 33-17

AD7 9 32 0

AD6 10 8088 310
ADS []11 30 O
AD4 12 29 [
AD3 13 28 0
AD2 []14 270
AD1 []15 26 O
ADO 16 25 [
NMI [17 24 O
INTR []18 3.5
CLK 19 »h
GND []20 1 b

Power supply

V.. GND

INTR —]

INTA€E———
Interrupt
interface TEST ———>

NMI ———»

RESET ————>

Z HOLD ———>
DMA interface HLDA

cc

sam Mode select

MN/MX

Fig.3.8

processor with the available 8-bit data buys. Similarly,

Ao S P

Min. mode (Max. mode)

(RQ/GTO)
(RQ/GTT)
(LOCK)
(52)
(ST)
(S0)
(QS0)
(QS1)

Address/data bus

ADO-AD7, A16/S3—-A19/S6

) A8-AlS

——> ALE

8086 |—— >3S0
e IOM

—— DT/R Memory/IO controls
| s

= DEN

j‘** READY |

CLK i
Clock |

R RV P vy s
AP

Pin details of the 8088 processor

there are two I/O banks in
the 8086, namely, odd and even banks, and the total /O address space is 64 KB.
There is a single I/O bank in the 8088, and the total 1/0 address space is 64 KB.
In this book, only the 8086 is considered for programming and interfacing. All
the programming aspects are common to both 8086

difference in interfacing is explained in the Section 6.9
and 8088 processors. The

of Chapter 6.

Intel 8086 Microprocessor Architecture, Features, and Signals 77

POINTS TO REMEMBER

® The internal architecture of the 8086 maini
unit (BIU) and the execution unit (EU).

e The BIU fetches instructions and data from the me
content of a segment register and an offset.

e There exists a six-byte instruction queue in the 8086, which is used to store the recently fetched instructions in the CPU. This is used to speed up the execution of a program.

y contains two units—the bus interface

mory to the processor, using the

e There are four memory segments—code, data, stack, and extra segments in the 8086 and their base address is indicated by adding four binary 0s to the right of the corresponding segment register’s content. The maximum size of a memory segment is 64KB.
e For fetching either an instruction byte or a data, the 8086 adds the base address of the particular segment with an offset address present in a register or available as an 8- or 16-bit displacement in the instruction, or obtained by a combination of both. e The designers of the 8086 have fixed the default offset register(s) for every segment register. However, this can be changed using the segment override prefix in the instruction.
e The EU contains the ALU, general-purpose registers, and the flag register, which are used during the execution of an instruction.
e The flag register contain different fla gs, which can be classified as status flags and control flags. The status flags reflect the result of arithmetic and logical operations, and the control flags control the operation during execution of instructions. e The 8086 can be operated in minimum mode or maximum mode. e Inthe 8086, the size of the address bus and data bus is 20 bits and 16 bits, respectively. The 8086 can access a maximum memory size of 1 MB (= 2%), as it has a 20-bit address bus.

KEY TERMS

—Bus interface unit This unit BIU includes an adder
16-bit segment registers (CS, DS, SS, and ES), a 16-bit instruction pointer (IP), a six- byte instruction queue, and bus control logic. This unit is responsible for fetching the instructions and data into the 8086 from the memory or I/O device. — Code segment This segment contains the instructions of a program. —— Data segment This segment contains the data for a program.

—— Execution unit This unit includes the ALU, eight 16-bit general-purpose registers, a 16-bit flag register, and the contro] unit. This unit is responsible for executing
instructions in the 8086.

— Extra segment This is an additional data segment used by some string instructions. ~ Flags These show information related to the result of the arithmetic or logic operation performed in the ALU. Flags in the flag register can be classified as status flags and control flags.
" Instruction queue It is six bytes long in the 8086 and stores the pre-fetched instructions from the memory. It is used to speed up the execution of a program. —— Maximum mode operation In this mode, some control signals must be externally generated, using a bus controller such as the 8288. '

for address calculations, four

78 Microprocessors and Interfacing

Minimum mode operation In this mode, all control signals for the memory and /O

are generated by the microprocessor itself.
Offset This is a 16-bit number that is added to the base address of a segment, to

select a byte of instruction or data from the memory.
Relocatable program It is the one that can be placed anywhere in the memory map

of the 8086 and executed without any modification.
Segment register This register indicates the starting or base address of a segment

in the memory.

Stack segment This segment holds the stack of a program.

21.

22,

REVIEW QUESTIONS

. What is the size of the address bus and data bus in the 80867

. What is meant by multiplexed address and data bus?

. Draw the register organization of the 8086 and explain typical applications of

each register.
. How is the 20-bit physical memory address calculated in the 8086 processor?

. Write the different memory segments used in the 8086 and their functions.

. List the segment registers and their default offset registers in the 8086.

What are the steps involved when PUSH BX is executed by the 80867

. Write the function of the DF, IF, and TF bits in the 8086.

. The content of the different registers in the 8086 is CS = FOOOH, DS = 1000H,

SS = 2000H, and ES = 3000H. Find the base address of the different segments in

the memory.
. Ifthe current content of the CS and IP registers is FFFFH and 0000H, respectively,

from which memory location will the 8086 fetch the next instruction?

. If the content of the DS and BX registers is 2500H and 1000H, respectively,

from which memory location will the 8086 fetch the data, while executing the

instruction MOV CX, [BX]?
. If the content of the SS and SP registers is S000H and 1000H, respectively, in

which memory location is the content of DX saved, when the 8086 executes the

instruction PUSH DX?

. What is the difference between the minimum and maximum mode operation of

the 80867

. What is the supply to be given to the V. input of the 80867

. What is the maximum frequency and duty cycle of the clock signal given to the

80867

. What is the function of the BHE and ALE signals in the 80867

. Which pins of the 8086 are used to enable and control the external data bus

buffers?
. What is the minimum time for which the Reset input must be activated for proper

reset of the 8086?

. What are the contents of the CS and IP registers immediately after the reset of the

80867
. What is meant by DMA operation? Which pins of the 8086 are used to perform

the DMA operation in the minimum and maximum modes of the 80867

What is the role of the status lines S4 and S3 in the 80867

What is the function of the S2, ST, and SO signals in the maximum mode operation
of the 8086?

Intel 8086 Microprocessor Architecture, Features, and Signals 79

. What is the role of the TEST pin in the 8086?

. Explain the architecture of the 8086 with a neat functional block diagram.

. Explain the function of the different flags in the 8086.

. What are the differences between the 8086 and 8088 processors?

THINKAND ANSWER '

. How much memory, in terms of bytes, can be interfaced with the 80867 Why?
What is the minimum and maximum size of a segment in terms of bytes? Why?
Why is memory divided into segments in the 8086? What are its advantages?

. How many 8K x 8 memory chips are required to construct a 1 MB memory?

. Which pin of the 8086 determines the mode of operation? How?

. What are the differences between NMI and INTR interrupts in the 8086?

. Which pin of the 8086 is used to synchronize the slowly operating peripherals
with the 8086? How?

. Is it possible for a segment to begin at a memory address that is not divisible by
16 (i.e., the address that does not end with the digit OH) in the 80867 Why?

. Is it possible for two segments to overlap in the 80867 Why?
. Why is the stack segment said to be growing downwards in the 8086?
. Mention the differences between 8085 and 8086 microprocessors.

Addressing Modes, Instruction Set,

and Programming of 8086

LEARNING OUTCOMES

After studying this chapter, you will be able to understand the following:

« Different addressing modes and instruction formats in the 8086
« Function of data transfer, arithmetic, logical, shift/rotate, flag manipulation, string, program

control transfer, and processor control instructions in the 8086 =

K. Assembly language programming of the 8086
« 8086 assembler and function of assembler directives

4.1 ADDRESSING MODES IN 8086

There are different addressing modes in the 8086. The addressing mode indicates
the way in which the operand or data for an instruction is accessed and the way

in which the microprocessor calculates the branch address for the jump, call, and
return instructions. We can classify the addressing modes in the 8086 under five

categories:

(i) Register addressing mode (iv) Program memory addressing modes
(ii) Immediate addressing mode (v) Stack memory addressing mode

(iii) Data memory addressing modes

Let us see each addressing mode in detail.

4.1.1 Register Addressing Mode

In this addressing mode, the data present in the register is moved or manipulated

and the result is stored in the register.

Example:

(a) mov AL, BL ; Move the content of BL to AL.

(b) Mov CXx, BX ; Move the content of BX to CX.

(c) ADD CL, BL ; Add the contents of CL and BL and store the
result in CL.

Add the contents of BX, the carry flag, and

DX, and store the result in BX.

(d) ADC BX, DX -

4.1.2 Immediate Addressing Mode

In this mode, the destination can be either a memory location or a register. The

data can be 8 bits or 16 bits wide and is directly given in the instruction.

Addressing Modes, Instruction Set, and Programming of 8086 81

Example:

(a) MOV AL, 5eH ; Move the data 50H to AL.

(b) MOV BX, 23A@H ; Move the data 23A0H to BX.

(c) MoV [SI], 43CeH ; Move the data 43COH to the memory at [SI].

In the last example, [SI] represents the memory location in the data segment at

the offset address specified by the SI register.

4.1.3 Data Memory Addressing Modes

The term effective address (EA) represents the offset address of the data within a

segment, which is obtained by different methods, depending upon the addressing

mode that is used in the instruction. Let us assume that the various registers in

the 8086 have the following values (Table 4.1) stored in them, throughout the

discussion of data memory addressing modes.

Table 4.1 Values stored in different registers of the 8086

Register CS DS SS ES BX BP Sl DI

Stored value 1000H 3000H 4000H 6000H 2000H 1000H 1000H 3000H

The different data memory addressing modes are as follows:

(i) Direct addressing: In this mode, the 16-bit offset address of the data within the

segment is directly given in the instruction.

Example:

(a) MOV AL, [1000H]
In this instruction, the effective address is 1000H. Since the destination is an 8-

bit register (i.e., AL), a byte is taken from the memory at the address given by

DS x 10H + EA (= 31000H) and stored in AL.

(b) MOV BX, [2000H]

EA =2000H in this instruction. Since the destination is a 16-bit register (i.e., BX),

a word is taken from the memory address DS x 10H + EA (= 32000H) and stored

in BX. (Note: Since a word contains two bytes, the bytes present at the memory

addresses 32000H and 32001H are moved to BL and BH, respectively.)

(ii) Base addressing: In this mode, EA is the content of the BX or BP register.
When the BX register is present in the instruction, data is taken from the data

segment and when BP is present, data is taken from the stack segment.
\

Example: Ay B e QP S
(a)Mov cL, [BX] ¢

EA = (BX) = 2000H

Memory address = DS x 10 + (BX) = 32000H. The byte from the memory address

32000H is read and stored in CL.

(b)mov Dx, [BP - =

EA = (BP) = 1000H

Memory address = SS x 10 + (BP) = 41000H. The word from the memory address

41000H is read and stored in DX.

3'@J1,;of_‘,

« Y\ 4 v L

82 Microprocessors and Interfacing

~(iii) Base relative addressing: In this mode, EA is obtained by adding the content of

the base register with an 8-bit or 16-bit displacement. The displacement is a signed

number with negative values represented in 2’s complement form. The 16-bit

displacement can have values from —32768 to +32767 and the 8-bit displacement

__can have values from —128 to +127.

— Example:

(a) MOV AX, [BX + 5]

EA=BX)+5

Memory address = DS x 10H + (BX)+5

= 30000H + 2000H + 5 = 32005H

The word from the memory address 32005H is read and stored in AX.

(b)MOV CH, [BX — 100H]

EA = (BX) — 100H

Memory address = DS x 10H + (BX) — 100H

= 30000H + 2000H — 100H = 31FO0H

The byte from the memory address 31F00H is read and stored in CH.

In this mode, EA is the content of the SI or DI register,
(iv) Index addressing:

e instruction. The data is taken from the data segment.
which is specified in th

& g 0
*_) \¢ VN

Example:
e

(a)mov BL, [SI]

EA = (SI) = 1000H

Memory address = DS X 10H + SI

— 30000H + 1000H = 31000H

A byte from the memory address 31000H is read and stored in BL.

(b)MoV CX, [DI]
EA = (DI) = 3000H

Memory address = DS x 10H + (DI)

= 30000H + 3000H = 33000H

A word from the memory address 33000H is read and stored in CX.

e addressing: This mode is the same as the base relative addressing
(v) Index relativ

at instead of the BP or BX register, the SI or DI register is used.
mode, except th

Example:

(a) MoV BX, [SI — 10@H]

EA = (SI) — 100H

Memory address = DS x 10H + (SI) — 100H

=30000H + 1000H — 100H = 30FO0H

A word from the memory address 30F00H is read and stored in BX.

(b)mov CL, [DI + 10H]

EA = (DI) + 10H

Memory address = DS x 10H + (DI) + 10H

=30000H + 3000H + 10H = 33010H

A byte from the memory address 33010H is read and stored in CL.

Addressing Modes, Instruction Set, and Programming of 8086 83

(vi) Base plus index addressing: In this mode, EA is obtained by adding the conten

of a base register and an index register.

Example:

MOV AX, [BX + SI]
EA = (BX) + (SI)

Memory address = DS x 10H + (BX) + (SI)

= 30000H + 2000H + 1000H = 33000H

A word from the memory address 33000H is taken and stored in AX.

Base relative, index relative, and base plus index addressing modes are used to
access a byte or word type data one by one, from a table or an array of data stored

in the data segment.

(vii) Base relative plus index addressing: In this mode, EA is obtained by adding

the content of a base register, an index, and a displacement.

Example:

(@)MOV CX, [BX + SI + 5@H]
EA = (BX) + (SI) + 50H

Memory address = DS x 10H + (BX) + (SI) + 50H

= 30000H + 2000H + 1000H + 50H

=33050H

A word from the memory address 33050H is read and stored in CX.

Base relative plus index addressing is used to access a byte or a word in a particular

record of a specific file in the memory. An application program may process many

files stored in the data segment. Each file contains many records and a record

contains a few bytes or words of data. In base relative plus index addressing, the

base register may be used to hold the offset address of a particular file in the data
segment; the index register may be used to hold the offset address of a particular

record within that file; the relative value is used to indicate the offset address of

particular byte or word within that record. f‘ 2C iv_ Pled +
)

4.1.4 Program Memory Addressing Modes ". et

Program memory addressing modes are used with the flMP and CALL instructions
and consist of three distinct forms—direct, relative, and indirect.
(1) Direct addressing: Direct program memorymessing stores both the segment

and the offset address where the control has to be transferred with the opcode, as

shown in Fig. 4.1.

This instruction is equivalent to JMP 32000H. When it is executed, the 16-bit

offset value 2000H is loaded in the IP register and the 16-bit segment value 3000H

is loaded in CS. When the microprocessor calculates the memory address from

where it has to fetch an instruction using the relation CS x 10H + IP, the address

32000H is obtained using the given CS and IP values. 7

This type of jump is known as inter-segment jump, using which the

microprocessor can jump to any memory location within the memory system (i.e.,

within 1 MB). It is also known as far jump. The inter-segment or FAR CALL

v

84 Microprocessors and Interfacing

E [00H [20H 00H 30H (f;*H de| | P—Lower- (IP—Higher- (CS—Lower- (CS—Higher- (Opco e), order byte order byte) order byte) order byte

ng. 4 I V Fofmat of JMP ins&uction (direct addressing)

instruction also uses direct program memory addressing. While using the assembler
to develop the 8086 program, the assembler directive FAR PTR is sometimes used
to indicate the inter-segment jump instruction.

Example: 5 me \5 R ks
.' (4 8, “(a) IMP FAR PTR COMPUTE |, =" 88 ' N~y

© [(b) IMP FAR PTR SIMULATE

OO(" 2

Z
<
1
Z

“(a) JMP SHORT OVER -

In these examples, COMPUTE and SIMULATE are the labels of memory
locations that are present in code segments other than the ones in which these
instructions are present.

(i1) Relative addressing: The term relative here means relative to the instruction
pointer (IP). Relative JMP and CALL instructions contain either an 8-bit or a
16-bit signed displacement, which is added to the current instruction pointer.
Based on the new value of IP thus obtained, the address of the next instruction to
be executed is calculated using the relation CS x 10H + [P,

The 8-bit or 16-bit signed displacement allows a forward or a reverse memory
reference, depending on the sign of the displacement. If the displacement is positive,
PC is incremented by the displacement value and if it is negative, PC is decremented
by the magnitude of the displacement value. A one-byte displacement is used in the short jump and call instructions, and a two-byte displacement is used in the near jump and call instructions. Both types are considered intra-segment jumps, since the
program control is transferred anywhere within the current code segment.

An 8-bit displacement has a jump range between +127 and —128 bytes from the next instruction, while a 16-bit displacement has a jump range between —32,768 and +32,767 bytes from the instruction following the jump instruction in the program. The opcode of the relative short jump and near jump instructions are
EBH and E9H, respectively.

While using an assembler to develop the 8086 program, the assembler
directives SHORT and NEAR PTR are used to indicate the short jump and near
jump instructions, respectively. Shovrk 2 4 s

Example: R 6 b, 3)

i] # fl ‘.-.j b) IMP NEAR PTR FIND ' il St
In these examples, OVER and FIND are the labels of memory locations that

are present in the same code segment in which these instructions are present.

(iii) Indirect addressing: The indirect jump or CALL instructions use a 16-bit
register (AX, BX, CX, DX, SP, BP, SI, or DI), a relative register ([BP], [BX],
[DI], or [SI]), or a relative register with displacement. The opcode of the indirect
jump instruction is FFH. It can be either an inter-segment indirect jump or an
intra-segment indirect jump.

Addressing Modes, Instruction Set, and Programming of 8086 85

If a 16-bit register holds the jump address in an indirect JMP instruction, the

operation is a near jump. If the CX register contains 2000H and the JMP CX

instruction present in a code segment is executed, the microprocessor jumps to the

offset address 2000H in the current code segment to take the next instruction for

execution (this is done by loading the IP with the content of CX, without changing

the content of CS).

When the instruction JMP [DI] is executed, the microprocessor first reads a

word in the current data segment from the offset address specified by DI and places

that word in the IP register. Now, with this new value of IP, the 8086 calculates the

address of the memory location to which it has to jump, using the relation CS X

10H + IP.

Example:

Let us assume that the registers DS, DI, and CS have the values 1000H, 2000H,

and 3000H, respectively. When JMP [DI], present at the offset address 1500H

in the code segment 3000H is executed, the microprocessor reads a word from

the address given by DS x 10H + DI (= 12000H) in the memory, and loads

it in the instruction pointer (IP). Let us assume that the word that is stored

in the address 12000H is 4000H. Hence, the program counter will be loaded

with the value 4000H. Now, the microprocessor fetches the next instruction for

execution from the address given by CS x 10H + IP (= 3000H x 10H + 4000H

= 34000H).

4.1.5 Stack Memory Addressing Mode

The stack is used to hold data temporarily during program execution and also store

the return address for procedures and interrupt service routines. The stack memory

is a last-in, first-out (LIFO) memory. Data are placed into the stack using the

PUSH instruction and taken out using the POP instruction. The CALL instruction

uses the stack to hold the return address for procedures and the RET instruction is

used to remove the return address from the stack.

The stack segment is maintained by two registers—the stack pointer (SP) and

the stack segment (SS) register. Data is pushed into or popped from the stack as

words (16-bit data), since bytes (8-bit data) cannot be used with the PUSH and

POP instructions. Whenever a word of data is pushed into the stack, the higher-

order eight bits of the word are placed in the memory location specified by SP — 1

(i.c., at the address SS x 10H + SP — 1) and the lower—order elght bits of the word

are placed in the memory location specified by SP -2 in the current stack segment

(i.e., at the address SS x 10H + SP — 2)-5P 18 then decremented by 2; The data

pushed into the stack may be the content of a 16-bit register, a segment register, or
a 16-bit data in the memory. =

Since SP gets decremented for every push operation, the stack segment is said

to be growing downwards, as for successive push operations, data are stored in the

lower memory addresses in the stack segment. Due to this, SP is initialized with

the highest offset address, according to the user’s requirement, at the beginning of

the program.

86 Microprocessors and Interfacing

Example:

(a) PUSH AX ; Push the content of AX into the stack.

(b) PUSH Ds ; Push the content of DS into the stack.

(c) PUSH [BX] ; Push the content of the memory location at

the offset address specified by BX in the

current data segment, into the stack.

The PUSHF instruction is used to push the flag register’s content into the

stack.

Whenever a word is popped from the stack, the lower-order eight bits of the

word are removed from the memory location specified by SP and the higher-order

eight bits of the word are removed from the memory location specified by SP + 1

in the current stack segment. SP is then incremented by two.

Example:

(a) POP BX 5 Pop the content of BX from the stack.

(b) POP ES ; Pop the content of ES from the stack.

(c) PoP [BP] 5 Pop the content of the memory location at

the offset address specified by BP in the

current stack segment, from the stack.

The POPF instruction is used to pop a word stored in the stack and move it to

the flag register.

4.2 SEGMENT OVERRIDE PREFIX

The segment override prefix, which can be added to almost any instruction in

any memory related addressing mode, allows the programmer to deviate from
the default segment and offset register mechanism. The segment override prefix

is an additional byte that appears in at the beginning of an instruction, to select an

alternative segment register. The JMP and CALL instructions cannot be prefixed

with the segment override prefix, since they use only the code segment (CS)

register for address generation.

Example:

The MOV AX, [BP] instruction accesses data within the stack segment by default,

since BP is the offset register for the stack segment. However, if the programmer
wants to get data from the data segment using BP as the offset register in this

instruction, the instruction should be modified as MOV AX, DS: [BP]. ~
Table 4.2 shows the instructions that address memory segments other than the

default ones.

Table 4.2 Instructions that include the segment override prefix

Instruction Default segment Accessed segment

MOV BX, ES:[BP] SS ES

MOV BX, SS:[DI] DS SS

MOV CX, ES:[BX] DS ES
(Contd)

Addressing Modes, Instruction Set, and Programming of 8086 87

Table 4.2 Instructions that include the segment override prefix (Contd)

~Instruction Default segment Accessed segment

MOV CX, ES:[SI] DS ES

MOV AX, CS:[BX] DS CS

4.3 INSTRUCTION FORMAT OF 8086

The instruction format, which is the representation of an instruction in machine

language, has one or more fields associated with it. The first field is called opcode

or operation code field, which indicates the type of the operation to be performed by

the 8086. The other fields in the instruction format are known as operand fields. The

8086 executes the instruction using the information present in these fields. There are

six general instruction formats in the 8086. The length of an instruction may vary

from one byte to six bytes. The instruction formats of the 8086 are explained here:

4.3.1 One-byte Instruction

This format is only one byte long, and it may have implied register or data

operands. The least significant three bits of the opcode are used to specify the

register operand, if any. Otherwise, all the eight bits in the instruction form an

opcode and the operands are implied.

4.3.2 Register to Register

This format is two bytes long. The first byte of the code specifies the opcode. The

width of the operand is specified by the W bit. The second byte of the instruction

indicates the register operand and R/M (register/memory) field, as given here:

Pl D3 D2 DI DO D7 D6 D5 D4 D3 D2 D1 DO

L Opcode I D ‘ \" | (MOD l REG ‘ R/M —I

- First byte —>» < Second byte >

The register represented by the REG field is one of the operands and is given in
Table 4.3. When the MOD field’s bits (i.e., bits D7 and D6) are 1, the R/M field

is also treated as a REG field. The direction (D) bit indicates whether the data is

transferred from the register (if D = 0) or to the register (if D = 1).

Table 4.3 Assignment of codes for different registers in the 8086

W bit Register code Register W bit Register code Register

0 000 AL 0 010 DL

0 001 CL 0 011 BL

0 100 AH 1 010 DX

0 101 CH 1 011 BX

0 110 DH 1 100 SP
(Contd)

88 Microprocessors and Interfacing

- Table 4.3 Assignment of codes for different registers in the 8086 (Contd)

W bit Register code Register W bit Register code Register

0 111 BH 1 101 BP

1 000 AX 1 110 SI

1 001 CX 1 111 DI

Register code ~ Register Register code Register

00 ES 10 SS

01 CS 11 DS

4.3.3 Register to/from Memory with No Displacement

This format is two bytes long. The MOD field indicates the mode of addressing.
The MOD, REG, R/M, and W fields are decided as per Table 4.4.

Table 4.4 MOD, REG, R/M,and W fields for different addressing modes

. Mémory operand

Operands No 8-bit 16-bit 5:2:::,95
displacement Displacement Displacement

i st 15 | o 10 w=111w=o

000 (BX) + SD) (BX) +(SI) +D8 BX)+ (S +D16! AX AL

001 | (BX)+(DI) | (BX)+(D)+D8 | (BX)+([DN)+DI16| CX CL

010 | (BP) + (SI) | (BP) + (SI) + D8 | (BP) + (SD + D16 | DX DL

011 (BP)+(DI) (BP)+(DI)+D8 (BP)+(DI)+D16 BX BL

100 | (SI) (S) + D8 (SI)+ D16 | SP AH

101 | (DI | (DI) + D8 | (DI + D16 | BP: L CH

110 | D16 | (BP) + D8 | (BP)+DI16 | SI DH

111 | (BX) | (BX) + D8 | (BX) +DI6 | DI BH

In Table 4.4, D16 and D8 represent 16-bit and 8-bit displacements, respectively.

The instruction format is given here:

DY... D3 D2 DI DO D7 D6 D5 D4 D3 D2 D1 DO

‘ Opcode ‘ D W MOD ’ REG J R/M ‘

<«— Firstbyte -« Second byte —m —>»

Addressing Modes, Instruction Set, and Programming of 8086 89

4.3.4 Register to/from Memory with Displacement

This type of instruction format contains two bytes as in the previous instruction

format and one or two additional bytes for displacement, namely, DISP-LOW

(third byte) and DISP-HIGH (fourth byte), which are the lower-order and higher-

order bytes of displacement, respectively.

4.3.5 Immediate Operand to Register

In this format, the first byte and the bits D3-D35 in the second byte are used for

opcode. It also contains one or two bytes of immediate data as shown here:

D7 DO DO D7 DO D7 D7 DO

(OPCODE ’ F]l l OPCODE | R'M ‘ I DATA-LOW J l DATA-HIGIL'

DATA-LOW and DATA-HIGH are the lower-order and higher-order bytes of data,

respectively.

4.3.6 Immediate Operand to Memory with [6-Bit Displacement

This instruction format is five or six bytes long. The first two bytes contain the

opcode, MOD, and R/M fields. Then two bytes of displacement and two bytes of

data are present as shown here:

D7 DO D7 DO D7 DO D0 D7

|£PCODE J I;)DIOPCODE l R/MJ [DISP-LO\Ll TDISP-HIGH ‘

D7 DO D7 DO

l DATA-LOW | DATA-HIGfl

The opcode usually appears in the first byte of an instruction. However, in a few
instructions, a register destination is present in the first byte, and in few other

instructions, their 3 bits of opcode is present in the second byte. The opcodes have

different single-bit indicators, which are as follows:
(i) W bit—This bit indicates whether the instruction operates on 8-bit data for

which W = 0 or 16-bit data for which W = 1.
(i) D bit—This bit is present in double operand instructions. One of the

operands in the instruction must be a register specified by the REG field,
which will be the source operand if D = 0. Otherwise, it is a destination

operand for which D = 1. D bit is also called direction bit.
(iii) S bit—This bit is the sync-extension bit. S bit is always used with the W bit

to show the different types of operations as given here:
(a) When S = W = 0, it indicates 8-bit operation with an 8-bit immediate

data.
(b) When S = 0 and W = 1, it indicates 16-bit operation with a 16-bit

immediate data.
(c¢) WhenS=1and W= 1, itindicates 16-bit operation with a sign-extended

immediate data.

90 Microprocessors and Interfacing

(1v) 'V bit—This bit is used in shift and rotate instructions. It is set to 0 if shift

count is 1 and to 1 if the CL register contains the shift count.

(v) Z bit—This bit is used by the REP instruction to control the loop. If the Z
bit is 1, the string instruction with REP prefix is executed until the zero flag

matches the Z bit.

The following examples give the machine language coding of a few instructions

in the 8086:

Example 4.1

Find the machine language code for the instruction MOV AX, BX.

Solution:

This instruction will move a word from the BX register to the AX register. The

6-bit opcode for the MOV instruction is 100010. Since a word is moved, W =

1. The D bit for this instruction code is made either 0 or 1, depending on how
we interpret the instruction. If we think of the instruction as moving a word to
AX, then make D = 1 and put 000 in the REG field to represent the AX register.

The MOD field is made 11 to represent register addressing mode. The R/M field

is made 011 to represent BX register. The resultant code for the MOV AX, BX

instruction will be as follows:
Opcode D W MOD REG R/M

IIOOOIOI 1]1‘11}000]0114]

If we change the D bit to 0 and swap the codes in the REG and R/M fields, we will

get 10001001 11011000, which is another equally valid code for the MOV AX,

BX instruction. Here we think of moving the data from the BX register.

Example 4.2

Find the machine language code for the instruction MOV DL, [BX].

Solution:

The opcode of the MOV instruction is 100010. The bit D is made 1 because the

data is being moved to DL. The W bit is made 0, because a byte is moved into DL.

Next the 3-bit code for the DL register, which is 010, is put in the REG field of the

second byte of the instruction code. The MOD and R/M fields are filled with bits

00 and 111, respectively. Assembling all these bits together, the machine language

code of the MOV DL, [BX] instruction is obtained as follows:

Opcode D w MOD REG R/M

Come [+ [0 Lo [on]
Example 4.3

Find the machine language code for the instruction MOV [SI + 50H], CL.

Solution:

The opcode of the MOV instruction is 100010. The value 001 is put in the REG

field to represent the CL register. D is made 0 because we are moving data from
the CL register. W is made 0 since we are moving a byte. The R/M and MOD fields

Addressing Modes, Instruction Set, and Programming of 8086 91

are set to 100 and 01, respectively, since the addressing mode is of the general

form [SI + D8). Putting all these bits together, we get the first two bytes of the

instruction, as follows:

Opcode D w MOD REG R/M

[100010 ' 0 ' 0 I 01 ‘ 001 | IOOJ

The displacement 50H is inserted after these two bytes, as the third byte of the

instruction.

Example 4.4

Find the machine language code for the instruction MOV CS: [BX], AL.

Solution:

This instruction moves the data in the AL register to the memory location whose

address is given by CS X 10H + BX. The CS: in the instruction is called a segment

override prefix. When an instruction containing a segment override prefix is coded,

an 8-bit code for the segment override prefix is put before the code for the rest of

the instruction. The code byte for the segment override prefix is 001XX110, in

which we insert a 2-bit code in place of the X’s to indicate which segment base has

to be added to the effective address. As given in Table 4.3, the 2-bit codes are as

follows: ES =00, CS =01, SS =10, and DS = 11. The segment override prefix for

CS: is then 00101110. This is the first byte of the instruction. The remaining two

bytes of the instruction are given here, which are obtained based on the concepts

explained in the previous examples.

Opcode D W MOD REG R/M

(IOOOIOIO‘O’OOIOOOIHI'

4.4 INSTRUCTION SET OF 8086

The instructions of the 8086 are classified as data transfer, arithmetic, logical,
flag manipulation, control transfer, shift/rotate, string, and machine control

instructions.

4.4.1 Data Transfer Instructions

The data transfer instructions include MOV, PUSH, POP, XCHG, XLAT, IN,

OUT, LEA, LDS, LES, LSS, LAHF, and SAHF. These instructions are discussed

here in detail:

(i) MOV: The MOV instruction copies a word or byte of data from a specified

source to a specified destination. The destination can be a register or a memory

location. The source can be a register, a memory location, or an immediate number.

The general format of the MOV instruction is MOV destination, source.

Example:

(a) MOV BL, 5eH ; Move immediate data 5@H to BL.
(b)mov cx, [BX] 5 Copy the word from the memory at [BX] to CX.

(c) Mov AX, CX ;5 Copy the contents of CX to AX.

92 Microprocessors and Interfacing

Note: [BX] indicates the memo
the data segment.

(i) PUSH: The PUSH instruction is us
memory location into the stack,
decremented by two after the ex

ry location at the offset address specified by BX in

ed to store the word in a register or a
as explained in the stack addressing mode. SP is
ecution of PUSH.

Example: .
(a) PUSH cx 5 PUSH the content of cX into the stack. (b) PusH Ds 5 PUSH the content of DS into the stack.

5 PUSH the word in the memory at [BX] into
the stack.

(iii) POP: The POP instruction co
specified in the instruction. The
segment register, or a memory |

(CYPUSH [BX]

pies the top word from the stack to a destination
destination can be a general-purpose register, a ocation. After the word is copied to the specified destination, SP is incremented by two.

Example:

(a) POP BX 5 Pop the content of BX from the stack.
5 Pop the content of DS from the stack.
> Pop a word from the stack and store it dn the memory at [S1].

(b) PoP Ds
(c) POP [SI]

Note: [SI] indicates the memory location in the data Ségment at the offset address specified by SI.

(iv) XCHG: The XCHG instruction exchanges the contents of a register with the contents of a memory location. It cannot exchange the contents of two memory locations directly. The source and destination must both be either words or bytes. The segment registers cannot be used in this instruction. ——

Example:

“(a) XCHG AL, BL 5 Exchanges the content of AL and BL. (b) XCHG cx, Bx 5 Exchanges the content of CX and BX. L) XCHG AX, [BX] 5 Exchanges the content of AX with the content of the memory at [BX].
“~(¥) XLAT: The XLAT instruction is used t

another code. The instruction re
memory at [BX], which is one

(vi) IN: The IN instruction copies data from a port to the AL or AX register. If an 8-bit port is read, the data js stored in AL and if a 16-bijt port is read, the data is stored in AX. The IN instruction has two formats—fixed port and variable port.

Addressing Modes, Instruction Set, and Programming of 8086 93

In the fixed port type IN instruction, the 8-bit address of a port is specified

directly in the instruction. With this form, any one of 256 possible ports can be

addressed.

Example: |

IN AL, 80H 5 Input a byte from the port with address 86H to AL.

IN AX, 40H 5> Input a word from the port with address 40H to AX.

For the variable port type IN instruction, the port address is loaded into the DX

register before the IN instruction. Since DX is a 16-bit register, the port address

can be any number between 0000H and FFFFH. Hence, we will be able to address

up to 65,536 ports in this mode. The following example shows a part of a program

having the IN instruction. The operations done when the instructions are executed

are given in the corresponding comment fields.

Example:

MOV DX, OFESOH ; Initialize DX with the port address FES@H.

IN AL, DX > Input a byte from the 8-bit port with port

address FE50H into AL.

IN AX, DX 5 Input a word from the 16-bit port with port

address FE50H into AX.

The drawback of the fixed port type IN instruction is that the port address

cannot be changed once the program is stored in the ROM. The variable port type

IN instruction has the advantage that the port address can be computed in the

program during execution, and by loading it in DX, the corresponding port can be

accessed using the IN instruction.

(vii) OUT: The OUT instruction transfers a byte from AL or a word from AX

to the specified port. Similar to the IN instruction, the OUT instruction has two

forms—fixed port and variable port.

Examples for fixed port OUT instruction:

(a) OUT 48H, AL ; Sends the content of AL to the port with
address 48H.

(b)OUT oFeH, AX 5 Sends the content of AX to the port with
address FOH.

| Examples for variable port OUT instruction:

The following example shows a part of a program having the OUT instruction.
MOV DX, 1234H ; Load the port address 1234H in DX.

OUT DX, AL ; Send the content of AL to the port with address

1234H.

OUT DX, AX ; Send the content of AX to the port with address

1234H.

_(viii) LEA (load effective address): The general format of the LEA instruction is

LEA register, source. This instruction determines the offset address of the variable

or memory location called the source and puts this offset address in the indicated
16-bit register.

94 Microprocessors and Interfacing

Example: Cab /1:

(a) LEA BX, COST ; Load BX with the offset address of COST in the
\\ data segment, where COST is the name assigned

A to a memory location in the data segment.
() LEA CX, [BX + SI] ; Load CX with the value equal to (BX) + (SI),

e ——e

where (BX) and (SI) represent the content of
BX and SI, respectively.

~ (ix) LDS: This instruction loads the register and DS with words from the memory.
The general form of this instruction is LDS register, memory address of first
word.

The LDS instruction copies a word from the memory location specified in the
instruction into the register, and then copies a word from the next memory location
into the DS register. LDS is useful in initializing the SI and DS registers to point
to the start of a string before using one of the string instructions.

Example:

LDS SI, [2000H] 5 Copy the content of the memory at the
offset address 2000H in the data segment to

' { the lower-order byte of SI, and the content
AN Q D el of 2001H to the higher-order byte of SI. Copy

Q VR S0 0. CH/ thescontent-at- the offset ‘address 2002H in
HMee V Q S/ p_x] the data segment to the lower-order byte of

DS and the content of 2003H to the higher-
order byte of DS.

(x) LES and LSS: The LES and LSS instructions are similar to the LDS instruction,
except that instead of the DS register, the ES and SS registers, respectively, are
loaded, : along with the register specified in the instruction.

(xi) LAHF: This instruction g@ié;“ifl:‘lo&&er-order byte of the flag register into
AH.

/ (xii) SAHF: This instruction stores the content of AH in the lower-order byte of
the flag register.

Except the SAHF and POPF instructions, no other data transfer instruction
affects the flag register.

\4.4.2‘-\rithmetic Instructions

The arithmetic instructions in the 8086 are used to perform addition, addition
with carry, subtraction, subtraction with borrow, increment, decrement, negation
(changing sign), comparison, multiplication, division, decimal-adjust after
addition, decimal-adjust after subtraction, and processing of ASCII data. Let us

\) now discuss each instruction in detail.
" (D)_ADD: The general format of the ADD instruction is ADD destination, source.

The data from the source and destination are added and the result is placed in
the destination. The source may be an immediate number, a register, or a memory
location. The destination can be a register or a memory location. However, the

Addressing Modes, Instruction Set, and Programming of 8086 95

source and destination cannot both be memory locations. The data from the source

and destination must be of the same type (either bytes or words).

Example:

(a) ADD BL, 8@H Add the immediate data 80H to BL.

(b)ADD CX, 12BeH ; Add the immediate data 12BOH to CX.

(c) ADD AX, CX Add the content of AX and CX and store the

result in AX.

-

e

(d)ADD AL, [BX] ; Add the content of AL and the byte from the

memory at [BX] and store the result in AL.

(e) ADD CX, [SI] ; Add the content of CX and the word from the

memory at [SI] and store the result in CX.

(f) ADD [BX], DL ;. Add the content of DL with the byte from the

memory at [BX] and store the result in the

memory at [BX].

The flags AF, CF, OF, PF, SF, and ZF are affected by the execution of the ADD
il Yl AW :

instruction. /;\ [)]) (o, A adr

~(ii) ADC: This /_i_gsm.mtj%n adds the data in the source and destination with the

c flag and stores the result in the destination. The general format

of this instruction is ADC destination, source.

All the rules specified for ADD are applicable to the ADC instruction.

\@ii) SUB: The general form of the subtract (SUB) instruction is SUB destination,

and stores the result in the destination. Like the ADD instruction, the source may

be an immediate number, a register, or a memory location. The destination can be

a register or a memory location. However, the source and destination cannot both
be memory locations. The data from the source and destination must be of the
same type (either bytes or words).

For subtraction, the carry flag (CF) functions as the borrow flag. If the result is

negative after subtraction, CF is set. Otherwise, it is reset. The flags AF, CF, OF,

PF, SF, and ZF are affected by the SUB instruction.

Example:

(a)suB AL, BL ; Subtract BL from AL and store the result in

AL.

(b)suB cx, BX ; Subtract BX from CX and store the result in

CX.

(c)suB BX, [DI] ; Subtract the word in the memory at [DI]

from BX and store the result in BX.

(d)sus [BP], DL ; Subtract DL from the byte in the memory at

[BP] and store the result in the memory at

[BP].

Niv) SBB: Subtract with borrow—The general form of this instruction is SBB

destination, source. The SBB instruction subtracts the content of the source

and the carry flag from the content of the destination and stores the result in the

96 Microprocessors and Interfacing

destination. The rules for the source and the destination are same as that for the 2 SUB instruction. AF, CF, OF, PF, SF, and ZF are affected by this instruction. \v) INC: The increment (INC
register or a memory location.
the carry flag is not affected b

) instruction adds 1 to the content of a specified The data incremented may be a byte or word. While y this instruction, the flags AF, OF, PF, SF, and ZF are affected.

Example:
, (a) INC cL 5 Increment the content of ¢ byfi.\ (b) INC AX 5 Increment the content of AX byfit?

5 Increment the byte in the memory at [BX] by Iff\ 5 Increment the word in the memor y at [SI] byfilllf—&i"‘ ¢ terms BYTE PTR and WORD PTR are assembler directives, which are used to s pecify the type of data (byte or word) to be \ incremented in the memory.
~ =~ (vi)DEC: The decrement (DEC) instruction subtracts 1 from the content of a specified " register or memory location. The data decremented may be a byte or a word. CF i <., Dot affected, but AF, OF, PF, SF, and ZF flags are affected by this instruction. \/,,:g;éf {X(ii) NEG: The negate (NEG) instruction r

register or memory location by its 2’s co
data). The CF, AF, SF, PF, ZF, and OF fla

(c) INC BYTE PTR [BX]
(d) INC WORD PTR [SI]

In these examples, th

eplaces the byte or word in the specified
mplement (i.e., changes the sign of the
gs are affected by this instruction.

Example:

(a) NEG AL 5 Take 2’s complement of the data in AL ang
store it in AL,

(b)NEG X

e
 Take 2’s complement of the data in cx and

store it in cx.

5 Take 2’s complement of the b
at [BX] and store the resul
place.

5 Take 2’

(C) NEG BYTE PTR [BX]
yte in the memory
t in the same

(d)NEG WORD PTR [S1]

» OF, SF, ZF, PF, and CF flags are affected b
ation are the same as those for the SUB instruction.

Example:
After the instruction C MP AX, DX is executed, the status of CF, ZF, and SF will be as follows: -

CF ZF SF
If AX = DX 0 1 0

Addressing Modes, Instruction Set, and Programming of 8086 97

IfAX > DX 0 0 0

IfAX <DX 1 0 1

~(ix) MUL. The multiply-(MUL)-instruction is used for multiplying two unsigned

bytes or words. The general form of the MUL instruction is MUL source. The

source can be a byte or a word from a register or memory location, which is

considered as the multiplier. The multiplicand is taken by default from AL and AX

for byte and word type data, respectively. The result of multiplication is stored 1n

AX and DX-AX (i.e., the most significant word of the result in DX and the least

significant word of the result in AX) for byte and word type data, respectively.

(Note: Multiplying two 8-bit data gives a 16-bit result and multiplying two 16-bit

data gives a 32-bit result.)

Example:

(a)MUL CH ; Multiply AL and CH and store the result in

AX. ’

(b)MuL BX ; Multiply AX and BX and store the result in

DX—AX.

(c)MUL BYTE PTR [BX] ; Multiply AL with the byte in the memory at

[BX] and store the result in AX.

If the most significant byte of the 16-bit result is 00H or the most significant

word of a 32-bit result is 0000H, both CF and OF will be 0. Checking these flags

allows us to decide whether the leading Os in the result have to be discarded or

not. The AF, PF, SF, and ZF flags are undefined (i.e., a random number is stored in

these bits) after the execution of the MUL instruction.

(x) IMUL: The IMUL instruction is used for multiplying the signed byte or word

in zr?e-g‘ister-,or.me,mory location with AL or AX, and store the result in AX or

DX-AX, respectively. If the magnitude of the result does not require all the bits of

the destination, the unused bits are filled with copies of the sign bit.

If the upper byte of a 16-bit result or the upper word of a 32-bit result contains

only copies of the sign bit (all 0s or all 1s), CF and OF will both be 0. Otherwise,

both will be 1. AF, PF, SF, and ZF are undefined after IMUL.

To multiply a signed byte by a signed word, the byte is moved into a word

location and the upper byte of the word is filled with copies of the sign bit. If the

byte is moved into AL, using the CBW (convert byte to word) instruction, the sign

bit in AL is extended into all the bits of AH. Thus, AX contains the 16-bit sign-

extended word.

Example:

(a) IMUL BL ; Multiply AL with BL and store the

result in AX.

(b) IMUL AX ; Multiply AX and AX and store the

result in DX-AX.

(c) IMUL BYTE PTR [BX] ; Multiply AL with the byte from the

memory at [BX] and store the result in

AX.

98 Microprocessors and Interfacing
~

\(d) IMUL WORD PTR [SI] 5 Multiply AX with the word from the

memory at [SI] and store the result in

DX—AX.

\\'\e_xiz DIV: The divide (DIV) instruction is used for dividing unsigned data. The

general form of the DIV instruction is DIV source, where ‘source’ is the divisor.

It can be a byte or word in a register or memory location. The dividend is taken by

default from AX and DX-AX for byte and word type data division, respectively.
Table 4.5 shows the complete details of the DIV instruction.

Table 4.5 Details of DIV instruction

Dividend (bits) Divisor (bits) Quotient (bits) Remainder (bits)

AX (16) Source (8) AL (8) AH (8)

DX-AX (32) Source (16) AX (16) DX (16)

If an attempt is made to divide by 0 or if the quotient is too large to fit in AL or AX
(i.e., if the result is greater than FFH in 8-bit division or FFFFH in 16-bit division),

the 8086 automatically generates a type 0 interrupt. All flags are undefined after a

DIV instruction.

Example:
(a) DIV DL ; Divide the word in AX by the byte in DL.

The quotient is stored in AL and the remainder-

in AH.

(b) DIV CX ; Divide the double word (32 bits) in DX-AX by

the word in CX. The quotient is stored in AX

and the remainder in DX.

(c)DIV BYTE PTR [BX] ; Divide the word in AX by the byte from the

memory at [BX]. The quotient is stored in AL

and the remainder in AH.

\(xii) IDIV: The IDIV instruction is used for dividing signed data. The general form

and the rules for the IDIV instruction are same as those for the DIV instruction.

The quotient is a signed number and the sign of the remainder is the same as the

sign of the dividend.

To divide a signed byte by a signed byte, the dividend byte is put in AL and

using the CBW (convert byte to word) instruction, the sign bit of the data in AL

is extended to AH. Thus, the byte in AL is converted to a signed word in AX. To

divide a signed word by a signed word, the dividend byte is put in AX and using

the CWD (convert word to double word) instruction, the sign bit of the data in AX

is extended to DX. Thus, the word in AX is converted to a signed double word in

DX-AX.

If an attempt is made to divide by 0 or if the quotient is too large or too small

to fit in AL and AX for 8- and 16-bit division, respectively (i.e., either the result is

greater than the decimal value +127 in 8-bit division or the decimal value +32,767

in 16-bit division, or the result is less than the decimal value —128 in 8-bit division

Addressing Modes, Instruction Set, and Programming of 8086 99

or the decimal value —32,767 in 16-bit division), the 8086 automatically generates

[atype 0 interrupt. All flags are undefined after a DIV instruction.
e PR S S

(xiii) DAA: Decimal adjust AL after BCD addition—This instruction is used to

get the result of addition of two packed BCD numbers (in a packed BCD number,

two decimal digits are represented as eight bits) as a BCD number. The result of

addition must be in AL for DAA to work correctly. If the lower nibble (four bits) in

AL is greater than 9 after addition or if the AF flag is set by the addition, the DAA

instruction adds 6 to the lower nibble in AL. If the result in the upper nibble of AL

is now greater than 9 or if the carry flag is set by the addition, the DAA instruction

adds 60H to AL. |

Example:) S

(2) Let AL = 01011000 = 58 BCD %[»‘W

CL=00110101=35BCD ARty G

Consider the execution of the following instructions:

ADD AL, CL ; AL = 10001101 = 8DH and AF = @ after execution

DAA ; Add 0110 (decimal 6) to AL, since lower nibble in AL

is greater than 9

; AL = 10010011 = 93 BCD and CF = @

Therefore, the result of addition is 93 BCD. e

(b) Let AL = 10001000 = 88 BCD AP0 3y
CL=01001001 = 49 BCD Sl ikl

Consider the execution of the following instructions: ‘ 4

ADD AL, CL ; AL = 11010001 and AF =1 after execution

DAA ; Add 0110 (decimal 6) to AL

; AL = 11010111 = D7H

; Upper nibble 1101 > 9. So add 6@H (0110 ©000) to AL.

; AL = 0011 0111 = 37 BCD and CF = 1

The final result is 137 BCD, taking into account the carry generated. The DAA

instruction affects AF, CF, PF, and ZF. OF is undefined after the DAA instruction

is executed. e) ke

X1V) DAS: Decimal adjust after BCD subtraction—DAS is used to get the result

A packed BCD form after subtracting two packed BCD numbers. The result of

the subtraction must be in AL for DAS to work correctly. If the lower nibble in

AL after a subtraction is greater than 9 or if the AF is set by subtraction, the DAS

instruction subtracts 6 from the lower nibble of AL. If the result in the upper nibble

is now greater than 9 or if the carry flag is set, the DAS instruction subtracts 60H

from AL.

Example:

(a) Let AL = 86 BCD = 10000110

CH=57BCD =01010111

Consider the execution of the following instructions:

SUB AL, CH ; AL = 00101111 = 2FH and CF = @ after execution

100 Microprocessors and Interfacing

1t is 1111. So DAS subtracts

= 29 BCD and CF =

DAS ; Lower nibble of the resu
@6H from AL to make AL = 00101001

@ to indicate that there is no borrow.

The result is 29 BCD.

(b)Let AL =49 BCD =01001001

CH=72BCD=01110010

Consider the execution of the following instructions:

SUB AL, CH ; AL = 1101 @111 = D7H and CF = 1 since result is

negative

DAS ; Subtract 0110 0000 (6@H) from AL because upper nibble

in AL is greater than 9. This makes AL = 01110111 =

77 BCD and CF = 1, indicating that a borrow is

needed.

The answer is 77 BCD as 149 BCD — 72 BCD = 77 BCD. The value 149 BCD

is mentioned here, considering the borrow that is generated after the subtraction.

There are four arithmetic instructions that are used to perform operations

on unpacked BCD numbers. In an unpacked BCD number, one decimal digit is

represented as an 8-bit number in which the upper four bits are always zero. For

example, the decimal digit 3 is represented as 03H in unpacked BCD form.

v) AAA: The AAA (ASCII adjust after addition) instruction must always follow

the addition of two unpacked BCD operands in AL. When AAA is executed, the

content of AL is changed to a valid unpacked BCD number; the upper four bits of

AL are cleared. CF is set and AH is incremented if a decimal carry-out from AL

is generated.

Example:

Let AL = 05 (decimal) = 00000101
BH = 06 (decimal) = 00000110

AH = 00H \ e 1 1

Consider the execution of the following instructions:

ADD AL, BH ; AL = 11 (decimal) and CF = @

AAA ; AL =01 and AH = 01 and CF = 1

Addition of 5 and 6 gives a decimal result of 11, which is equal to 0101H in

unpacked BCD form. It is stored in AX. When this result is to be sent to the printer,
the ASCII code of each decimal digit is easily found by adding 30H to each byte.

/éxvi) AAS: ASCII adjust after subtraction—This instruction always follows the

ubtraction of one unpacked BCD operand from another in AL. It changes the

content of AL to a valid unpacked BCD number and clears the top four bits of AL

CF is set and AH is decremented if a decimal borrow occurs. |

Example:

(a) Let AL = 09 BCD = 00001001

CL =05 BCD = 00000101

AH = 00H

Addressing Modes, Instruction Set, and Programming of 8086 101

Consider the execution of the following instructions:

suB AL, CL 5 AL = 04 BCD

AAS 5 AL = 04 BCD and CF = 0

5 AH = OOH

(b)Let AL =05 BCD
CL=09 BCD
AH = 00H

Consider the execution of the following instructions:
SuB AL, CL ; AL = -4 BCD (in 2’s complement form AL = FCH) and

CF.-=1

AAS ; AL = @4 BCD

; CF = 1 indicating that a borrow is needed and

AH = FFH = 2’s complement of —1

AAA and AAS affect the AF and CF flags and OF, PF, SF, and ZF are lett

undefined. Another salient feature of these two instructions is that it is possible

to take input data in the ASCII form of the unpacked decimal number, obtain

the result as an unpacked decimal number, and then convert it to ASCII form by

adding 30H to it.
/X:i) AAD: ASCII-adjust before the division instruction modifies the dividend in

and AL, to prepare for the division of two valid unpacked BCD operands. After

the execution of AAD, AH is cleared and AL contains the binary equivalent of the

original unpacked two-digit numbers. Initially, AH contains the most significant

unpacked digit and AL contains the least significant unpacked digit.

Example:

To perform the operation 32 (decimal)/08 (decimal)

Let AH=03H ; Upper decimal digit in the dividend

AL=02H :Lower decimal digit in the dividend

CL=08H ; Divisor

Consider the execution of the following instructions:

AAD ; AX = 0020H (binary equivalent of the decimal value

32 in 16-bit form)

DIV CL ; Divide AX by CL. AL contains the quotient and AH the

remainder.

AAD affects the PF, SF, and ZF flags. AF, CF, and OF are undefined after

execution of AAD.

(xviii) AAM: The AAM (ASCII adjust AX after multiplication) instruction corrects

the value obtained by multiplication of two valid unpacked decimal numbers. The

higher-order digit is placed in AH and the lower-order digit in AL.

Example:

Let AL = 05 (decimal)

CL = 09 (decimal)

Consider the execution of the following instructions:

MUL CH ; AX = @02DH = 45 (decimal)

102 Microprocessors and Interfacing

AAM 5 AH = @4 and AL = @5 (unpacked BCD form of the decimal
number 45)

OR AX, 3@36H ; To get the ASCII code of the result in AH and AL

(Note: This instruction is used only when the result

is needed in ASCII form.)

AAM affects the same flags as AAD.

4.4.3 Logical Instructions
The logical instructions in the 8086 include AND, OR, XOR, NOT, and TEST,
Let us now discuss each instruction in detail.

(i) AND: The AND instruction performs a logical AND operation between the
corresponding bits in the source and destination and stores the result in the
destination. The source and the destination can be either bytes or words. The
general form of the AND instruction is AND destination, source.

The rules for the destination and source for the AND instruction are the same
as those for the ADD instruction. CF and OF are both 0, and PF, SF, and ZF are

updated after the AND instruction is executed. AF is undefined. PF is affected only
when the AND operation is performed on an 8-bit operand.

\(ii)) OR: The OR instruction performs a logical OR operation between
the corresponding bits in the source and destination and stores the result in the

destination. The source and the destination can be either bytes or words. The
general form of the OR instruction is OR destination, source.

The rules for the source and destination and the way flags are affected are the
same as the AND instruction.

(iii) XOR: The XOR instruction performs a logical XOR operation between

the corresponding bits in the source and destination and stores the result in the
destination. The source and the destination can be either bytes or words. The

general form of the XOR instruction is XOR destination, source.

The rules for the source and destination and the way flags are affected are the
same as the AND instruction.

(iv) NOT: The NOT instruction inverts each bit (i.e., performs 1’s complement) of

the byte or word at a specified destination. The destination can be a register or a
memory location. The NOT instruction does not affect any flags.

Example:

(a) NOT AL ; Take 1’s complement of AL.

(b)NOT BX ; Take 1’s complement of BX.

(c)NOT [SI] ; Take 1’s complement of the data in the memory

at [SI].

‘tv) TEST: This instruction ANDs the content of a source byte or word with the

content of the specified destination byte or word. The flags are updated, but

neither operand is changed. The TEST instruction is often used to set flags before

a conditional jump instruction. The general form of TEST instruction is TEST

Addressing Modes, Instruction Set, and Programming of 8086 103

destination, source. The rules for the source and destination and the way flags are

affected are the same as the AND instruction.

Example:

LetAL=0111 1111 =7FH

TEST AL, 8@©H ; AL = 7FH (unchanged)

ZF = 1 since (AL) AND (80H) = 00H; SF = 0; PF = 1

44.4 fig_g Manipulation Instructions

The 8086 has a few instructions excluswely for performing operations on the

flags in the flag register. They are used to set or clear specific flags in the flag

register, to push or pop the flag register content into or from the stack, and to

transfer the lower-order byte of the flag register to the AH register and vice versa.

Table 4.6 indicates the function of the different flag manipulation instructions

in the 8086.

Table 4.6 Flag manipulation instructions

~Mnemonics Function)

-LAHF | Load the lower-order byte of the fiag regtster in AH

SAHF ___ Store AH in the lower-order byte of the flag register

—PUSHF Push the fiag reglster s content onto the stack

) POPF‘ Pop the top_ word of the stack onto the flag register

CMC Complement the carry flag (CF = complement of CF)

cLC Clear the carry flag (CF = 0)

STC - Set the carry flag (CF=1)

CLD Clear the d1rectlon flag (DF 0)

¥STD T set the dlrectlon flag (DF=1)

C;L.I' - ~ Clear the mterrupt flag (IF -0)

STT Sett the mterrupt flag (IF =1)

4.4.5 Control Transfer Instructions

The control transfer instructions of the 8086 are used to call a subroutine, return

from a subroutine, and branch conditionally or unconditionally in a program. In

conditional branching, there are two categories depending on whether unsigned or

signed data is involved. The terms ‘above’ and ‘below’ are used when referring

to the magnitude of unsigned numbers. The binary number 10000000 (= 128 in

decimal form) is above the binary number 01000000 (= 64 in decimal form). The

terms ‘greater’ and ‘lesser’ are used when referring to the relationship between

two signed numbers. ‘Greater’ means more positive. The signed binary number

00001111 (= +15 in decimal form) is greater than the signed binary number

10000001 (= —127 in decimal form). The control transfer instructions of the 8086

are given in Table 4.7.

104 Microprocessors and Interfacing

Table 4.7 Control transfer instructions

Mnemonics

JMP addr

~~_CALL addr

"\ RET

JA addr

JAE addr

JB addr

JBE addr

JC addr

JCXZ addr

JE addr

JG addr

JGE addr

JL addr

JLE addr

JNA addr

JNAE addr

JNB addr

JNBE addr

JNC addr

JNE addr

JNG addr

JNGE addr

JNL addr

JNLE addr

JNO addr

JNP addr

JNS addr

JNZ addr

PO IS
g S Des ~

Unconditional transfe_rs/
e s e —

Jump unconditionally to addr

Call the procedure or subroutine starting at addr

Return from.the.procedure or subroutine

Conditional transfers e,

Jurrrlp.r if above to addr (Jump if CF = ZF = 0)

Jump if above or equal to addr (jump if CF = 0)

Jump if below to addr (jump if CF = 1)

Jump if below or equal to addr (jump if CF =1 or ZF = 1)

Jump if carry to addr (jump if CF = 1)

Jump if CX =0 to addr

Jump if equal to addr jump if ZF = 1)

Jump if greater to addr (Jump if ZF = 0 and SF = OF)

Jump if greater or equal to addr (Jump if SF = OF)

Jump if lesser to addr (Jump if SF # OF)

Jump if lesser or equal to addr (Jump if ZF = 1 or
SF # OF)

Jump if not above to addr (Jump if CF = 1 or ZF = 1)

Jump if not above or equal to addr (Jump if CF = 1)

Jump if not below to addr (Jump if CF = 0)

Jump if not below or equal to addr (Jump if CF = ZF = 0)

Jump if no carry to addr (Jump if CF = 0)

Jump if not equal to addr (ump if ZF = 0)

Jump if not greater to addr (jump if ZF = 1 or SF # OF)
Jump if not greater or equal to addr (jump if SF # OF)
Jump if not lesser to addr (Jump if SF = OF)

Jump if not lesser or equal to addr (Jump if ZF = 0 and
SF = OF)

Jump if no overflow to addr (Jump if OF = 0)

Jump if no parity to addr (Jump if PF = 0)

Jump if no sign to addr (jump if SF = 0)

Jump if no zero to addr (jump if ZF = 0)

(Contd)

Addressing Modes, Instruction Set, and Programming of 8086 105

Table 4.7 Control transfer instructions (Contd)

Mnemonics - Description

JO addr Jump if overflow to addr (jump if OF = 1)

JP addr Jump if parity to addr (jump if PF = 1)

JPE addr Jump if parity is even to addr (jump if PF = 1)

JPO addr Jump if parity is odd to addr (jump if PF = 0)

JS addr Jump if sign to addr (jump if SF = 1)

JZ addr Jump if zero to addr (jump if ZF = 1)

In this table, ‘addr’ is the target address in the memory, to which the 8086 has

to jump, if the condition is satisfied while executing conditional jump instructions.

‘addr’ 1s also the target address to which the 8086 has to jump while executing

unconditional jump instructions. In the CALL instruction, ‘addr’ indicates the

address where the subroutine is located. In the case of conditional jump instructions,

the target address must be located at a relative address, which is in the range of

+127 bytes to —128 bytes from the instruction following the conditional jump

instruction.

Some of the conditional jump instructions have identical effects as follows:

JE—JZ JNE—INZ JL—INGE INL—IJGE

JG—INLE JING—IJLE JB—INAE JINB—JAE

JA—JNBE JINA—JBE JP—JPE JINP—JPO

~ There are a few instructions in the 8086 that are used to implement loops.
These are given in Table 4.8.

Table 4.8 Loop instructions

_;{Mnemonics -'-Descnptlon

LOOP addr Decrement CX Go to addr if CX - 0

~ LOOPE addr Loop wh11e equal (Decrement CX. Go to addr if CX # 0 and

A ZF=1.)

 LOOPZ addr Same as LOOPE
ST
~LOOPNE addr Loop whlle not equal (Decrement CX. Go to addr if CX # 0 and

< ZF=4.).ic T2 7
-

- LOOPNZ addr Same as LOOPNE

In this table, ‘addr’ is the target address, which must be located at a relative

address in the range of +127 bytes to —128 bytes from the instruction following the

LOOP instruction.

The use of the LOOP instruction in a program is explained here with an

example:

MOV CX, 100

AGAIN : MOV AL, BL

106 Microprocessors and Interfacing

LOOP AGAIN

In this examp

times, since CX is initialized to 100.

Finally, the software interrupt-rel

be used to cause the 8086 to jump to

interrupt service routine for a particu

return the control from the interrupt service r

X # 0, go to AGAIN.
. Decrement CX and if C

GAIN is repeated 100
3

le, the loop starting from the address A

ated instructions (given in Table 4.9) can also

another place in the memory and execute the

lar interrupt. The IRET instruction is used to

outine to the main program.

/TSBIé 4.9 |Interrupt-related instructions

Mnemonics Pescriplio-———————

INT n Software interrupt instruction where n is the interrupt type. n can be

any number between 00H and FFH. This instruction causes the 8086

to execute the interrupt service routine (ISR) of interrupt type n.

INTO This instruction interrupts the 8086 if there is an overflow (i.e.,

OF =1).

IRET This instruction returns the control from the interrupt service routine to

=% /7 4 the main program.

Lt =4 7

. .

The 8086 interrupts are discussed in detail in Chapter 5.
: By bvesicrimeteratt s AT TN PR S L L

"™ 4.4.6 Shift/Rotate Instructions

The shift/rotate instructions perform logical left-

left-shift and right-shift operations. The arithm

left-shift (SHL) have the same function, but the forme

shift and right-shift, and arithmetic

etic left-shift (SAL) and logical

r is used on signed data,

whereas the latter is used on unsigned data.

i) SAL/SHL: The general format

destination, count. The destination ¢

byte or a word. This instruction shifts each

of bit positions to the left. As a bit is shifted o

of the SAL/SHL instruction is SAL/SHL

an be a register or a memory location and a

bit in the destination a specified number

ut of the LSB position, a 0 is placed

in the LSB position. The MSB is shifted into the carry flag (CF) as follows:

If the number of shifts to be

instruction, with a count value equal to 1. For shi

the desired number of shifts is loaded into th

the count position of the in

result. PF has meaning only W

SHL instructions can be used to multiply a

respectively, by a pow

multiplies the number by two an

Example:

(a) SAL AX, 1

(b)SAL BL, 1

CF ¥t fgp «—— LSB*—0

done is 1, it can be directly specified in the

fts of more than one bit position,

e CL register and CL is placed in

struction. CF, SF, and ZF are affected according to the

hen AL is used as the destination. The SAL and

signed number and unsigned number,

er of 2. Shifting a number left by one bit and two bits

d four, respectively, and so on.

; Shift left the content of AX by one

bit.

; Shift left the content of BL by one

bit.

Addressing Modes, Instruction Set, and Programming of 8086 107

(c) SAL BYTE PTR [SI], 1 ; Shift left the byte content of the

memory at [SI] by one bit.

(d) SAL WORD PTR [BX], 1 ; Shift left the word content of the

memory at [BX] by one bit.

(e) MoV CL, ©5
SAL AX, CL ; Shift left the content of AX by five

bits.

(f) mov CL, ©3
SAL BYTE PTR [SI], CL ; Shift left the byte content of the

memory at [SI] by three bits.

(i) SAR: The general format of the SAR instruction is SAR destination, count.

The destination can be a register or a memory location and a byte or a word. This

instruction shifts each bit in the destination a specified number of bit positions to

the right. As a bit is shifted out of the MSB position, a copy of the old MSB is put

in the MSB position (i.e., the sign bit is copied into the MSB). The LSB will be

shifted into the carry flag (CF) as follows:

MSB —> MSB —> LSB —> CF

The rules for the count value in the instruction are the same as those for the SAL

instruction. CF, SF, and ZF are affected according to the result. PF has meaning

only when AL is used as the destination.

“\{ii) SHR: The general format of the SHR instruction is SHR destination, count.

The destination can be a register or a memory location and a byte or a word. This

instruction shifts each bit in the destination a specified number of bit positions

to the right. As a bit is shifted out of the MSB position, a 0 is placed in the MSB

position. The LSB is shifted into the carry flag (CF) as follows:

0 —>»MSB ——>LSB ——> CF

The rules for the count value in the instruction are same as those for the SHL

instruction. CF, SF, and ZF are affected according to the result. PF has meaning

only when an 8-bit destination is used. :

iv) ROR: This instruction rotates all the bits of the specified byte or word by

a specified number of bit positions to the right. The operation done when ROR 1s

executed is as follows:

CF MSB —— LSB

t A \

The general format of the ROR instruction is ROR destination, count. The data

bit moved out of the LSB is copied into CF. ROR affects only CF and OF. In the

single-bit rotate operation, if the sign bit (i.e., the MSB) changes after the execution

of ROR, OF is set. This is applicable only for the single-bit rotate operation. ROR

is used to swap nibbles in a byte and to swap bytes in a word. It can also be used to

rotate a bit in a byte/word into CF, where it can be checked and acted upon by the

JC and JNC instructions. CF contains the bit most recently rotated out of the LSB,

108 Microprocessors and Interfacing

in the case of a multiple bit rotate operation. The rules for the count value are same

as those for the shift instruction.

Example:

(aQ)ROR CH, 1 Rotate right the byte in CH by one bit

position.

Rotate right the word in BX by the

number of bit positions given by CL.

-

(b)ROR BX, CL

-

(c) ROR BYTE PTR [SI], 1 ; Rotate right the byte in the memory at

offset [SI] by one bit position.

(d)ROR WORD PTR [BX], CL ; Rotate right the word in the memory at

offset [BX] by the number of bit

positions given by CL.

\(V) ROL: ROL rotates all the bits in a byte or word in the destination to the left, by

one or more bit positions, using CL, as follows:

CF<— MSB <—— LSTB
|

The data bit moved out of the MSB is copied into CF. ROL affects only CF

and OF. In the single-bit rotate operation, if the sign bit (i.e., the MSB) changes

after the execution of ROL, OF is set. This is applicable only for the single-bit

rotate operation. ROL is used to swap nibbles in a byte or swap bytes in a word.

It can also be used to rotate a bit in a byte/word into CF, where it can be checked

and acted upon by the JC and JNC instructions. CF contains the bit most recently

rotated out of the LSB, in the case of the multiple bit rotate operation.

\‘(vi) RCR: RCR rotates the byte or word in the destination right, through the carry

flag (CF), either by one bit position or by the number of bit positions given by CL,

as follows:

CF ——> MSB ——» LSB

The flags affected are the same as those affected during the execution of

ROR.

(vii) RCL: RCL rotates the byte or word in the destination left through the carry

flag (CF), either by one bit position or by the number of bit positions given by CL,

as follows:

CF «—MSB «—1SB

The flags affected are the same as those affected during the execution of

ROL.

Addressing Modes, Instruction Set, and Programming of 8086 109

The 8086 strmg mampulatlon instructions are given in Table 4.10. The string
instructions operate on elements of strings, bytes, or words. The register SI
contains the offset address of an element (byte or word) in the source string,

which is present in the data segment. The register DI contains the offset address
of an element (byte or word) in the destination string, which is present in the extra
segment. The source string is in the data segment at the offset address given by
SI; the destination string is in the extra segment at the offset address given by

DI After each string operation, SI and/or DI are automatically incremented or
decremented by 1 or 2 (for byte or word operation), according to the D flag in the
flag register. If D = 0, SI and/or DI are automatically incremented and if D = 1, SI

and/or DI are automatically decremented.

Table 4.10 String instructions in the 8086

Mnemomcs ~ Function et ,

,M-QMSQ\‘/ Move the string byte from DS:[SI] to ES:[DI].

MOVSW - Move the string word from DS:[SI] to ES:[DI].

~C“1:/InI-’—S_I; Compare string bytes (done by subtracting the byte at ES: [DI]

from the byte at DS: [SI]). Only flags are affected; the content

of the bytes compared is unaffected.

CMPSW Compare string words (done by subtracting the word at

ES: [DI] from the word at DS: [SI]). Only flags are affected;

the content of the words compared is unaffected.

LODSB Load the string byte at DS:[SI] into AL.

LODSW Load the string word at DS:[SI] into AX.

STOSB Store the string byte in AL at ES:[DI].

STOSW Store the string word in AX at ES:[DI].

SCASB Compare string bytes (done by subtracting the byte at ES: [DI]

from the byte at AL). Only flags are affected; the content of the

bytes compared is unaffected.

SCASW Compare string words (done by subtracting the word at ES:

[DI] from the byte at AX). Only flags are affected; the content

of the words compared is unaffected.

REP Decrement CX and repeat the following string operation if

CX#0.

REPE or REPZ Decrement CX and repeat the following string operation if
I CX #0and ZF = 1.

REPNE or REPNZ Decrement CX and repeat the following string operation if

CX #0and ZF = 0.

3

The REP (repeat) prefix placed before a string instruction causes the string
instruction to be executed CX times.

110 Microprocessors and Interfacing

Example:

MOV CX, 32H ; Load 32H (= decimal 50) in CX.

REP MOVSW ; Execute MOVSW instruction 50 times.

Execution of these two instructions causes the moving of a string having 50

words from the data segment to the extra segment.

The machlne/processor control instructions in the 8086 1nclude HLT, LOCK, NOP,

ESC, and WAIT. Let us discuss each instruction in detail.

(1) HLT: The halt instruction stops the execution of all instructions and places

thg_processor in the halt stateflAn 1nterrupt or a Reset signal causes the

processor to resume execution from the halt state.

(11) LOCK The lock instruction provides the processor an exclusive hold on

the use of the system bus J;[t activates an external locking signal (LOCK)

of the processor and is placed as a prefix to the instruction for which a

lock is to be asserted. The lock functions only with the XCHG, ADD, OR,

ADC, SBB, AND, SUB, XOR, NOT, NEG, INC, and DEC instructions,

when they involve a memory operand. An undefined opcode trap interrupt

is generated, if a LOCK prefix is used with any instruction not listed here.
(1i1) NOP: No operation—This 1nstruct10n is used to insert a delay in software

delay / programs.
(iv) _ESC: This instruction is used to pass instructions to a coprocessor such as

the 8087, which shares the address and data bus with an 8086. Instructions
for the coprocessor are represented by a 6-bit code embedded in the escape
instruction.

As the 8086 fetches instruction bytes from the memory, the Coprocessor
catches these bytes from the data bus and puts them in a queue. However, the
coprocessor treats all the normal 8086 instructions as NOP instructions. When
the 8086 fetches an ESC instruction, the coprocessor decodes the instruction
and carries out the action specified by the 6-bit code specified in the instruction.

(v) WAIT: When this instruction is executed, the 8086 checks the status of its
TEST i mput pin and if the TEST input is high, it enters an idle condition
durlng which it does not do any processing.\The 8086 remains in this

“state until the 8086’s TEST input pin is made low or an interrupt signal
is received on the INTR or NMI pins. If a valid interrupt occurs while the
8086 is in this idle state, it returns to the idle state after the interrupt service
routine is executed. The WAIT instruction does not affect flags. It is used to
synchronize the 8086 with external hardware such as the 8087 COProcessor.

4.5 8086 ASSEMBLY LANGUAGE PROGRAMMING

A large number of assembly language programming examples for the 8086 have

been provided in this section. These programs can be converted into machine

language programs either by manually finding the opcode for each instruction in the

program, or by using an assembler, and executing in an 8086-based system. Since

manually finding the opcode of each instruction of the 8086 is time consuming,

Addressing Modes, Instruction Set, and Programming of 8086 11|

the line assembler or assembler is normally used in converting assembly language

programs into machine language programs. The line assembler converts each

mnemonic of an instruction immediately into an opcode as it is entered into the

system, and 1s used in microprocessor trainer kits. The line assembler is stored in

any one of the ROM-type memories in the trainer kit. The assembler is a software

that needs a personal computer for generating the opcodes of an assembly language

program. The generated opcodes can be downloaded to the microprocessor-based

system such as the microprocessor trainer kit or the microprocessor-based prototype

hardware, through the serial or parallel port of the computer.
Many assemblers, such as Microsoft Macro Assembler (MASM), Turbo

assembler (TASM), and DOS assembler, are used to convert the 8086 assembly

language programs into machine language programs. While using these assemblers,

the assembly language program is written using assembler directives. Assembler

directives are commands to the assembler to indicate the size of a variable (either

byte or word), number of bytes or words to be reserved in the memory, value of
a constant, name of a segment, etc., in a program. Assembler directives are not

converted into opcode, but are used to generate the proper opcode of an instruction.

The use of Microsoft’s assembler is discussed in this section.

The immediate data given in the instruction ends with ‘H’ for hexadecimal

data, ‘B’ for binary data, and ‘D’ for decimal data. In some assemblers, immediate

data without any of these alphabets is treated as decimal data. For hexadecimal
data that begins with the alphabets A—F, a zero must be placed before the data

(e.g., OF5H).

4.5.1 Writing Programs using Line Assembler

The following examples illustrate the writing of 8086 assembly language programs
using a line assembler, which is used in the 8086-based trainer kits for executing

8086 assembly language programs.

Example 4.5

Write a program to add a word-type data, located at the offset 0800H (least

significant byte, LSB) and 0801H (most significant byte, MSB) in the segment
address 3000H, to another word-type data located at the offset 0700H (LSB) and

0701H (MSB) in the same segment. Store the result at offset 0900H and 0901H in
the same segment. Store the carry generated in the addition in the same segment

at offset 0902H.

Flowchart:

The flowchart for this problem is shown in Fig. 4.2.

Program:

MOV AX, 3000H ; Load the value 3000H in AX.

MOV DS, AX ; Initialize DS with the value 3000H.

MOV AX, [800H] ; Move the first data word to AX.

ADD AX, [700H] ; Add AX with the second data word.

MOV [9@00H], AX ; Store AX at the offset 900H and 901H.

JC CARRY 5 If carry = 1, jump to CARRY.

112 Microprocessors and Interfacing

l Initialize DS register]

Y
| T oadin siididatain AX j

Y
[Add another word data with AX J

I Store the result in AX in the memory J

No

| Store 00H in the Yes 5
memory location used I
for storing carry

\ ?
Store 01H in the memory 4

location used for storing carry

>

§: Flg 42 FIowchartfor adding two word-type data

MOV [902H], @@H ; If there is no carry, store @0H at the offset

902H.

JMP END ; Jump to END.

CARRY: MOV [902H], @1H ; Store ©@1H at the offset 902H.

END: HLT Terminate program execution.

“
e

Note:

(1) To initialize a segment register with a value, the value is first loaded in one

of the general-purpose registers such as AX or BX. It is then moved to the

segment register. In this example, AX is used to load 3000H into DS.

(i1) Instead of the AX register, any other 16-bit general purpose register (BX,

CX, etc.) can be used for performing addition.

(111) Sometimes, instead of using the HLT instruction at the end, the software

interrupt instruction (INT) may be used to return control to the monitor

program after execution of the program.

——Example 4.6

Write a program to add a byte-type data located at the offset address 0800H in

the segment address 3000H to another byte-type data located at the offset address

Addressing Modes, Instruction Set, and Programming of 8086 113

0700H in the same segment. Store the result and the carry generated in the offset
addresses 0900H and 0901H in the same segment, respectively.

Flowchart:

The flowchart for this problem is the same as in Fig. 4.2, except that instead of

word-type data, byte-type data is used. Hence, instead of AX, AL can be used.

Program:
MOV AX, 3000H ; Load the value 3000H in AX.

MOV DS, AX Initialize DS with the value 3000H.

MOV AL, [800H] Move the first data byte to AL.

ADD AL, [700H] ; Add AL with the second data byte.

MOV [90@H], AL ; Store AL at the offset address 90@H.

w
e

e

JC CARRY ;3 If carry = 1, jump to CARRY.

MOV [901H], @@H ; If there is no carry, store ©@H.

JMP END 5 Jump to END.

CARRY: MOV [901H], @1H ; Store @1H at the offset address 9@1H.

END: HLT ; Terminate program execution.

Note: Instead of the AL register, any other 8-bit general purpose register (BL, BH,

CL, etc.) can be used in the program.

Example 4.7

Write a program to subtract the byte content of the memory location 3000H: 4000H
from the byte content of the memory location 4000H:5000H, and store the result
at the location 2000H: 3000H. Assume that the input data is signed data and the
negative numbers are represented in 2’s complement form. (Note: 3000H: 4000H

represents the segment address of 3000H and the offset 4000H in that segment.)

Flowchart:
The flowchart for this problem is shown in Fig. 4.3.

[Initialize DS register with 3000H J

| Load the subtrahend bytein CL |

| Load the minuend byte in AL J

| AT o AL SIOL J

’ Initialize DS register with 2000H]

{St—ore the content of AL in the memor)1 9
?.

. "‘\

ve » A i kb danidnl Be. ol o L Lt LR R o SR T T A N 2 EORER X A

Flz 4.3 Flowchart for subtracting one byte-type data from another

I 14 Microprocessors and Interfacing

Program:

MOV BX, 3000H ; Load the value 3000H in BX.

MOV DS, BX ; Initialize DS with the segment address 3000H.

MOV CL, [4@0@H]

MOV BX, 4@00H

Get the subtrahend from the offset 4000H.

Load the value 4000H in BX.

e

-

MOV DS, BX ; Initialize DS with the segment address 4000H.

MOV AL, [5000H] ; Move the minuend at the offset 5000H to AL.

SUB AL, CL ; AL = AL - CL

MOV BX, 2000H ; Load the value 2000H in BX.

MOV DS, BX ; Initialize DS with the segment address 2000H.

MOV [3@00H], AL ; Store AL at the offset 3000H.

HLT ; Terminate program execution.

Note: The result is also signed data and the negative result will be in 2’s complement

form. If the result is positive, the MSB of the result will be 0, and if the result is

negative, the MSB will be 1.

“Example 4.8
Write a program to add the multi-byte data F2354687H with C545689FH and

store the result starting from the address 1000H: 2000H in the memory, with the

lower-order byte of the result stored first.

Flowchart:

The flowchart for this problem is given in Fig. 4.4.

~ Add the lower-order word of augend (= 4687H)
with the lower-order word of addend (= 689FH)
-and store the resultant word in the memory

Add the higher-order word of augend (= F235H)
with the higher-order word of addend (= C545H)

along with carry and store the resultant word in the memory

No Is Yes

A

Store 00H in the final Store 01H in the final

memory location memory location

|

PO ———— -

Fig.4.4 Flowchart for adding multi-byte data

Addressing Modes, Instruction Set, and Programming of 8086 115

Program:

MOV AX, 4687H ; Move the word 4687H to AX.

ADD AX, 689FH Add AX with the word 689FH.

MOV BX, 1000H ; Initialize BX with the value 1000H.

MOV DS, BX Move the content of BX to DS.

MOV BX, 2000H Move the offset address 2000H to BX.

MOV [BX], AX ; Store the result in AX in the memory

MOV AX, OF235H ; Move the word F235H to AX.

ADC AX, ©C545H ; Add the word C545H to AX along with previous

carry.

MOV [BX +2], AX ; Store the result in AX in the memory at

offset [BX + 2].

-

-

e

JC CARRY ; If CF = 1, go to the place CARRY.

MOV [BX + 4], @0H ; Store @0H in the offset [BX + 4] since

carry is 0.

JMP END ; Jump to the place END.

CARRY: MOV [BX + 4], ©1H ; Store @1H in the offset [BX + 4] since

carry is 1.

END: HLT ; Terminate program execution.

Example 4.9
Write a program to subtract the multi-byte data 2035A21CH from the multi-byte

data 10F3C2B6H, and store the result starting from the address 2000H:3000H in

the memory with the lower-order byte of the result stored first. Assume that the

data is signed data.

Flowchart:
The flowchart for this problem is given in Fig. 4.5. If the result is positive, the

VISB of the result will be 0, and if the result is negative, the MSB of the result will

)e 1, and the result will be in 2°s complement form.

 Subtract the lower-order word of subtrahend
| (=A2ICH) from the lower-order word of minuend

- | (=C2B6H) and store the resultant word in the memory

!
~ Subtract the higher-order word of subtrahend
(= 2035H) from the higher-order word of minuend
(= 10F3H) including the previous borrow and store

the resultant word in the memory

e i B S o AR g a0t et R TR Y ;3\ TRy AN OLRE A, UL

Eie AR Flawrhart far subtracting one multi-byte data from another

116 Microprocessors and Interfacing

Program:

MOV

SUB

MOV

MOV

MOV

MOV

MOV

SBB

MOV

HLT

AX, ©C2B6H
AX, ©A21CH
BX, 2000H
DS, BX
BX, 3000H
[BX], AX
AX, 1OF3H
AX, 2035H

[BX + 2], AX

" Example 4.10
Write a program to add one hundred byte-type data stored in an array starting from

the address 1000H:2000H in the memory. The result has to be stored at the offset

address 2100H in the same segment.

Flowchart:

The flowchart for this problem is given in Fig. 4.6.

T YRR 7 T R T I T Y

Fig. 4.6 Flowch

e

Move the word C2B6H to AX.

Subtract the word A21CH from AX.

Move the segment address 2000H to BX.

Move the content of BX to DS.

Move the offset address 3000H to BX.

Store the result in AX in the memory at offset [BX].

Move the word 10F3H to AX.

Subtract the word 2035H from AX with previous

borrow.

Store the result in AX in the memory at offset

[BX + 2].

Terminate program execution.

I—Ini_tialize DS and SI with 1000H and 2000H, respectivel;;‘\

Y
l Initialize CX with 100 decimal to act as a counter __\

-
Clear AL (i.e., AL 0) and AH (i.e., AH 0) !

x5
A A

Add AL with the byte at DS: [SI] in the memory ‘

2L Is CF=1?

Y
SI <—SI+1
CX<—CX-1

No
Is CX=0?

Yes

r Store AX in the memory at the offset address 2100H l

art for adding hundred byte-type data

Addressing Modes, Instruction Set, and Programming of 8086 | 17

Program.

MOV BX, 1000H

MOV DS, BX

MOV SI, 2000eH

MOV CX, 100

XOR AX, AX

AGAIN: ADD AL, [SI]
INC NO_CARRY

INC AH

NO_CARRY: INC SI

LOOP AGAIN

MOV [210@H], AX

HLT

Example 4.11

Write a program to move one hundred bytes of data from the offset address 2000H

e

-

e
w
e

-

“
o

e

Initialize DS with 1000H.

Move the content of BX to DS

Initialize SI with 2000H.

Initialize CX with decimal 100 (= 64H).

Clear AX (i.e., AH = AL = @) and carry

flag.

Add byte at [SI] in the memory with AL.

If CF = @, go to the place NO_CARRY.

Increment AH when CF = 1.

Increment SI by 1 to access the next

byte in the memory.

Repeat the loop AGAIN CX times.

Store the result in AX at the offset

address 2100H in the memory.

Terminate program execution.

to the offset address 3000H in the segment 4000H.

Flowchart:

The flowchart for this problem is shown in Fig. 4.7.

Initialize segment register (DS),
counter register (CX), and pointer

registers (SI and DI)

=2
&

Move the byte in the memory location
pointed by SI to the memory location

pointed by DI

y
| Increment SI and DI, decrement CX

NP I TIAT A L O ER R R NERAY Y PRI S T T

Fig.4.7 Flowchart for moving hundred bytes of data

Program:

MOV AX, 4000H ; Initialize DS with 4000H.

MOV DS, AX ; Move the content of AX to DS.

T
y

A
T

P
S
R
R
I
V
 FI

S

118 Microprocessors and Interfacing

MOV SI, 2000H ; Initialize SI with 2000H.

MOV DI, 3000H ; Initialize DI with 3000H.

MOV CX, 64H ; Initialize CX with 64H (= 100D).

AGAIN: MOV AL, [SI] ; Move data from offset [SI] to AL.

MOV [DI], AL ; Store data in AL at offset [DI].

INC SI ; Increment SI.

INC DI Increment DI.

LOOP AGAIN ; Repeat the loop AGAIN CX times.

HLT Terminate program execution.

Note: This program can also be written using MOV SB or MOV SW instruction and

also be written in such a way that 50 word-type data is moved from one place to

another place in the memory, since two bytes constitute one word. The following

example indicates the use of string instruction for moving data from one place to

another place in the memory.

Example 4.12

Write a program to move one hundred word-type data from the offset address 1000H

to the offset address 3000H in the segment S000H using MOVSW instruction.

Flowchart:

The flowchart for this problem is shown in Fig. 4.8.

Initialize DS and ES with segment
' address S000H

e

e

Initialize SI with the offset address 1000H
and DI with the offset address 3000H

v
’ Move CX with the value 100 (i.e., number of words)—l

and clear D flag

Move the data from offset DS: [SI]
to offset ES: [DI] using MOVSW

——[Repeat execution of MOVSW, CX times l

S] TR TR A PR A

Fig. 4.
AT TN AT F TR N RN NN S T TR AR W

8 Flowchart for moving hundred word-type data

Program:

MOV AX, 5000H ; Store the segment address 5000H in AX.

MOV DS, AX ; Initialize DS with the segment address 5000H.

MOV ES, AX ; Initialize ES with the segment address 5000H.

MOV SI, 1000H ; Initialize SI with the offset of the source’s starting

address.

MOV DI, 3000H ;

MOV CX, 100 ;

CLD ;
REP MOVSW ;
HLT

Addressing Modes, Instruction Set, and Programming of 8086 119

Initialize DI with the offset of the destination

address.

Initialize CX with the number of words in the string

(decimal value of 100 or 64H).

Clear the D flag for auto-increment mode.

Execute MOVSW instruction CX times.

; Terminate program execution.

Note: In this program, the segment addresses of the source and destination are the

same, and hence DS and ES registers are loaded with the same value. If they are

different, ES and DS registers are loaded with the segment address of the destination

and source, respectively. As D is 0, every time MOVSW is executed, the SI and DI

registers are incremented by 2 to point to the next word in the string.

—Example 4.13

Write a program to find the smallest word in an array of 100 words stored

sequentially in the memory, starting at the offset 1000H in the segment address

5000H. Store the result at the offset 2000H in the same segment.

Flowchart:

The flowchart for the problem is given in Fig. 4.9.

Initialize counter CX with the number of
comparisons to be made (= 100 — 1 = 99)

12
Initialize DS with the segment address S000H

and SI with the offset address 1000H

Move the word from [SI] to AX J
ol
"

Increment SI by 2 to point to the next word 4]

fi{eplace the word in AX with the word at [SI] in the memory l — :

. et 4

Decrement CX by 1 I

fitore the word in AX at the offset address 2000H in the memory l

o e b 2 e £ e 2 et o b i

Flg 4 9 Flowchart for flndmg the smallest word in an array of IOO words

120 Microprocessors and Interfacing

Program:

MOV CX, 99

MOV AX, 5000H

MOV DS, AX

MOV SI, 1000H
MOV AX, [SI]

START: ADD SI,02

CMP AX, [SI]

JC REPEAT

MOV AX, [SI]

REPEAT: LOOP START

-
e

e

-
e

A

e

-

-

-

MOV [2000H], AX ;

HLT

Example 4.14

-

Initialize CX with the number of comparisons

(= 100 - 1).

Store the segment address 5000H in AX.

Initialize DS with the segment address

5000H.

Initialize SI with the offset 1000H.

Move the first word to AX.

Increment SI twice to point the next

word.

Compare the next word with the word in

AX.

If AX is smaller, jump to REPEAT.

Replace the word in AX with the smaller

word.

Repeat the loop START, CX times.

Store the smallest number in AX at the

offset 2000H.

Terminate program execution.

Write a program to find the number of positive and negative data items in an array

of 100 bytes of signed data stored from the memory location 3000H: 4000H. Store

the result in the offset addresses 1000H and 1001H in the same segment. Assume
that the negative numbers are represented in 2’s complement form.

Flowchart:

The flowchart for the problem is shown in Fig. 4.10. The basic principle used here

is that the MSB of a positive number is 0 and MSB of a negative number is 1.

Program:

MOV AX, 3000H ;

MOV DS, AX

MOV CX, 100

MOV BX, 4000H ;

e

-

MOV DH, ©0H -

MOV DL, ©@@H

e

L2: MOV AL, [BX] ;
RCL AL, 01 ;
IC NEG

-

INC DH >

JMP L1

e

Store 3000H in AX.

Initialize DS with 3000H.

Move the number of data items to CX.

Move the starting offset address of the array

to BX.

Initialize DH with @@H to store the number of

positive data items.

Initialize DL with @0H to store the number of

negative data items.

Move a byte data from the array to AL.

Rotate AL left by one bit through carry flag.

If the carry flag is 1, the data is negative.

So jump to NEG.

If the carry flag is 0, the data is positive.

So increment DH.

Jump to L1.

Addressing Modes, Instruction Set, and Programming of 8086 121

NEG: INC DL ; Increment DL.

L1: INC BX ; Increment BX to point to the next data in the

memory . '

LOOP L2 ; Repeat loop L2 to check all data items in the

array.

MOV [1000H], DH ; Store the content of DH at the offset address

1000H.

MOV [1001H], DL ; Store the content of DL at the offset address

1001H.

HLT ; Terminate program execution.

nitialize DS with the segment address 3000H and BX with the offsct
address 4000H and initialize CX with 100 (number of bytes of data)

!
Clear DH to store the number of positive data bytes and

clear DL to store the number of negative data bytes

=

Move a byte data at [BX] in the memory to AL and

rotate AL to left by 1 bit so that MSB of AL (sign bit) goes to carry flag |

No (Positive number)

Yes (Negative number)

/’—_I;crement DL‘I '
T e -

, — :

< Increment BX :

e ; ‘| Decrement CX

' l Increment DH

.+ [StoretheresultinDLand |
| DHinthememory |

g i Ay

Vs S A ¥ : 3)

7 7 i i A D I BRI A
£ St PR ATRAN NG 3 Q :

P RS RIS R N S %
$. 2o SR Ay FURA NS

; i, ; v : : ; . R e e 3

77 7 7

§ e AR A e erlhESy B

V"4 4 7 = R 4o s 4 S F
¢ N 3 X SR G .).»\‘ Ko)

Vi s D s A KT i R S5 el SRR A N 3 — KeEs N ¥ g i Beere B B R e St S Y

el Rl 71 PRI LT % CE RS Sl S Rl Sl B 3 % t RN L NEHES SR 8 A S S A

% X S A NGRS g Ch: ST < LS A R o SN R A o SRR IS S e

Fig.4.10 Flowchart for finding the number of positive and negative data items

Example 4.15

Write a program to find the seven-segment code of any one digit between 0 and F.

Assume that the seven-segment code of the digits 0 to F is stored in the memory

starting at the address 2000H: 1000H. The result must be stored at the offset
address 2000H in the same segment.

Flowchart:
. o 1

The flowchart for the problem 18 shown in Fig. 4.11.

the segment address 2000H in DS and the offset address 1000H in Bx
Store

‘ Load AL with the value whose seven-segment code has to be found

Y

‘ Using XLAT instruction, find the seven-segment code, which is obtained@

/ Y

]7 Store the result in AL in the offset address 2000H :

Fig.4.11 Flowchart for finding the seven-segment code of a digit

between 0 and F

o D S IS

Program:

MOV AX, 2000H ; Store 2000H in AX.

MOV DS, AX ; Initialize DS with the value 2000H.

Initialize BX with the starting offset address of

the table containing the seven-segment codes.

MOV BX, 1000H -

MOV AL, ©3 ; Load the number (here €3’) whose seven-segment

code is to be found in AL.

XLAT ; Using XLAT instruction, the seven-segment code of

03 is obtained in AL.

MOV [2000H], AL ; Store the result in AL at the offset address

2000H.

HLT Terminate program execution.

Note: When the XLAT instruction is executed in this example, the content of BX

(= 1000H) is added to the content of AL (= 03H) to form an offset address (=

1003H) and the data in that offset address (seven-segment code of 03H) in the data

segment is moved to AL. This technique is called look-up table technique.

e

Example 4.16

Write a program to convert the 8-bit packed BCD number stored in the memory

location 3000H:2000H into a binary number and store it in the offset address

2001H in the same segment.

The binary number corresponding to an 8-bit packed BCD number is obtained

by multiplying the decimal value 10 (= 0AH) with the upper digit of the BCD

number and adding the result with the lower digit of the BCD number. Since the

maximum 8-bit BCD number is 99 and the corresponding binary number is 63H

(=9 x 0AH + 9), the result in this program is also 8 bits.

Flowchart:
The flowchart for the problem is shown in Fig. 4.12.

Addressing Modes, Instruction Set, and Programming of 8086 123

Initialize DS register with 3000H and get the BCD data in AL
and make a copy of AL in BL register

AND FOH with AL to mask the lower nibble and rotate AL right four times
to bring upper BCD digit as lower digit

r Move 0AH to BH and multiply BH with AL; the multiplied result will be in AXJ

Y

r AND OFH with BL register to get the lower digit of the BCD number ,

r Add BL register and AL register and store the result in AL l

Y

I Store the value in AL in the memory J

§

S0 DN N G AR SN S S
VREERLTRAN

Fig.4.12 Flowchart for converting an 8-bit packed BCD number into binary form

Program:

MOV

MOV

MoV

MoV

AND

MoV

ROR

MoV

MUL

AND

ADD

MoV

HLT

AX, 3000H
DS, AX
AL, [2000H]
BL, AL
AL, OFOH
CL, 04H
AL, CL

BH, OAH

BH
BL, OFH
AL, BL
[2001H], AL

Example 4.17

Write a program to convert the given 8-bit binary number into ASCII codes. The

g-bit binary number is present in the memory location 2000H: 5000H, and the

result is to be stored at the offset address 1000H and 1001H in the same segment.

J

J

-

e

.
e

J

>

J

- Store 3000H in AX.

Initialize DS with 3000H.

Move the 8-bit BCD number to AL.

Store a copy of the BCD number in BL.

Mask the lower-order nibble in AL.

Move the value 04 to CL.

Rotate AL right four times, to get the upper nibble

or digit of the BCD number.

Move ©AH to BH.

Multiply AL and BH and the result is stored in AX.

Mask the upper nibble or digit in BL.

- Add the contents of AL and BL.

Store the result in AL at the offset address 2001H.

; Terminate program execution.

Note: Since the maximum two-digit BCD number 1s 99H and the corresponding

binary number is 63H (8 bits only), the AH value after MUL BH instruction is

executed will be 00H. Hence it is not considered for the next addition.

124 Microprocessors and Interfacing

Flowchart:

The flowchart for the problem is shown in Fig. 4.13.

The ASCII code for the digit 0 to 9 is obtained by adding 30H with it, and for

the digit A to F, ASCII code is obtained by adding 37H with it. For example, the

ASCII code for the digit 7 is 37H (= 7 + 30H) and the ASCII code for the digit

B is 42H (= B + 37H). The ASCII code of the 8-bit binary number, say 7BH, is

obtained by first splitting the binary number into two digits, 7 and B, and then
finding the ASCII codes of 7 and B separately.

| itialize DS register with 2000H and get the binary data in AL and make a copy of ALin BL |

Main program:

AND FOH with AL to mask the lower nibble and rotate AL right four times

to bring upper nibble as lower nibble

l Call ASCII subroutine

Y
l Store the result in AL at the offset address 1000H J

Y
r Get the data in BL again in AL. AND OFH with AL to mask the upper nibble in AL 4_|

v
r Call ASCII subroutine _ I

l Store the result in AL at the offset address 1001H l

Subroutine:

l Compare AL with 0AH

N
> S TRCE= 19

r Add omwwiimfl \
l h

Y

[Add 30H with AL

(b)
B T . e e T R B — ey

Fig.4.13 Flowchart for converting an 8-bit binary number into ASCII code
(a) Main program (b) Subroutine

Yes

Addressing Modes, Instruction Set, and Programming of 8086

Program.

MOV AX, 2000H ; Store 2000H in AX.

MOV DS, AX ; Initialize DS with 2000H.

MOV AL, [5000H] ; Move the binary data to AL.

MOV BL, AL ; Save a copy of AL in BL.

AND AL, OF@H ; Mask the lower nibble in AL.

MOV CL, 04
ROR AL, CL ; Rotate AL right four times, to get the

upper nibble.

CALL ASCII ; Call the subroutine ASCII.

MOV [1000H], AL ; Store the result in AL in the memory.

MOV AL, BL ; Move the binary data again to AL.

AND AL, OFH ; Mask the upper nibble in AL.

CALL ASCII ; Call the subroutine ASCII.

MOV [1001H], AL ; Store the result in AL in the memory.

JMP L1 ;3 Jump to L1.

ASCII: CMP AL,
3¢ 12 H

ADD AL, ©7H ; Add @7H with AL.

L2: ADD AL, 3@H ; Add 3@H with AL.

RET ; Return to the main program.

£l HLT ; Terminate program execution.

Example 4.18

Subroutine ASCII

0AH ; Compare AL with the value ©OAH.

If AL is lesser than 0AH, go to L2.

125

Write a program to add the two BCD data 87H and 98H and store the result in

BCD form in the memory locations 2000H: 3000H and 2000H: 3001H.

Flowchart:

The flowchart for this problem is given in Fig. 4.14.

o
| MwmmamWmedmmmum%Hmm,4J

Y
FExecute DAA to convert the result in AL to BCD dataJ :

Initialize DS register with segment address 2000H

and store AL content at the offset address 3000H

Yes Store 01H at the o
address 3001H

r Store O0H at the offset address 3001H

TR

Fig.4.14 Flowchart for addlng two BCD data and storing the result in BCD form

w - =TT
TR T o M T T AT T

 Example 4.19

126 Microprocessors and Interfacing

Program:

MOV AL, 87H ; Move the first BCD data to AL.

ADD AL, 98H ; Add the second BCD data with AL.

DAA 3 Decimal-adjust AL to get the result in BCD form.

MOV BX, 2000H ; Store 2000H in BX.

MoV DS, BX ; Initialize DS with 2000H.

which is the lower
store the content of AL,

byte of the result in the memory.

If the carry flag is 1, g0 to L1.

Store ©0H in the memory, which 1is

byte of the result.

Go to L2.

Store ©1H in the memory,

byte of the result.

1:2s HLT ; Terminate program execution.

MOV [3@@eH], AL

36 LT ;

MOV [30@1H], @eH ;
the higher

S~ JMP L2 3

L1: MOV [3001H], ©1H ;
which is the higher

he 8-bit binary number FFH into a BCD number. The

Write a program to convert t
ations 3000H: 2000H and 3000H: 2001H.

result is to be stored at the memory loc

Flowchart:

The flowchart for this problem is given in Fig. 4.15. The 8-bit binary number is

converted into a BCD number by first dividing the binary number by decimal 100

Then the remainder obtained in the first division

to get the number of hundreds in it.

is divided by decimal 10 to get the number of tens in it. The reminder in the second

division is the number of ones in the binary number. The number of tens and ones

can be concatenated by proper shifting and performing OR operation.

Move the data FFH to AX and the data 100 decimal to BL

quotient will be in AL and the remainder will be in AH

Divide AX by BL; the

Store the value in AL in DL (i.e., number of 100s)

Move the remainder in AH to AL and clear AH

L
k

Move the value 10 decimal into BL and divide AX by BL

Rotate the content of AL left by 4 bits to place number of tens in upper nibble of AL l

AL and AH to concatenate the number of tens and ones I

“Perform OR operation between

&

Initialize DS with the segment address 3000H

Store the DL content at the offset address 2000H and AL content at the offset address 2001H

+ into BCD form- PO TR

F’ig. 4.15 Flowchart for converting an 8-bit binafy numbe

B

L A
0

el

a2
k

i

Addressing Modes, Instruction Set, and Programming of 8086 127

Program.

MOV AX, ©@OFFH ; Move the data @OFFH to AX.

MOV BL, 100 ; Store the decimal value 100 (or 64H) in BL.

DIV BL ; Divide AX by BL to find the number of hundreds in

the binary number.

MOV DL, AL ; Move the quotient in AL (number of hundreds) to

DL.

MOV AL, AH ; Move the remainder in AH to AL.

MOV AH, 00 ; Clear AH.

MOV BL, 10 ; Store the decimal value 10 (or @AH) in BL.

DIV BL ; Divide AX by BL to find the number of tens in the

binary number.

; AH has the remainder, which is the number of ones

in the binary number.

MOV CL,04

ROL AL, CL ; Rotate the content of AL left four times to make the

lower nibble the upper nibble.

OR AL, AH ; Perform OR operation on AL and AH to concatenate

the number of tens and ones.

MOV BX, 3000H Store 3000H in BX.

MOV DS, BX ; Initialize DS with 30@@H.

MOV [200@@H], DL ; Move the value of DL to the memory.

MOV [2001H], AL ; Move the value of AL to the memory.

HLT ; Terminate program execution.

Note: The binary number FFH when converted to BCD gives the result 255, as

there are two hundreds, five tens, and five ones in it. In this program, 02H is stored

in the offset address 2000H, and 55H is stored in the offset address 2001H in the

“data segment.

-

—4.5.2 Writing Time Delay Programs

Every instruction in the 8086 requires a definite number of clock cycles for its

execution. The amount of time for execution of an instruction is obtained by

multiplying the number of clock cycles required for the execution of the instruction,

with the clock period at which the 8086 is running. The time duration needed

for the execution of an instruction can be used to derive the required time delay.

When sequences of instructions are executed by the 8086, the total time needed

to execute them is obtained by adding the individual time durations required for

execution of each instruction. In a program loop, the number of instructions in the

loop may be less but the 8086 depends on the loop count, which is the number

of times the program loop has to be executed. Time delay programs are used in

stepper motor control and square wave genera

with specified delay, etc.

The steps for writing a time

(i) . Find the exact time delay (7,) req

(ii) Select the instructions to be inc

tion, to turn on and off equipment

delay program are as follows:

uired for the given application.

luded in the time delay program. While

128 Microprocessors and Interfacing

selecting the instructions and registers to be used in the delay program, care

must be taken that the execution of these instructions does not affect the

main program execution. That is, any memory location or register used by

the main program must not be altered by the time delay program.

If a register used in the main program is needed in the delay program, the

content of that register is pushed into a stack before executing the time delay

program. At the end of the execution of the time delay program, its original

value will be popped from the stack and then control will be transferred to

the main program.
(iii) Find the period of the clock at which the microprocessor is running by

taking the reciprocal of the 8086’s clock frequency. 7'is the duration of one

clock period or clock state.
(iv) Find the number of clock states required for the execution of each of the

instructions in the time delay program. Then find the number of clock states

(m) needed to execute the loop in the delay program once, by adding the

clock states required for each instruction in the delay program.

(v) Find the number of times (i.e., count #) the loop in the delay program has

to be executed by dividing the required time delay (7,) by the time taken to

execute the loop once, which is m X T.

Count (n) =t,/ (m * T)

The time delay obtained using this method is sufficiently accurate to

be used in many problems. When more accurate delays are required, the

programmable timer IC 8253 or the 8254 can be used.

Example 4.20
Write a time delay program to generate a delay of 120 ms in an 8086-based system

that runs on a 10 MHz frequency clock.

Solution:

The time delay program is as follows:

Instruction T-states for execution

MOV BX, Count 4

El: - DEC BX e

NOP [3
INZ L1 L Te
RET 8

In this program, the instructions DEC BX, NOP, and JNZ LI form the loop as

they are executed repeatedly until BX becomes zero. Once BX becomes zero, the

8086 returns to the main program.

Number of clock cycles for execution of the loop once (m) =2 + 3 + 16 =21

Time required for the execution of the loop once =m x T=21 x 1/(10 X 109)

P =2.1 Us

Count =/t(>(l(m X T)=120 x 1073/(2.1 x 1076)
B — 57143 = DF37H

By loading DF37H in BX, the time taken to execute the delay program is
approximately 120 ms. The NOP included in the delay program is to increase the

Addressing Modes, Instruction Set, and Programming of 8086 129

execution time of the loop. To get more delay, the number of NOP instructions in

the delay loop can be increased. The exact delay obtained using this time delay
subroutine can be calculated as shown here. The MOV BX, Count and RET

instructions in the delay program are executed only once. The JNZ instruction

takes 16 T-states when the condition is satisfied (i.e., Z = 0) and four T-states when

the condition is not satisfied, which occurs only once.

Exact delay = [4 X 0.1 + (2 +3) x 57143 x 0.1 + 16 x 57142 x 0.1 +4 x 0.1 +

8 X 0.1] ps

=0.4 +28571.5+91427.2+ 0.4+ 0.8
=120000.3 ps = 120.0003 ms

The error in the previous calculation is very less as the exact delay is also very
close to 120 ms. When the 16-bit count register is used in the delay program,

the maximum count value that can be loaded in it is FFFFH. This may put a

limitation on the maximum time delay that can be generated using the above delay
subroutine. Whenever large time delays are required, more than one count register

may be used in the time delay subroutine. Example 4.21 illustrates this.

Example 4.21

Write a delay program to create a time delay of five minutes. Assume that a 10

MHz clock is used with the 8086.

Instruction T-states for execution

MOV AX, COUNT]I 4

L2: MOV BX, COUNT2 4

Ll1: NOP 3

DEC BX |2

JNZ L1 "6
DEC AX 2

JINZ 1.2 16

RET 8
Here there are two nested counter loops for decrementing the two counter

registers. Let the value of COUNT?2 be FFFFH, which is equal to 65535 decimal.

Let the execution time for inner loop be ¢,.
t, =[0.1 x4+ (2+3+16)x65535x0.1] ps

=0.137605 s

Let the execution time of outer loop once be #,.
t, =t,+(16+2)x0.1x107

=0.1376068 s

Required delay =7;=5 x 60 =300's
COUNT1 =1¢,/t, = 300/0.1376068 = 2180 = 884H

4.5.3 8086 Assembler Directives

An assembler is a program that is used to convert an assembly language program

into an equivalent machine language program. The assembler finds the address of
each label and substitutes the value of each constant and variable in the assembly

language program during the assembly process, to generate the machine language
code. While performing these operations, the assembler may find syntax errors.

130 Microprocessors and Interfacing

They are reported to the programmer at the end of the assembly process. The
logical and other programming errors are not found by the assembler.

For completing these tasks, an assembler needs some commands from the
programmer—the required storage class for a particular constant or a variable
such as byte, word, or double word, the logical name of the segments such as
CODE, STACK, or DATA, the type of procedures or routines such as FAR,
NEAR, PUBLIC, or EXTRN, the end of a segment, etc. These types of commands
are given to the assembler using predefined alphabetical strings called assembler
directives, which help the assembler to correctly generate the machine codes for
the assembly language program.

In addition, there are a few operators that perform the addition or subtraction
operation on constants or labels. The assembler directives commonly used in
Microsoft Macro Assembler or Turbo Assembler are as follows:

4.5.3.1 Assembler Directives for Variable and Constant Definition
The assember directives for variable and constant definition are as follows:
(1) DB, DW, DD, DQ, and DT: The directives DB (define byte), DW (define word),

DD (define double word), DQ (define quad word), and DT (define ten bytes) are

used to reserve one byte, one word (i.e., 2 bytes), one double word (i.e., 2 words),

one quad word (i.e., 4 words), and ten bytes in the memory, respectively, for

storing constants, variables, or strings.

Example:

(a) DATA1 DB 20H ; Reserve one byte for storing

DATA1l and assign the value 20H

to it.

(b) ARRAY1 DB 1@H, 20H, 3@H Reserve three bytes for storing

ARRAY1 and initialize it with

the values 10H, 20H, and 30H.

(c) CITY DB “MADURAI” ; Store the ASCII code of the

characters specified within

double quotes in the array or

list named CITY.

Reserve one word for storing

DATA2 and assign the value

1020H to it.

-
e

-

(d) DATA2 DW 1020H

-

(6) ARRAY2 DW 1030H, 2000H,

3000H, 4000H Reserve four words for storing

ARRAY2 and initialize them with

the specified values.

Initialize DATA3 as a double

word with 1234ABCDH.

(8) DATA4 DQ 1234ABCD5678EFBBH ; Initialize DATA4 as a quad word

with 1234ABCD5678EFBBH.

(h) DATA5 DT 123456789ABCDEF12345H ; Initialize DATAS as a series

of 10 bytes having the value

123456789ABCDEF12345H.

e

(f) DATA3 DD 1234ABCDH

-

Addressing Modes, Instruction Set, and Programming of 8086 131

The directive DUP (duplicate) is used to reserve a series of bytes, words,

double words, or ten bytes and is used with DB, DW, DD, and DT, respectively.

The reserved area can be either filled with a specific value or left uninitialized.

Example:

(a) Array DB 20 DUP (©) ; Reserves 20 bytes in the memory

for the array named ARRAY and

initializes all the elements

of the array to @ (due to the

presence of @ within the

bracket near the DUP

directive).

(b) ARRAY1 DB 25 DUP (?) ; Reserves 25 bytes in the memory

for the array named ARRAY1 and

keeps all the elements of array

uninitialized (due to the

question mark present within

the bracket near the DUP

directive).

(¢) ARRAY2 DB 50 DUP (64H) ; Reserves 50 bytes in the memory
for the array named ARRAY2 and

initializes all the elements

of the array to 64H.

(ii) EQU; The directive EQU (equivalent) is used to assign a value to a data name.

Example:

(a) NUMBER EQU 50H ; Assign the value 50H to NUMBER.

(b) NAME EQU “RAMESH” ; Assign the string “RAMESH” to NAME.

4.5.3.2 Assembler Directives Related to Code (Program) Location

The assember directives related to code location are as follows:

(i) ORG: The ORG (orlgln) directive directs the assembler to start the memory

allocation for a particular - segment (data, code, orstack) from the declared offset
address in the ORG statement. While starting the assembly process for a memory
segment, the assembler initializes a location counter (LC) to keep track of the

allotted offset addresses for the segment. When the ORG directive is not mentioned

at the beginning of the segment, LC is initialized with the offset address 0000H.

When the ORG directive is mentioned at the beginning of the segment, LC is

initialized with the offset address specified in the ORG directive.

Example:

ORG 100H

When this directive is placed at the beginning of the code segment, the location

counter is initialized with 0100H and the first instruction is stored from the offset

address 0100H within the code segment. If it is placed in the data segment, the

next data storage starts from the offset address 0100H within the data segment.

~

e 9

132 Microprocessors and Interfacing

(i1)) EVEN: The EVEN directive updates the location counter to the next even
address, if the current location counter content is not an even number.

Example:

EVEN

ARRAY2 DW 20 DUP (@)

These statements in a segment declare an array named ARRAY?2 having 20

words, starting at an even address. The advantage of storing an array of words

starting at an even address is that the 8086 takes just one memory read/write cycle

to read/write the entire word, if the word is stored starting at an even address.

Otherwise, the 8086 takes two memory read/write cycles to read/write the word.

Example:

The EVEN directive can also be used at the beginning of a procedure, so that the

instructions in it can be fetched quickly by the 8086 during execution.

EVEN

RESULT PROC NEAR

- 5 Instructions in the RESULT procedure

RESULT ENDP

Here the procedure RESULT, which is of type NEAR, is stored starting at an

even address in the code segment. The ENDP directive indicates the end of the

RESULT procedure.

(iii)) LENGTH: This directive is used to determine the length of an array or string
in bytes.

Example:

MOV CX, LENGTH ARRAY

CX is loaded with the number of bytes in the ARRAY.

(iv) OFFSET: This operator is used to determine the offset of a data item in a
segment containing it.

Example:

MOV BX, OFFSET TABLE

If the data item named TABLE is present in the data segment, this statement places

the offset address of TABLE, in the BX register.

(v) LABEL: The LABEL directive is used to assign a name to the current value

in the location counter. It is used to specify the destination of the branch-related

instructions such as jump and call. When LABEL is used to specify the destination,

it is necessary to specify whether it is NEAR or FAR. When the destination is in

the same segment, the label is specified as NEAR and when the destination is in

another segment, it is specified as FAR.

Example:

REPEAT LABEL NEAR

CALCULATE LABEL FAR

Addressing Modes, Instruction Set, and Programming of 8086 133

LABEL can also be used to specify a data item. When it is used to specify a

data item, the type of the data item must be specified. The data may have the type

_byte or word.

Example:

A stack segment having 100 words of data is defined using the following

statements:

STACK SEGMENT

DW 100 DUP (0) ; Reserve 100 words for stack

STACK_TOP LABEL WORD

STACK ENDS

The second statement reserves 100 words in the stack segment and fills them
with 0. The third statement assigns the name STACK_TOP to the location present

just after the hundredth word. The offset address of this label can then be assigned

to the stack pointer in the code segment using the following statement:

MOV SP, OFFSET STACK_TOP

4.5.3.3 Assembler Directives for Segment Declaration

The assember directives for segment declaration are as follows:

(i) SEGMENT and ENDS: The SEGMENT and ENDS directives indicate the start

and end of a segment, respectively. In some cases, the segment may be assigned a

type such as PUBLIC (i.e., it can be used by other modules of the program while

linking) or GLOBAL (i.e., it can be accessed by any other module).

Large assembly language programs are usually developed as separate assembly

modules. Each assembly module is individually assembled, tested, and debugged.

When all the assembly modules are working correctly, their object code files are
linked together to form the complete program. For the modules to link together
correctly, any segment, label, or variable name referred to in other modules must be

declared PUBLIC in the module in which it is defined. For example, the statement
DATA1 SEGMENT WORD PUBLIC makes the segment named DATA1 available
to other assembly modules. Here, the term WORD is used to inform the linker to
locate the segment in the first available even address. Similarly, the statement

PUBLIC X1, X2 makes the two variables X1 and X2 available to other assembly
modules. If an instruction in an assembly module refers to a variable or label

which is present in another assembly module, the assembler must be told that it is

external, using the EXTRN directive.

The GLOBAL directive can be used in place of the PUBLIC or EXTRN

directive. For a symbol or name defined in the current assembly module, the

GLOBAL directive is used to make that symbol or name available to other

assembly modules. For example, the statement GLOBAL MULTIPLIER makes
the variable MULTIPLIER public so that it can be accessed from other assembly
modules. The statement GLOBAL MULTIPLIER: WORD informs the assembler

that MULTIPLIER is a variable of type ‘word’, which is in another assembly

module.

134 Microprocessors and Interfacing

Example:

CODE1 SEGMENT

- 5 Instructions of CODE 1 segment
CODE1 ENDS

This example indicates the declaration of a code segment named CODE].
(i1) ASSUME: The ASSUME directive is used to inform the assembler, the name of the logical segments to be assumed for different segments used in the program.
Example:
ASSUME CS: CODE1, DS: DATA1
This statement informs the assembler that the segment address where the logical
segments CODE1 and DATA1 are loaded in memory during execution is to be
stored in the CS and DS registers, respectively.

(i) GROUP: This directive is used to form a logical group of segments with a similar purpose. The assembler passes information to the linker/loader to form
the code, such that the group declared segments or operands lie within a 64 KB
memory segment. All such segments can be addressed using the same segment
address.

Example:
PROGRAM1 GROUP CODE1, DATA1, STACK1
This statement directs the loader/linker to prepare an executable (EXE) file such
that the CODE1, DATA1, and STACK1 segments lie within a 64 KB memory
segment that is named PROGRAM]1 . Now, for the ASSUME statement, we can use
the label PROGRAMI rather than CODEIl, DATAL1, and STACK]1, as follows:
ASSUME CS: PROGRAMI, DS: PROGRAMI, SS: PROGRAM1
(iv) SEG: The segment operator is used to decide the segment address of the label,
variable, or procedure and substitute the segment address in place of the SEG
label.

Example:
MOV AX, SEG ARRAY1 5 Load the segment address in which ARRAY1 is

present, in AX.
MOV DS, AX 5 Move the content of AX to DS.

4.5.3.4 Assembler Directives for Declaring Procedures
The assember directives for declaring procedures are as follows:

i) PROC: The PROC directive indicates the start of a named procedure. The NEAR and FAR directives specify the type of the procedure.

Example:

SQUARE_ROOT PROC NEAR

This statement indicates the beginning of a procedure named SQUARE_ROOT, which is to be called by a program located in the same segment. The FAR directive is used for the procedures to be called by the programs present in code segments other than the one in which this procedure is present. For example, SALARY PROC FAR indicates the beginning of a FAR type procedure named SALARY.

Addressing Modes, Instruction Set, and Programming of 8086 135

= (ii) ENDP: The ENDP directive is used to indicate the end of a procedure. To mark

the end of a particular procedure, the name of the procedure may appear as a prefix

with the directive ENDP.

Example:

SALARY PROC NEAR

; Code of SALARY procedure

SALARY ENDP

(iii) EXTRN and PUBLIC: The directive EXTRN (external) informs the assembler

el/labels, and names declared after this directive has/have
that the procedures, lab

e segments where they
already been defined in some other segments and in th

actually appear, they must be declared public, using the PUBLIC directive.

Example:
MODULE1 SEGMENT

PUBLIC SQUARE_ROOT

SQUARE_ROOT PROC FAR

. Code of SQUARE_ROOT procedure
= s

SQUARE_ROOT ENDP

MODULE1 ENDS

MODULE2 SEGMENT

EXTRN SQUARE_ROOT FAR

. Code of MODULE2
3

CALL SQUARE_ROOT

MODULE2 ENDS
.

If one wants to call the procedure named SQUARE_ROOT appearing 1n

MODULE] from MODULE?2, it must be declared public using the statement

PUBLIC SQUARE_ROOT in MODULEI and it must be declared external using

the statement EXTRN SQUARE_ROOT in MODULE2. If a jump or call address

is external, it must be represented as NEAR or FAR. If data are defined as external,

their size must be represented as BYTE, WORD, or DWORD.

4.5.3.5 Other Assembler Directives

(i) PTR: The PTR (pointer) operator is used to declare the type of a label, variable,

or memory operand. The operator PTR is prefixed by either BYTE or WORD. If

the prefix is BYTE, the particular label, variable, or memory operand 18 treated as

an 8-bit quantity, while if the prefix is WORD, it is treated as a 16-bit quantity.

Example:

(a) INC BYTE PTR [SI] ; Increment the byte contents of the

memory location addressed by SI.

(b) INC WORD PTR [BX] ; Increment the word contents of the

memory location addressed by BX.

The PTR directive is also used to declare a label either as FAR or NEAR type.

The FAR PTR directive indicates to the assembler that the label following FAR

136 Microprocessors and Interfacing

PTR is not available within the same segment and the address of the label is of size

32 bits (2 bytes offset, followed by 2 bytes segment address).

Example:

(a) IMP FAR PTR DIVIDE

(b) CALL FAR PTR CONVERT
where DIVIDE and CONVERT are the names of a label and procedure,

respectively.

The NEAR PTR directive indicates that the label following NEAR PTR is in

the same segment and needs only 16 bits (2 bytes offset) to address it.

(i) GLOBAL: The labels, variables, constants, or procedures declared GLOBAL

may be used by the other modules of the program.

Example:
The following statement declares the procedure ROOT as a GLOBAL label.

ROOT PROC GLOBAL

Example:

The following statement declares the variables DATA1, DATA2, and ARRAY1 as
GLOBAL variables.
GLOBAL DATA1l, DATA2, ARRAY1l

(iii) LOCAL: The label, variables, constants, or procedures declared LOCAL in
a module are to be used only by that particular module. After some time, some

other module may declare a particular data type LOCAL, which was previously
declared as LOCAL by another module or modules. Thus, the same label may serve

different purposes for different modules of a program. With a single declaration
statement, a number of variables can be declared LOCAL as follows:

LOCAL DATA1, DATA2, ARRAY1, Al, A2

(iv) NAME: The NAME directive is used to assign a name to an assembly language
program module. The module may now be referred to by its declared name. The

names, if selected properly, may indicate the function of the different modules,
and hence help in good documentation.

(v) SHORT: The SHORT operator indicates to the assembler that only one byte is

required to code the displacement for a jump (i.e., the displacement is within —128

to +127 bytes from the address of the byte present next to the JMP instruction). This

method of specifying the jump address saves memory. Otherwise, the assembler

may reserve 2 bytes for the displacement in the jump instructions.

Example:

JMP SHORT MULTIPLY

where MULTIPLY is a label.

(vi) TYPE: The TYPE operator directs the assembler to decide the data type of

the specified label and replaces the TYPE label with the decided data type. For the

word type variable, the data type is 2. For the double word type, it is 4, and for the

byte type, it is 1.

Addressing Modes, Instruction Set, and Programming of 8086 137

Example:

If DATAL1 is an array having word type data, the instruction MOV BX, TYPE DATA1

moves the value 0002H to BX.

~(vii) MACRO and ENDM: Suppose a number of instructions occur repeatedly
in the main program, the program listing becomes lengthy. In such a situation,

a macro definition, i.e., a label, is assigned with the repeatedly appearing string

of instructions. The process of assigning a label or macro name to the repeatedly

appearing string of instructions is called macro definition. The macro name is then

used throughout the main program to refer to that string of instructions.
The difference between a macro and a subroutine is that in the macro, the

complete code of the instructions in the macro is inserted at each place where the

macro name appears during the assembly process. Hence, the length of the EXE

file is larger and the macro does not utilize the service of the stack. However, a

subroutine is present only in one place in a program and the control of execution

is transferred to the subroutine by calling that subroutine whenever necessary.

Hence, the length of the EXE file is smaller while using subroutines. A subroutine

uses the stack for storing the return address when it is called. The drawback

with subroutines is the overhead time needed to push the return address into the

stack, while calling the subroutine, and to retrieve the same from the stack, while

returning from the subroutine to the main program.

~Defining a MACRO A MACRO can be defined anywhere in a program, using

the directives MACRO and ENDM. The label prior to the MACRO is the macro

name, which is used in the main program wherever needed. The ENDM directive

marks the end of the instructions or statements assigned to the macro name.

Example:

CALCULATE MACRO

MOV AX, [BX]
ADD AX, [BX + 2]
MOV [SI], AX
ENDM

In this example, CALCULATE is the macro name and the macro is used to add

two successive data in the memory, whose offset address is present in BX and the
result is stored in the memory at the offset address present in SI. In the program,
which uses the above macro definition, wherever the instructions defined in the

above macro are repeating, we can simply use the macro name (CALCULATE)

instead of those instructions and this is called macro reference. When that program
is assembled using the assembler, the assembler replaces each macro reference by
the corresponding string of instructions defined in the macro and finds the opcode

of each instruction. This is called macro expansion.

Passing parameters to a MACRO Using parameters in a macro definition, the
programmer specifies the parameters of the macro that are likely to be changed

each time the macro is called. The macro given here (CALCULATE) can be

modified to calculate the result for different sets of data and store it in different

138 Microprocessors and Interfacing

memory locations as follows:
CALCULATE MACRO OPERAND, RESULT

MOV BX, OFFSET OPERAND

MOV AX, [BX]
ADD AX, [BX + 2]
MOV SI, OFFSET RESULT

MOV [SI], AX
ENDM

The parameters OPERAND and RESULT can be replaced by OPERANDI,
RESULT1 and OPERAND?2, RESULT?2 while calling the macro, as follows:

CALCULATE OPERAND1, RESULT1

CALCULATE OPERAND2, RESULT2

4.5.4 Writing Assembly Language Programs using MASM
MASM (Microsoft Macro Assembler) is one of the assemblers commonly used
along with the LINK (linker) program to structure the machine codes generated by
MASM in the form of an executable (EXE) file. The MASM reads the assembly
language program, which is called source program and produces an object file as
output. The LINK program accepts the object file produced by MASM along with
library files if needed, and produces an EXE file.

While writing a program for MASM, the program listing is first typed using
a text editor in the computer, such as Norton’s Editor (NE) and Turbo C editor.
After the program editing is done, it is saved with the extension .ASM. For
example, MSLLASM is a valid file name that can be assigned to an assembly
language program. The programmers have to ensure that all the files—the editor,
MASM.EXE (MASM assembler), and LINK.EXE (linker)—are available in the
same directory. After editing, the assembling of the program has to be done using
MASM. If all the above mentioned software is present in the root directory of the
C drive in the computer, to assemble the file MSL.ASM, the programmer has to
type the following at the DOS prompt in the computer:

C:\>MASM MSILASM or C:\ > MASM MSI
After entering this command, the assembler asks for the names of the following

types of files, which it generates after the assembly process:
Object file name [.OBJ]:

List file name [NUL.LST]:
Cross reference [NUL.CRF]:
The programmer can type a name against every file name and press the enter

key after each name. If no name is entered against the file name before pressing
the enter key, all the three files will have the same name as the source file. The
OBJ (object) file contains the machine codes of the program that is assembled.

The .LST (list) file contains the total offset map of the source file, including labels,

opcodes, offset addresses, memory allotment for different labels, and directives.

Addressing Modes, Instruction Set, and Programming of 8086 139

The cross reference (.CRF) file is used for debugging the source program, as it

contains information such as size of the file in bytes, list of labels, number of

labels, and routines to be called in the source program.

After the cross reference file name is entered, the assembly process starts. If the

program contains syntax errors, they are displayed using the error code number

and the corresponding line numbers at which the errors have occurred. Once

these errors are corrected by the programmer, the assembly process is completed

successfully.

The DOS linking program LINK.EXE is used to link the different object

modules of a source program and the function library routines to produce an

integrated executable code for the source program. The linker is invoked using the

following command:

C :\> LINK MSI.OBJ

After entering this command, the linker asks for the name of the following

files:

Run file [.EXE]:

List files [NUL.MAP]:

Libraries [LIB]:

If no file names are entered for these files, by default, the source file name is

considered. The optional input ‘Libraries’ expects the name of a special library (if

any) from which the functions were used by the source program. The output of the

linker program is an executable file with either the file name entered by the user or

the default file name, and .EXE extension. The executable file name can be entered

at the DOS prompt to execute the file as follows:

C > MSLEXE

In the advanced version of MASM, both assembling and linking are combined

under a single menu-invokable compile function.

DEBUG.com is a DOS utility program that is used for debugging and

troubleshooting 8086 assembly language programs. The DEBUG utility enables

us to have control over the hardware resources and the memory in the computer

(PC) up to a certain extent, as the PC uses one of the INTEL processors (80486,

Pentium, etc.) as the CPU. DEBUG enables us to use the PC as a low-level

8086 microprocessor kit. Typing the DEBUG command at the DOS prompt and

pressing the enter key invokes the debugging facility. A ‘-’ (dash) appears DEBUG

is successfully invoked, as follows:

C :\>> DEBUG

Now, by typing ‘R’ at the ‘-’ line and pressing the enter key, we can see

the content of the different registers and flags present in the CPU of the PC, as

follows:

-R
AX = @000H BX = @@05H CX = @@@DH DX = S@@@H
SP = 8500H BP = 9800H SI = 2000H DI = 700@H
DS = S@eeH ES = 3000H SS = 4000H CS = 2000H
IP = 2000H FLAGS = 0024H

140 Microprocessors and Interfacing

Table 4.11 shows the list of
their syntax, in alphabetical order.

S. No.

13.

Table 4.11

generally used DEBUG commands, along with

Generally used DEBUG commands

Command
character

-a

-€

-€

-f

g

-1

-m

=1l

Format(s)

<ENTER>

SEG:OFFSET

<ENTER>

SEG:OFFSETI

OFFSET2 N

<ENTER>

<ENTER>

SEG: OFFSET1

OFFSET2

<ENTER>

<ENTER>

SEG: OFFSETI

<ENTER>

SEG: OFFSET1

OFFSET2 BYTE

<ENTER>

SEG: OFFSET1

OFFSET2

BYTEI, BYTE2,

BYTE3, BYTE4,

etc. <ENTER>

<ENTER>

= OFFSET

<ENTER>

<ENTER>

SEG: OFFSETI1

OFFSET2 N

<ENTER>

FNAME.EXE

<ENTER>

Function

Assemble from the current CS:IP.

Assemble the entered instruction from

SEG:OFFSET address.

Copy N bytes from OFFSET1 to OFFSET?2
in segment SEG.

Display 128 memory locations of RAM,

starting from the current CS:IP address.

Display memory contents in segment SEG

from OFFSET1 to OFFSET?2.

Enter Hex data at current display pointer
SEG:OFFSET.

Enter Hex data at SEG:OFFSET] byte by
byte by pressing the space key for giving
each data one by one. The data entry is to
be completed by pressing the enter key.

Fill the memory area starting from SEG:
OFFSET1 to OFFSET?2 with the byte given.

Fill the memory area starting from SEG:
OFFSET1 to OFFSET2 with the byte
sequence BYTE1, BYTE2, BYTE3,
BYTEA4, etc.

Execute from current CS:IP. By modifying
CS and IP using R command, this can be
used for execution from any address.

Execute from the OFFSET in the current
CS.

Load the file FNAME.EXE as set by the —n
command in the RAM and set the CS:IP at
the address at which the file is loaded.
Move N bytes from OFFSET1 to OFF SET2
in segment SEG.

Set filename pointer to FNAME. Here
FNAME represents an executable file name.

(Contd)

Addressing Modes, Instruction Set, and Programming of 8086 141

Table 4.11 Generally used DEBUG commands (Contd)

S.No. Command Format(s) Function
character

15. -q <ENTER> Quit the DEBUG and return to DOS.

16. =k <ENTER> Display all registers and flags.

17. .3 reg <ENTER> Display specified register ‘reg’ content and

Old content:New modify it with the entered new content.

content

18. -S SEG: OFFSET1 _ Searches a byte or string of bytes separated

OFFSET2 by ,” in the memory region from SEG:

BYTE/BYTES OFFSET1 to OFFSET2 and displays all the

<ENTER> offsets at which the byte or string of bytes

is found.

19. -t SEG: OFFSET Trace the program execution by single

<ENTER> stepping starting from the address SEG:

OFFSET.

20. -u <ENTER> Unassemble from the current CS:IP.

21. -u SEG: OFFSET Unassemble from the address SEG:

<ENTER> OFFSET.

22: -? <ENTER> List all the commands in DEBUG.

The remaining DEBUG commands can be referred to from any book that

discusses assembly language programming in personal computers. In this section,

a few examples for writing 8086 assembly language programs while using an

assembler are given.

Example 4.22

Write a program to add two 8-bit data (FOH and 50H) in the 8086 and store the

result in the memory, when MASM assembler is used.

Program:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT ; Beginning of data segment

OPER1 DB 9F@H ; Store the first operand.

OPER2 DB 56H ; Store the second operand.

RESULT DB ©1 DUP (@) ; Reserve a byte of memory for the

result.

CARRY DB 01 DUP (@) ; Reserve a byte for storing the

carry.

DATA ENDS ; End of data segment

CODE SEGMENT ; Beginning of code segment

START: MOV AX, DATA ; Load AX with the segment address of

DATA.

MOV DS, AX ; Move the content of AX to DS.

142 Microprocessors and Interfacing

MOV BX, OFFSET OPER1 >

MOV AL, [BX]

ADD AL, [BX+1] ;
MOV SI, OFFSET RESULT ;

e

MOV [SI], AL -

INC SI -

IC CAR
MOV BYTE PTR [SI], @0H ;
IMP LOC1

CAR: MOV BYTE PTR [SI], O1H ;
LOC1: MOV AH, 4CH

INT 21H ;
CODE ENDS
END START

Example 4.23

-

-

-

e

Move the offset address of OPER1 to

BX.

Move the first operand to AL.

Add the second operand to AL.

Store the offset address of RESULT

in Si.

Store the content of AL in the

location RESULT.

Increment SI to point to the location

of carry.

If carry = 1, jump to CAR.

Store 90H in the location CARRY.

Jump to LOC1.

Store 91H in the location CARRY.

Return to DOS prompt.

End of code segment

Program ends.

Write a program to subtract the word 2350H from the word 1ACFH and store the

result in the memory, when MASM assembler is used. Assume that the data is
signed data.

Program:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

OPR1 DW 2350H 5

OPR2 DW 1ACFH ;
RESULT DW @1 DUP (?) ;

e

DATA ENDS

CODE SEGMENT

START: MOV AX, DATA 5

e

-

MOV DS, AX
MOV AX, OPR2 ;
SUB AX, OPR1
MOV RESULT, AX ;

-

e

MOV AH, 4CH

INT 21H

CODE ENDS

END START 5

-
e

-

Beginning of data segment

Store the subtrahend.

Store the minuend.

Reserve a word of the memory for the

result.

End of data segment

Beginning of data segment

Load AX with the segment address of

DATA.

Move the content of AX to DS.

Move minuend to AX.

Subtract subtrahend from minuend.

Store content of AX in location

RESULT.

Return to DOS prompt.

End of code segment

Program ends.

Note: In this program, if the result is positive, its MSB will be 0. If the result is

negative, its MSB will be 1 and the result will be in 2’s complement form.

Addressing Modes, Instruction Set, and Programming of 8086 143

Example 4.24

Write a program to add two hundred words of data when MASM assembler is

used.

Program:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT J
; Data segment starts.

NUMBERS DW 1234H, 5CD5H, 4BEGH, ..

COUNT EQU 200

e

e

RESULT_HW DW @1 DUP (?) ;

RESULT_LW DW ©1 DUP (?) ;

DATA ENDS

CODE SEGMENT

START: XOR AX, AX

MOV BX, ©000H

MOV CX, COUNT

e

-
e

“
e

MOV SI, OFFSET NUMBERS ;

L2: ADD AX, [SI]

JNC NO_CARRY

INC BX

NO_CARRY: INC SI

INC SI
LOOP L2
MOV RESULT HW, BX
MOV RESULT_ LW, AX
MOV AH, 4CH
INT 21H
CODE ENDS
END START

Example 4.25

e

“
e

e

“
e

e

.
e

J

Array of 200 words

COUNT is assigned the value 200

decimal.

Reserve a word for storing

higher word of the result.

Reserve a word for storing lower

word of the result.

Data segment ends.

Code segment starts.

Clear AX and carry flag.

Clear BX.

Load count (= 200) in CX.

Move offset address of NUMBERS

in SI.

Add one word data at [SI] with

AX.

If CF = 9, go to NO_CARRY

If CF = 1, increment BX.

Increment SI by 2 to point to

next word.

Repeat loop L2 CX times.

Move data in BX to RESULT_HW.

Move data in AX to RESULT_LW.

Return to DOS prompt.

End of code segment

Program ends.

Write a program to find whether the byte FFH is present in the given string. In

addition, find the relative address of that byte from the starting location of the

string. If the byte FFH is not present, store 00H in DL, and if it is present, store

01H in DL. Assume that MASM assembler is used.

Program:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

COUNT EQU ©08H

; Data segment starts

5 No. of characters i~ the string

144 Microprocessors and Interfacing

STRING DB 30H, 35H, 32H, 34H, OFFH, 43H, 46H, 21H

e

LOCAT DB @1 DUP (?)

SEARCH_BYTE DB OFFH ;

DATA ENDS >

CODE SEGMENT 5

START: MOV AX, DATA 5

MOV DS, AX H

MOV ES, AX H

MOV CX, COUNT ;

MOV DI, OFFSET STRING ;

MOV DH, ©0H H

MOV AL, SEARCH_BYTE ;

MOV DL, ©©H 5

CLD

CHECK: SCASB

e

e

JZ FOUND e

INC DH ;

LOOP CHECK
IMP L1

FOUND: MOV DL, O1H ;
MOV LOCAT, DH ;

L1: MOV AH, 4CH ;
INT 21H
CODE ENDS
END START

“
e

-

String for searching

Storage for location of the search

byte FFH in the string

Search byte is FFH.

Data segment ends.

Code segment starts.

Move segment address of DATA to AX.

Move content of AX to DS.

Move content of AX to ES.

Move COUNT to CX.

Move offset of STRING to DI.

Move @0H to DH to find the location

of FFH.

Move FFH to AL.

Move ©0H to DL.

Clear D flag.

Compare AL content with the content

of ES: [DI].

If Z = 1, which indicates a match, go

to FOUND.

Increment DH to point to the next

relative address.

Go to CHECK CX times.

Jump to location to L1.

Move ©1H to DL as FFH is found.

Move value in DH to LOCAT.

Go to DOS prompt.

: End of the code segment

; Program ends.

Note: In this program, the result stored in LOCAT will be equal to 04H after

execution, since the relative address is 00H for the first byte in the string.

Example 4.26
Write a program to find the parity of a given word-type data. If the parity is even,

store 00H in BL register, and if the parity is odd, store 01H in BL register. Assume

that MASM assembler is used.

Program:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT ; Data segment starts.

NUMBER DW 5260H; Store the number for which parity is to be

found.

COUNT EQU 16 ; Assign COUNT to the number of the bits in a

word.

Addressing Modes, Instruction Set, and Programming of 8086 145

DATA ENDS ; Data segment ends.
CODE SEGMENT = ; Code segment stérts.

START: MOV AX, DATA ; Move segment address of DATA to AX.
MOV DS, AX 5 Move the content of AX to Ds.
MOV CX, COUNT ; Load COUNT in CX.

MOV. AX, NUMBER ; Move NUMBER to AX.
CLR DL ; Clear DL, which is used to find number of

1s in the NUMBER.

L1: RCR AX, 1 ; Rotate AX right through carry by 1 bit.
JNC NO_CAR ; If CF = 0, go to NO_CAR.

INC DL ; Increment DL as a 1 is encountered in the

number. :

NO_CAR: LOOP L1 ; Execute loop L1, CX times. -

MOV AL, DL ;5 Move DL to AL to perform division.

MOV AH, ©oH 5 Clear AH to perform division.

MOV BL, @2H ; Move @2H to BL, which is divider.
DIV BL ; Divide AX by BL; if the reminder is 0,

number is even parity. '

CMP AH, ©00H ; Compare AH, which is having remainder, with

& 0O0H.

JZ EVEN ; If Z = 1, go to location EVEN.

MOV BL, ©1H ; Move @1H to BL to indicate odd parity.

JMP L2 ; Go to location L2.

EVEN: MOV BL, ©@H ; Move @@H to BL to indicate even parity.

L2: MOV AH, 4CH ; Return to DOS prompt.

INT 21H

CODE ENDS ; End of the code segment.

END START ; Program ends.

Note: Parity indicates number of Is in a data. If the number of 1s is even, the
number is said to be even parity number, and if the number of 1s is odd, the

- number is said to be odd parity number. In this program, the number of 1s in the
number is found by rotating that number through the carry flag one bit at a time
and checking whether the carry flag and hence a particular bit in the number is 0 or

1. If the bit is 1, a register (here DL) is incremented, which is initially loaded with
00H, and if the bit is 0, the same register is not incremented. After testing all bits in
the number, if the value in DL is even, the number is said to be even-parity number,

which is checked by dividing the DL content by 2 and seeing the remainder. If the

remainder is 0, the value in DL is even and the number has even parity. Otherwise,

the number has odd parity.

Example 4.27

Write a program to find the sum of two 2 x 2 matrices whose elements are byte-
type data and store the result in the memory. Assume that MASM assembler is

used.

146 Microprocessors and Interfacing

Flowchart:

Let the two matrices be A and B and their elements as follows:

a a b b 11 12 1 12
A= and B=

a4 apy b, by

Let us assume that the data and the result are stored in the memory as follows:

Data 1 Data 2 Result

a, b, ‘1

a, b, C12

3| b, G

a4 b,, C»

Let the resultant matrix obtained by adding A and B be C, whose elements are as
follows:

c c n ‘2
C=

€1 T

Program:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT Data segment starts.

e

DATAL1 DB 50H, 40H, 30H, 20H ; Store the elements of matrix A.

DATA2 DB 40H, 20H, 80H, 70H ; Store the elements of matrix B.

RESULT DB 04 DUP ()

-
 Reserve four bytes for storing

resultant matrix C.

COUNT EQU 04 ; COUNT is equal to 4 as there are

four elements in each matrix.

DATA ENDS ; Data segment ends.

CODE SEGMENT ; Code segment starts.

START: MOV AX, DATA ; Segment address of DATA is

moved to DS.

MOV DS, AX ; Move the content of AX to DS.

MOV CX, COUNT ; Load COUNT in CX.

MOV BX, OFFSET DATA1l ; Move the offset address of

DATA1 to BX.

MOV SI, OFFSET DATA2 ; Move the offset address of

DATA2 to SI.

Move the offset address of

RESULT to DI.

MOV DI, OFFSET RESULT e

AGAIN: MOV AL, [BX] ; Move one element of matrix A

to AL.

ADD AL, [SI] ; Add AL with corresponding

element of matrix B.

Addressing Modes, Instruction Set, and Programming of 8086 147

MOV [DI], AL Store the result in the

memory .

e

INC BX 5 Increment BX to point to the

next element of A.

INC SI 5 Increment SI to point to the

next element of B.

INC DI 5 Increment DI to point to the

next location to store the

result.

LOOP AGAIN ; Repeat the loop CX times.

MOV AH, 4CH ; Return to DOS prompt.

INT 21H

CODE ENDS ; Code segment ends.

END START ; Program ends.

Note: In this program, the elements for matrices A and B are chosen such that the

sum of the corresponding elements of A and B is also 8-bit data (i.e., byte). If it is

more than 8 bits, two bytes must be reserved for storing each element of resultant

matrix C, thus totally requiring 8 bytes for storing all elements of matrix C. The

carry generated in the addition is stored as the MSB for each of the elements in

matrix C. It is left to the reader to write the program for the same.

Example 4.28

Write a program to find the smallest word in the given array having three word-

type data. Assume that MASM assembler is used.

Program:

ASSUME CS: CODE, DS:DATA

DATA SEGMENT ; Data segment starts.

ARRAY DW 2500H, 1600H, ©032H

; Three words of data in ARRAY

COUNT EQU @3H ; Assign 03 to COUNT, as three words

‘ are compared.

SMALLEST DW @1 DUP (@) ; Reserve one word to store the

smallest word.

DATA ENDS ; Data segment ends.

CODE SEGMENT ; Code segment starts.

START: MOV AX, DATA ; Move the segment address of DATA to
DS.

MOV DS, AX ; Move the content of AX to DS.

MOV SI, OFFSET ARRAY ; Move the offset of the array to SI.

MOV CX, COUNT ; Load COUNT in CX.

DEC CX ; Decrement CX as the number of

comparisons is one less than COUNT.

MOV AX, [SI] ; Move the first word to AX.

AGAIN: ADD SI, 02 ; Add 2 to SI to point the next word.

Compare the word in AX with the

word at [SI].

-
 CMP AX, [SI]

148 Microprocessors and Interfacing

JC NEXT

MOV AX, [SI]
NEXT: LOOP AGAIN

MOV SMALLEST, AX

MOV AH,

INT 21H
4CH

CODE ENDS

END START

Example 4.29

e

-

e

e

If AX is small, go to NEXT.

Move the small word in [SI] to AX.

Repeat the loop AGAIN, CX times.

Store AX in the location SMALLEST.

Return to the DOS prompt.

End of code segment

Program ends.

Write a program to find the number of even and odd data bytes present in the given

array having five byte-type data. Assume that MASM assembler is used.

In this program, the array has five bytes of data (40H, 31H, 23H, 52H, 39H).

Program:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

ARRAY DB 40H,31H,23H,52H, 39H

COUNT EQU ©O5H

EVEN_NOS DB ©0H

ODD_NOS DB @@H

DATA ENDS

CODE SEGMENT

START: MOV AX,
MOV DS,
MOV BL,

MOV DL,

MOV CX,
MOV SI,

AGAIN: MOV AL,
RCR AL,

JC ODD

INC BL

JMP L1

ODD: INC DL

DATA

AX

00H

00H

COUNT

OFFSET ARRAY

[sI]
1

J

J

J

J

.
J

-

; Data segment starts.

; Enter all data in the array here.

; Initialize COUNT with @05, which is the

number of data.

; Reserve a byte for storing number

of even data.

Reserve a byte for storing number

of odd data.

Data segment ends.

Code segment starts.

Move segment address of DATA to DS.

Move the content of AX to DS.

Initialize BL with @OH, to store

the number of even data.

Initialize DL with @@H, to store

the number of odd data.

Initialize CX with COUNT.

Move the offset address of ARRAY to

L o

Move one byte from ARRAY to AL.

Rotate AL right through the carry

by 1 bit.

If carry =1, the number is odd. So go

to ODD.

Otherwise, the number is even;

increment BL.

Jump to L1.

Increment DL by 1 as the number is

odd.

Addressing Modes, Instruction Set, and Programming of 8086 149

%L INC SI ; Increment SI to point to the next

data.

LOOP AGAIN ; Go to LOOP AGAIN, CX times.

MOV EVEN_NOS, BL ; Store the content of BL in EVEN_NOS.

MOV ODD_NOS, DL ; Store the content of DL in ODD_NOS.

MOV AH, 4CH

INT 21H ; Return to the DOS prompt.

CODE ENDS ; End of code segment

END START Program ends.

e

Example 4.30 .

Write a program to arrange the given array having four word-type data in ascending

order. Assume that MASM assembler is used.

Program:

ASSUME CS: CODE, DS: DATA

' DATA SEGMENT ; Data segment starts.

ARRAY DW 3200H, 4F35H, 2350H, 1FC2H

; Store the elements of ARRAY here.

COUNT EQU ©4H ; COUNT is initialized with the

number of data items.

DATA ENDS ; Data segment ends.

CODE SEGMENT ; Code segment starts.

START: MOV AX, DATA ; Move segment address of DATA

to DS.

MOV DS, AX ; Move the content of AX to DS.

Load the number of data items

in CX.

Decrement CX as the number of

passes is one less than the

number of data.

Initialize BL with the number

of comparisons to be done in

each pass. |

MOV SI, OFFSET ARRAY ; Move the offset address of

ARRAY to SI register.

Move one data word from array

to AX.

Compare AX with the next word

in the array.

If the first data is lesser

than the second, go to L1.

Ootherwise, exchange the data

in AX and the memory at [SI+2].

Exchange the content of AX

(smaller data) and the data in

the memory at [SI].

MOV CL, COUNT “
e

e
e

PEC CL

NEXT_PASS: MoV BL, CL -

e
 COMPARE: MOV AX, [SI]

e

CMP AX, [SI+2]

-

JC L1

-

XCHG AX, [SI+2]

-

XCHG AX, [SI]

150 Microprocessors and Interfacing

L1:

ADD SI, 02

DEC BL

JNZ COMPARE

LOOP NEXT_PASS

MOV AH, 4CH

INT 21H

CODE ENDS

END START

.
)

e

-

e

-

e

-

Increment SI by 2 to compare

the next data with AX.

Decrement the number of

comparisons in BL by 1.

If BL is not @, go to COMPARE

for the next comparison.

If BL is @, go to NEXT_PASS.

Return to the DOS prompt.

End of segment

Program ends.

The algorithm used here is explained with the following simple example. Let us

consider arranging four words stored in an array in ascending order. Since there
are 4 (= N) words, 3 (=N — 1) passes have to be done. In the first pass, 3 (=N —1)

comparisons are made and the highest number is brought to the end of the array. In

the second pass, 2 (= N — 2) comparisons are made since only the top three words

of the array need to be compared, and in the third pass, only one comparison is

needed to compare the first two data in the array.
Let us assume that the data in the array is as follows:

3200H

4F35H

2350H

1FC2H

The comparisons done in each pass and the exchange of data for arranging them

in ascending order are shown here:

PASS I:

3200H

4F35H }

2350H

1FC2H

PASS II:

3200H }

2350H

1FC2H

4F35H

PASS III:

2350H }

1FC2H

3200H

4F35H

3200H

4F35H }

2350H

1FC2H

2350H

3200H }

1FC2H

4F35H

1FC2H

2350H

3200H

4F35H

Sorted array

3200H 3200H

2350H 2350H

4F35H 1FC2H

1FC2H 4F35H

2350H

1FC2H

3200H

4F35H

Addressing Modes, Instruction Set, and Programming of 8086 151

Example 4.31
Write a program to find the average of 100 byte-type data stored in an array in data

segment. Assume that MASM assembler is used.

Program:

ASSUME CS: CODE1, DS: DATA1l

DATA1 SEGMENT ; Data segment starts.

ARRAY DB 10H, 20H, 30H; 100 bytes are stored.

COUNT EQU 100 ; COUNT is the number of bytes in the

array.

AVERAGE DB ©1 DUP (@) ; Reserve one byte to store the

result.

DATA1 ENDS ; Data segment ends.

CODE1 SEGMENT ; Code segment starts.

START: MOV AX, DATA1l ; Segment address of DATAl is moved

to AX.

MOV DS, AX ; Move AX content to DS.

MOV SI, OFFSET ARRAY ; Move offset address of ARRAY to SI.

XOR AX, AX ; Clear AX and carry flag.

MOV BX, ©0©00H ; Clear BX.

MOV CX, COUNT ; Move COUNT to CX.

L1: MOV BL, [SI] ; Move one byte from array into BL.

ADD AX, BX ; Add AX and BX.

INC SI ; Increment SI to point to the next

byte.

LOOP L1 ; Repeat Loop L1 CX times.

Move COUNT to DH. e
 MOV DH, COUNT

DIV DH ; Divide AX by DH.

MOV AVERAGE, AL ; Store AL content in AVERAGE.

MOV AH, 4CH ; Return to DOS prompt.

INT 21H

CODE1 ENDS ; Code segment ends.

END START ; Program ends.

Note: In this program, even though the array contains byte-type data, registers AX

and BX are used. They are cleared initially, to keep the contents of AH and BH at

00H. The content of BH is not changed throughout the program execution. The

byte to be added is first moved to BL and then BX is added with AX. The use of

AX and BX results in storing the carry generated in the byte addition automatically

in AH, when ADD AX, BX instruction is executed.

Example 4.32

Write a program to find the sum of many multi-byte numbers. Let us assume that

we want to add four multi-byte numbers, each having four bytes. Let the numbers

to be added be FOBOC010H, 203050COH, 40453080H, and 807060BOH. The

numbers are stored in the memory as shown, starting from the LSB of the first

number. To store the result, five bytes are reserved, since the addition of these

152 Microprocessors and Interfacing

numbers will generate carry, which will be stored in the fifth byte (le., MSB)
Initially, the five bytes in the result are cleared (i.e., made 00H). Assyme tha‘;
MASM assembler is used.

_Program:

10 (LSB)

2 Number 1
BO

FO (MSB)

CO0 (LSB)

Y Number 2
30

20 (MSB)

80 (LSB)

i Number 3
45

40 (MSB)

BO (LSB)

ol Number 4
70

80 (MSB)

00H

00H (LSB)

00H
Result

00H

00H (MSB)

ASSUME CS: CODE1, DS: DATA1

DATA1 SEGMENT ; Data segment starts.

BYTES EQU 04H ; BYTES indicates number of byt®®
‘ ~in a multi-byte number. Sf:

NUMBER EQU @4H ; NUMBER indicates number of M

Data in the memory (in Hex)

byte numbers.

NUM_LIST DB 10H, @C@eH, OBOH, OFOH, OCOH, 5@H, .. o e

; Store the data in the multi-by

numbers in the memory-. the

; Reserve five bytes to storé

result.

DATA1 ENDS ; Data segment ends.

-

RESULT DB @5 DUP (@)

-

Addressing Modes, Instruction Set, and Programming of 8086 153

CODE1 SEGMENT Code segment starts. e

START: MOV AX, DATAl ; Segment address of DATA1l is moved

to Ds.

MOV DS, AX ; Move the content of AX to DS.
MOV SI, OFFSET NUM LIST ; Load SI with offset address of

NUM_LIST.

MOV CX, NUMBER ; Load CX with the value of NUMBER

(= 4).

L3: MOV BL, BYTES ; Load BL with the value of BYTES

(= 4).
MOV DI, OFFSET RESULT ; Load DI with the offset address

of RESULT.

XOR AL, AL ; Clear AL and the carry flag.

L1: MOV AL, [SI] ; Move the byte at [SI] to AL.

ADC AL, [DI] ; Add with carry, the byte at [DI]

and AL.

MOV [DI], AL ; Store the result in AL at [DI].

INC SI ; Increment SI to point to the next

byte.

INC DI ; Increment DI to point to the next

byte.

DEC BL ; Decrement BL as one byte is

' added.

IJNZ L1 ; If BL # 9, go to L1 to perform

addition of next bytes.

INC L2 ; If final carry is 0, go to L2.

INC BYTE PTR [DI] ; Otherwise increment data at

’ [DI].

122 LOOP L3 ;> Repeat loop L3, CX times.

MOV AH, 4CH 5 Return to DOS prompt.

INT 21H

CODE1 ENDS ; Code segment ends.

END START ; Program ends.

Note: In this program, the first multi-byte number and the multi-byte data in the

location RESULT (which initially has 00H in all bytes) are added, and the result

is stored in the location RESULT itself. The final carry generated in the addition

is stored in the MSB of the result. Then the next multi-byte number is added with

the multi-byte number stored in RESULT, and the result of that addition is stored

in RESULT again. This is repeated until all multi-byte numbers are added.

Example 4.33

Write a program to perform subtraction of two BCD data (say 80H — 17H). Assume

that MASM assembler is used.

Program:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT ; Data segment starts.

154 Microprocessors and Interfacing

MINU DB 80H ; Sort the minuend.

SUBT DB 17H ; Store the subtrahend.

RESULT DB @1 DUP (@) ; Reserve one byte for storing the

result.

BORROW DB @1 DUP (@) ; Reserve one byte for storing borrow.

DATA ENDS ; Data segment ends.

CODE SEGMENT ; Code segment starts.

START: MOV AX, DATA ; Move segment address of DATA to DS.

MOV DS, AX ; Move the content of AX to DS.

XOR AL, AL ;5 Clear AL and carry flag.

MOV AL, MINU ; Move minuend to AL.

MOV BL, SUBT ; Move subtrahend to BL.

SUB AL, BL ; Subtract BL from AL.

DAS ; Decimal-adjust AL after subtraction

to get the result in BCD form.

MOV RESULT, AL Store the content of AL in RESULT.

-

JNC NO_CAR 5 If borrow = 9, go to NO_CAR.

MOV BORROW, O1H 5 Move @1H in BORROW.

NO_CAR: MOV AH, 4CH 5 Return DOS prompt.

INT 21H

CODE ENDS ; Code segment ends.

END START ; Program ends.

Note: The data at RESULT and BORROW will be 63H and 00H, respectively,

after execution of the program.

Example 4.34

Write a program to multiply two 8-bit data, namely, operand 1 and operand 2,

and to divide the same two data (i.e., operand 1/operand 2). Assume that MASM

assembler is used.

Program:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT Data segment starts.

OPR1 DB 46H Operand 1 is stored.

OPR2 DB 20H Operand 2 is stored.

PRODUCT DW @01 DUP (@) ; Product is stored here.

QUOTIENT DB 01 DUP (@) ; Quotient is stored here.

REMAINDER DB ©1 DUP (@); Remainder is stored here.

-

e

e

DATA ENDS ; Data segment ends.

CODE SEGMENT ; Code segment starts.

START: MOV AX, DATA ; Store segment address of DATA in DS.

MOV DS, AX ; Move the content of AX to DS.

XOR AX, AX ; Clear AH and AL.

MOV AL, OPR1 ; Move OPR1 to AL.

Move OPR2 to BL.

Multiply AL & BL.

-
 MOV BL, OPR2

MUL BL e

Addressing Modes, Instruction Set, and Programming of 8086 155

MOV PRODUCT, AX 5 Store AX content in PRODUCT.
XOR AX, AX ; Clear AX and carry.
MOV AL, OPR1 5> Move OPR1 to AL.

DIV BL > Divide AX by BL.

MOV QUOTIENT, AL

MOV REMAINDER, AH

5 Move AL content to QUOTIENT.

5 Move AH content to REMAINDER.

MOV AH, 4CH 5 Return to DOS prompt.

INT 21H

CODE ENDS ; Code segment ends.

END START ; Program ends.

Example 4.35

Write a program to convert the given 8-bit binary number into equivalent Gray

code. Assume that MASM assembler is used.

Solution:

The equivalent Gray code of a binary number is obtained using the following

relation:

Let the bits in the binary number be represented as follows:
B7 B6 B5 B4 B3 B2 Bl BO

(MSB) (LSB)
Let the bits in the equivalent Gray code be represented as follows:

G7 G6 G5 G4 G3 G2 Gl GO

(MSB) (LSB)
The bits in the Gray code are obtained by the following relations:

G7 = B7

and Gi = Bi XOR (Bi + 1), where i = @ to 6

The algorithm used in this program is as follows:
(i) Move the binary number to AL, BL, and CL registers.

(i) Rotate the content of BL right by 1 bit, not through the carry. The binary
number bits in BL, after rotation, will be as follows:

BL

| Bo| B7 | Bs | BS | B4 | B3 IB2 | B |

(iii) The content in CL will be as follows:

CL

[87] Bs | Bs [B4 [B3 | B2 | BI | B0 |

(iv) XOR the content of BL with that of CL and store the result in BL.

(v) AND 80H with the content of AL to mask all the bits except MSB in AL.

(vi) IfMSB in AL is 0, AND 7FH with BL to get Gray code. f MSB in AL is 1,

OR 80H with BL to get Gray code since the MSB in binary code and Gray
code are the same.

Program:
ASSUME CS: CODE, DS: DATA

DATA SEGMENT ; Data segment starts.

156 Microprocessors and Interfacing

BINARY DB 4BH ; Sort the binary data.

GRAY DB 01 DUP (@) ; Reserve 1 byte for Gray code.

DATA ENDS ; Data segment ends.

CODE SEGMENT ; Code segment starts.

START: MOV AX, DATA ; Move segment address of DATA to Ds.

MOV DS, AX ; Move the content of AX to DS.

MOV AL, BINARY ; Move binary number to AL.

MOV BL, AL ;5 Move AL to BL.

MOV CL, AL ; Move AL to CL.

ROR BL, 1 ; Rotate right BL content by 1 bit.

XOR BL, CL ; XOR BL and CL content, the result

stored in BL.

AND AL, 80H 5 AND AL with 80H to mask the lower bits

except MSB.
CMP AL, 80H ; Compare AL with 80H to test the MSB.

JZiL1 s 'Ef-MSBin AL ‘15 1,/ /go tosL1.

AND BL, 7FH 5 AND 7FH with BL content to make MSB in

BL ©.

JMP L2 ; Go to L2.

L1: OR BL, 80H 5> OR 80H with BL content to make MSB in

BL to 1.

L2: MOV GRAY, BL 5 Move BL content to GRAY.

MOV AH, 4CH 5 Return to DOS prompt.

INT 21H

CODE ENDS ; Code segment ends.

END START ; Program ends.

Example 4.36

Write a program to find the square root of the given byte-type data. Assume that

the byte-type data is a perfect square. Assume that MASM assembler is used.

Algorithm:

Three registers can be used to find the square root of the number. Let the number

whose square root is to be found be stored in the CI. register, and the data 00H and

01H be stored in registers AL and DL, respectively. The algorithm used to find the
square root is as follows:

(i) Check the content of CL, if CL = 0. Go to step (V).
(ii) Subtract the value in DL from the value in CL and store the result in CL.

(iii) Increment AL.

(iv) Add 2 with the content of DL and g0 to step (i).
(v) Store the value in AL in the location RESULT as AL contains the square

root of the number.

Let the number for which square root has to be found be 09 The value in differen*
registers at the end of each iteration, during the execution of the program, is shown
in Table 4.12:

Addressing Modes, Instruction Set, and Programming of 8086 157

Table 4.12 Values in different registers at the end of each iteration

Mteraion CL AL DL
0 09H 00H OIH
1 08H O0IH O03H

lteration CL AL DL

2 05H 02H 05H

3 00H 03H 07H

Since CL becomes 0 at the end of the third iteration, the value in AL at the end of

the third iteration (which is the result) is 03H, and is stored in the memory.

Program:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

NUMBER DB ©9H

RESULT DB @1 DUP ()

Data segment starts.

Store the number whose square root

has to be found.

Reserve 1 byte for the result.

DATA ENDS ; Data segment ends.

CODE SEGMENT ; Code segment starts.

START: MOV AX, DATA ; Move segment address of DATA to DS.

MOV DS, AX ; Move the content of AX to DS.

MOV CL, NUMBER ; Move NUMBER to CL.

MOV DL, ©1H ; Move @1H to DL.

MOV AL, ©@©H ; Move QOH to AL.

REPEAT: CMP CL, ©©H ; Compare CL with @@H.

JZ STORE ; IfZ=1 (i.e., CL = 0@0H), go to STORE.

SUB CL, DL ; Subtract DL from CL and store the

result in CL.

INC AL 5 Increment AL.

ADD DL, ©2H ; Add 02H to DL.

i JMP REPEAT ; Go to REPEAT.

STORE: MOV RESULT, AL ; Store the value in AL at RESULT.

MOV AH, 4CH 5 RESULT to DOS prompt.

INT 21H g

CODE ENDS ; Code segment ends.

END START ; Program ends.

Example 4.37

Write a program to multiply two 2 x 2 matrices whose elements are byte-type

data. |

Let the matrices to be multiplied be A and B and their elements as shown here:

R a; 3 s B b, by,

a Aap by by,

a; b, tapby apb,tapb, | (XY

ay b, ta,b, a,b,+a,b, VARR"Y

158 Microprocessors and Interfacing

Let all the elements of the two matrices be stored in.the memory as shown. The

labels have been mentioned for different memory lo.catlons. Let the elements X Y,

Z, and W of the resultant matrix all be 16-bit data (i.e., word data).

lbyu:{

2 bytes {

2byws{

Program:

FR A

SR_A

FC_B

SC B

PAR_RES

RESULT

ASSUME CS: CODE, DS: DATA, SS: STACK

DATA SEGMENT
FR_A DB O1H,

SR_A DB @3H,

FC_B DB O5H,

SC_B DB 04H,

PAR_RES DW @8 DuP (9)

RESULT DW @4 DUP (@)

“
e
 Data segment starts.

Store the first-row elements

of A.

Store the second-row elements

of A.

Store the first-colum

of B.

Store the second-column

elements of B.

; Reserve eight wor

the partial result.

; Reserve four words fo

the final result.

“
e

-
e

n elements

-
e

-

ds for storin®

« storif®

START:

Addressing Modes, Instruction Set, and Programming of 8086

DATA ENDS
STACK SEGMENT
STORE DW DUP 100 (9)

STACK_TOP LABEL WORD

STACK ENDS

CODE SEGMENT

MOV AX, DATA

MOV DS, AX

MOV AX, STACK

MOV SS, AX

MOV SP, OFFSET STACK_TOP

MOV SI, OFFSET FR_A

MOV DI, OFFSET FC_B

MOV CL, 02

MOV BX, OFFSET PAR_RES

CALL PAR_PROD
MOV SI, OFFSET FR_A

MOV DI, OFFSET SC_B

MOV CL, @2
CALL PAR_PROD
MOV SI, OFFSET SR_A

MOV DI, OFFSET FC_B

MOV CL, ©2
CALL PAR_PROD
MOV SI, OFFSET SR_A

MOV DI, OFFSET SC_B

MOV CL, ©2
CALL PAR_PROD

MOV BX, OFFSET PAR_RES

MOV DI, OFFSET RESULT

.
-

J

e

e

-

.
-

J

e

.
o

.
e

I

e

e

e

)

.
J

159

Stack segment starts.

Reserve 100 words for

storage.

Give the label STACK_TOP to the

top of the stack.

Store the segment address of

DATA in DS.

Move the content of AX to DS.

Store the segment address of

STACK in AX.

Move the content of AX to SS.

Load offset of STACK_TOP in

SPPy

Move offset address of FR_A to

SIi

Move offset address of FC_B to

DI.

Move 02 to CL.

Move offset address of PAR_RES

to BX.

Call PAR_PROD subroutine.

Move offset address of FR_A to

SI:

Move

DI.

Move 02 to CL.

Call PAR_PROD subroutine.

Move offset address of SR_A to

SIs

Move offset address of FC_B to

DI.

Move 02 to CL.

Call PAR_PROD subroutine.

Move offset address of SR_A to

SI.

Move offset address of SC_B to

DI.

Move 02 to CL.

Call PAR_PROD subroutine.

Move offset address of PAR_RES

to BX.

Move offset address of RESULT

to DI.

offset address of SC_B to

160 Microprocessors and Interfacing

MOV CX, o4 ; Move 04 to CX.

L3 MOV AX, [BX] ; Move word at [BX] to AX.

ADD BX, 02 ; Increment BX by 2 to point to

the next word.

ADD AX, [BX] ; Add AX and the word at [BX].

MOV [DI], AX ; Move the content of AX to

[DI].

ADD BX, 02 ; Add 02 to BX to point to the

next word, for addition.

ADD DI, @2 ; Add 02 to DI to point to the

next word, for storage.

LOOP L3 ; Repeat loop L3, CX times.

JMP L4 ; Go to L4.

PAR_PROD: XOR AX, AX ; Clear AX and carry flag.

MOV BP, SI 5 Move the content of SI to BP

for use in multiplication of

the next column.
L1: MOV AL, [SI] 5 Move byte at [SI] to AL.

MUL BYTE PTR [DI] 5 Multiply AL and the byte at

[DI].

MOV [BX], AX ; Store the content of AX at [BX].
INC SI 5 Increment SI.

INC DI 5 Increment DI.
ADD BX, 02 ; Add @2 with BX to point to the

next word.

MOV AH, ©eH ; Clear AH for the next
multiplication.

DEC CL ; Decrement CL.
INZ L1 ; If CL # 0, go to L1.

L2: RET 5 Return from subroutine.
L4: MOV AH, 4CH 5 Return to DOS prompt.

INT 21H

COOE-:ENDS ; Code segment ends.
END START

Program ends.
Note: In this program, the partial products a); Xb;,,a, X b,,1a,)%b,,, and a;, * b,, are found by loading SI, DI, and BX registers with the correct offset address
and calling the PAR PROD subroutine. CL is loaded with 02 since two Partial products belonging to a row of matrix A have to be found each time the PAR.
PROD subroutine is called. Then the partial products a,, x b, a,, X by}, 3 X
b,,, and a,, x b,, are found out by loading SI, DI, and Cil withl 1the éorrect values
and calling the PAR_PROD subroutine again to find the four partial products ff
the second row of matrix A in a similar manner. Finally, the two adjacent parti3
products are added in sequence to obtain the words X, Y, Z, and W, which ar¢ stored from the location RESULT in the memory. C e

-

Addressing Modes, Instruction Set, and Programming of 8086 161

Example 4.38
Write a program to add a profit of ¥50 to the purchase cost of ten items stored in an

array. The purchase cost of each item does not exceed ¥250. Find the selling price

of each item. Assume that the MASM assembler is used.

Solution:

Since the maximum purchase cost of each item is less than 255, byte-type data is

enough to store the purchase cost of the items. But when the profit is added, the

selling price may exceed %255, and hence word-type array is used to store the

selling price of the items.

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

PUR_COST DB FOH, 34H, 50H, ..

PROFIT DB 50
SELL_PRICE DW 10 DUP (@)
COUNT EQU 10

DATA ENDS

CODE SEGMENT

START: MOV AX, DATA.

MOV DS, AX

MOV SI, OFFSET PUR_COST

MOV DI, OFFSET SELL_PRICE

MOV CX, COUNT

AGAIN: MOV AX, ©00@H
MOV BX, ©0@eH
MOV AL, [SI]
MOV BL, PROFIT
ADD AX, BX
MOV [DI], AX
INC SI

ADD DI, 02

LOOP AGAIN

MOV AH, 4CH

INT 21H
CODE ENDS

END START

-
e

w
e

e

e

“
e

)

e

e

e

e

e

e

Data segment starts.

Store the purchase cost of

10 items.

Store the profit.

Store the selling price.

Assign a value of 10 to

COUNT.

Data segment ends.

Code segment starts.

Move segment address of DATA

to DS.

Move the content of AX to

DS.

Move the offset address of

PUR_COST to SI.

- Move the offset address of

SELL_PRICE to DI.

Move the value of COUNT to

£X:

Clear AX.

Clear BX. :

Move data in [SI] to AL.

Move value in PROFIT to BL.

Add AX and BX.

Store AX at [DI].

Increment SI to point to the

next data.

Increment DI to point to the

next storage location.

Execute the loop AGAIN, CX

times.

Return to DOS prompt.

Code segment ends.

Program ends.

162 Microprocessors and Interfacing

4.6 PROGRAM DEVELOPMENT PROCESS

Figure 4.16 illustrates the program development process. A word processor or

editor program is used to generate an ASCII file for the program module,

which is termed as a source file, for example, the source file named as (Xxx)

has an extension (Xxx.asm).

Command Reset mode loader

Source file l ‘ L SRR e

l l Y Executabl »

i 8 ; (=" |

Program . :

code Other

modules
]

Loader

Program - Memory

listing Library
map .

’Fig. 4.16 Program de;/e/lopmefit}‘pr’bckenss

There are two types of statements in an assembly language program (ALP):

(i) Instructions: These are translated into object codes by the assembler.

(i) Directives: These give direction to the assembler during the assembly

process, but are not converted into object codes.

The assembler program converts a source module (xxx.asm) file into an object

module, which is in hexadecimal file format (xxx.obj). Figure 4.17 depicts the

assembly operation process.

_E{— Pass 1 ‘l l____>‘ Pass 2. , Object |

Source
. _ code “

code \ /

Symbol for
indentifier table

Listing

(Mnemonics)

Instruction table

Directive

table

Location

counter

o e T - S ———

Fig.4.17 Assembly operation
N ————U T S e

Addressing Modes, Instruction Set, and Programming of 8086 163

The assembler scans the program statements one by one from left to right starting

with first statement to last statement indicated by an end statement. This process is

called a pass. Most assemblers are two-pass assemblers.

The purpose of first pass is to provide the assembler the location of labels. In

the first pass, location counter (LC) is used to construct a symbol table. During the

first pass, the assembler does the following:

(i) Passes the source code, calculating the offset for each line in the program

(i) Makes assumptions regarding undefined values

(iii) Does elementary error checking and displays error if necessary

(iv) Generates preliminary listing of source file

The purpose of second pass is to generate codes. The symbol table allows the

second pass to use the offset of a label to generate the ‘and’ addresses. During the

second pass, the assembler does the following:

(i) Scans the source code and converts it into machine codeusing the symbol

table to insert addresses as needed

(i) Attempts to reconcile the assumptions made in the first pass

(iii) Generates list file (if opted for)

(iv) Generates (.obj) and cross reference (.crf) files.

(v) Displays errors/warnings :

The linking process is initiated by activating LINK or TINK command. The
function of the linking process is to

(i) Combine separate object modules into one executable file

(ii) Resolve the references that are unresolved after second pass (due to public,

global, or external variables)

(iii) Produce a list file showing how the object files are linked

The unresolved references after second pass are resolved with the help of the

following assembler directives:

(i) PUBLIC directive is used to declare that the labels of code, data, or

entire segments are available to other program modules. It is placed in

the opcode field.

(i) EXTRN (external) directive is used for indicating that the labels are
external to a module. Label represents jump or data addresses. It may

represent a segment. This directive must appear both in data and code

segments to define labels as external to the segment. These statements

are used by linker to link modules together to create a program using

modular programming techniques. When segments are made public,

they are combined with other public segments that contain data with

the same segment name.

Libraries A library file stores a collection of related procedures. It is created

with the LIB command. They are collections of assembled (xxx.obj) object

files and each performs a procedure or task. They allow common procedures

to be collected in aplace so that they can be shared by the users. These files

have an extension (xxx.Lib) and are invoked when a program is linked with
the linker program.

164 Microprocessors and Interfacing

4.7 MODULAR PROGRAMMING

In a program it may be necessary to perform a particular task repeatedly. The

formulation of complex programs from numerous complex sequences, called

program modules, each of which performs a well-defined task, is referred to as

modular programming. Large programs are broken down into small segments

called modules. Each module implements a specific function and has its own code

segment (CS) and data segment.

Procedures are useful in such situations. A procedure is a group of instructions

that usually performs one task. It forms a reusable section of the software, which

is stored once in memory, but used as often as necessary. This saves memory

space and makes it easier to develop the software. A procedure is a sequence of

instructions, which can be employed repeatedly, within a longer program.

To make software development faster, it is better to develop and test in the form

of small program segments. This splitting does not cause any loss of capability to

the program. The advantages of procedures over single programs are as follows:

(i) It reduces the code length and memory requirement.

(ii) It reduces development time as the modifications in the procedures are

localized, which can be debugged and tested separately.

(iii) It supports modular programming methodology and improves the legibility

of a program as the flow of logic is well-defined.

(iv) Sinceitis possible to develop library of procedures for most commonly used

task, which can be shared by users from library, unnecessary duplication of

codes is avoided. A list of library modules may be the only requirement for

the user.

(v) Procedures provide aflexible and convenient way of exchanging information

between the application programs.

It is necessary for the programmer to define and initialize the stack area (in the

user memory) before a processor is expected to execute the procedure. Since the

stack area is used by the processor and user, an extra care is necessary while using

stack group of instructions. The data on the top of the stack can only be accessed

using stack pointer (SP). It is essential to indicate the size of the stack in terms of

number of bytes and starting address of the stack. The starting address of the stack

area is loaded in the stack segment register (SS) and address of top of the stack in

the SP.

A sample code for stack definition and initialization is as follows:

(1) STACK_SEG ; Define a stack segment.

STACKDW 50 DUP (@) ; Size is 50 words.

STACK_TOP LABEL WORD ; Variable name STACK_TOP refers

to the stack.

Define a code segment.

Initialize CS register.

(i1) CODE_SEG

MOV AX, CODE_SEG

MOV CS, AX

MOV AX, STACK_SEG

MOV SS, AX

LEA SP, STACK_TOP

-

-

Initialize SS register.

e

Initialize top of the stack.

-

Addressing Modes, Instruction Set, and Programming of 8086 165

Example: If stack starts at - 6000H

(SS) = (6000H) and (SP) = (0050)
In order to handle the procedures, operations required by the processor systems

are invoking or calling a procedure (called program) and returning from the

module back to the main program (calling program).

In addition, it is necessary to provide input parameters to a procedure when it

is called and to return back to the result or output parameter after execution. The

number of input/output parameters passed to and from the procedure can vary.

Even the parameters to be passed may be control/status information, which may

not have a peripheral for data transfer.

Since the main module and procedure use processor registers/RAM without

any difference, they can be used to hold the input as well as the output parameter

information. However, it is important to take care of the data before and after

calling procedural module. Original input data must be saved if the required

location is modified by the module. This method is adequate as long as the amount

of data/information to be exchanged is small. To exchange large amounts of data,

information may be stored in memory location and it is necessary to pass the

address pointer to the module. To reduce overheads, stack may also be used for

parameter passing. A procedure may be classified as follows:

(i) Intra-segment procedure (near): These procedures are in the same segment

of the main program module. They are identified by near directive.

(ii) Inter-segment procedures (far): These procedures are not in the segment of

the main program module but in some other segment. They are identified by

far directive.

(iii) Reentrant procedures: They define a procedure that can be interrupted,

used, and reentered without losing or writing over anything. They push all

the registers and flags used in the procedure and use only registers or the

stack to pass parameters.

(iv) Recursive procedures: These procedures call themselves and are often used

to work with complex data structures called trees. Recursion is a powerful

tool that allows us to express our solution elegantly and can be used as an

alternative to iteration as solutions methods for problems such as binary

search, quick sort, as well as Fibonacci series. A recursive procedure calls

itself, either directly or indirectly through another procedure.

In most cases, recursive versions tend to be inefficient as they induce more

overheads to invoke and return from procedure calls. They may require duplicate

computation. They have excessive demands for more memory or stack area.

The instructions used to handle procedures are as follows:

(i) CALL

(i) RET

(iii) RETF—return from a far procedure

(iv) RETN—return form a near procedure

4.7.1 CALL Instruction

When executed, the CALL instruction performs the following two operations:

166 Microprocessors and Interfacing

(1)

(i)

4.7.1.

(@)

(i1)

4.7.1.

@)

(i1)

Stores the return address to which the procedure will return to after
execution

Modifies the contents of the instruction pointer (IP)/CS register so that it

points to the starting address of the procedure, depending upon whether it is

an intra-segment call or an inter-segment call

| Direct Call

If the procedure is in the same segment: The processor produces the starting

address of the procedure by adding a 16-bit signed displacement contained

in the instruction to the contents of the IP. If the displacement is negative, it

is represented in 2’s complement sign-and-magnitude form.
IP « Meml6

(SP) « Return address

If the procedure is in another segment: The IP and the CS register contents

are changed to transfer control to the procedure. The information of new

value of CS/IP is specified as bytes (4—5) and (2-3) in the instruction. It is

to be noted that as usual low byte is written first.

CS « New seg-base (Bytes 4-5)

IP « Offset (Bytes 2-3)

(SP) <« Return address °

2 Indirect Call

If the procedure is in the same segment: The processor produces the starting

address of the procedure by adding a 16-bit signed value specified by any of

the general purpose register in the instruction to the contents of the IP.
IP < Meml6

(SP) « Return address

If the procedure is in another segment: It replaces the CS and the IP
registers contents with 16-bit values from memory locations whose address
is specified by MOD byte in the instruction. The first word from specified
memory location is placed in the IP, and the next word is placed in the CS
register.

Example:

CALL DWORD PTR [DX]
CS « New seg-base address [BX+3], [BX+2]

IP « [BX+1], [BX] |

(SP) «— Return address

4.7.2 RET Instruction

The RET is the last instruction in the procedure. At the end of the procedure, the

value saved in the stack is loaded back in the IP register to return execution to the
calling program so that the control is transferred to the main line program. The

assembler will automatically code a near RET for a near procedure and a far RET

for a far procedure. Two more instructions (RETF and RETN) are provided for

return from far/near procedure.

(1) RFTF at the end of the procedure copies return values from the stack back

Addressing Modes, Instruction Set, and Programming of 8086 167

into the IP, and CS registers to transfer control back to the next line in the

main program.

IP « (word from top of the stack)

CS « (word from top of the stack + 2)

It may add a 16-bit immediate number contained in the instruction code to

SP.

(i) RETN at the end of the procedure copies a word from the top of the stack

to the IP register.

IP « (word from top of the stack)

It may add a 16-bit immediate number contained in the instruction code to

SP.

4.7.3 Macro

A macro is a group of instructions that performs a task. It is inserted in the program

during the assembly process. Macro instructions are placed in the program by the

assembler at a point where they are invoked by using their name. A macro is a
sequence of code that needs to be written only once, butwhose basic structure can

be repeated several times within a module by giving it a name.

The code to be repeated is called the prototype code, and the prototype code

along with the statements for referencing and terminating is called the macro

definition. The procedure for using a macro is to give macro definition and then

declare it at various appropriate points within a program by placing a statement

that includes the macro’s names at these points. These statements are known as

macro calls. When a macro call is encountered by the assembler, the assembler

replaces the call with the macro’s code. It is preceded by a macro definition and

completed by a macro terminator.
The macro and endm direetives are used to define a macro sequence. The

first statement of a macro contains the name of the macro and any parameters
associated with it. It is termed as a definition. The last statement endm is

called a terminator. All the statements between name and terminator define a

macro body. When macro is to be used its name is written. This is called macro

call. The assembler replaces the call with the code. This is called macro expansion.

Example:

PUSH_ALLMACRO ; Definition

PUSH AX ; Macro body

PUSH BX

PUSH CX
PUSH DX

PUSH DI

PUSH SI

ENDM ; Terminator

Macros may contain local variables (one which is used in the macro body, but
is not available outside the macro). To define a local variable, we use the LOCAL

directive. Table 4.9 depicts a comparison of procedure and macro features.

168 Microprocessors and Interfacing

Table 4.9 Comparison of features of procedure and macro

i‘TifiProcedure ,
Called durmg execut1on

Assembled and executed separately

Reduces memory requirements

May be anywhere and in any segment

Requires a special call statement

Program control is transferred.

Can be used by any assembler

Parameters are passed through register,

memory, or stack.

Machine code is put only once in

memory.

Inserted dunng assembly process

Cannot be executed separately

No change in memory requirements

It must be defined in the same program.

Using the name is enough

Program control is not transferred.

_Used if assembler has a support for

MACRO features

Parameters are passed as a part of the

statement that calls MACRO.

Machine code is generated each time

when called.

Accessed by CALL and return

mechanism during program execution

Accessed during assembly process when

a name given to it is defined

4.7 .4 lllustrative Example

Write a program segment to find the LCM of two numbers using a procedure to

find the HCF/GCD of two numbers.

Solution:

Algorithm:

An algorithm for finding HCF/GCD of two numbers is as follows

Step 1: Find remainder of the larger number divided by the smaller number
Dividend = larger number

Divisor = smaller number

Step 2: Ifrem#0

Carry out division; where

Dividend = divisor

Divisor = remainder

Go to Step 2.

Else

Stop the process; divisor is GCD or HCF.

Program segment:
LCM of two numbers can be found using the formula (LCM = x1 x x2/ HCF).
DATA

X1 DWXXXX

X2 DWYYYY

LCM DW 2 DUP (@)

HCF DW DUP(?)

ASSUME DS:

SS:

LCM:

REPT:

DIVAX_BX:

BIG_Bx:

EXIT:

Addressing Modes, Instruction Set, and Programming of 8086 169

STACK_SEG
STACK DW5@ DUP(®)

3

J

STACK_TOPLABEL WORD ;

CODE_SEG
DATA_SEG
STACK_SEG
MOV AX, CODE_SEG
MOVCS, AX
MOV AX, STACK_SEG
MOVSS, AX
LEA SP, STACK_TOP
MOV AX, DATA
MOV DS, AX
MOV AX, X1
MOVBX, X2
CALLHCF
MULBX
MOVBX, HCF
DIV BX
MOV LCM, AX
MOV LCM+2, DX
END LCM
HCFPROCNEAR
PUSH AX
PUSH BX
CMP AX, BX
JE EXIT
JB BIG-BX
MOV DX, ©000H
DIV BX
CMP DX, ©000H

JE EXIT
MOV AX, DX

JMPREPT

XCHG AX, BX

JMPDIVAX_BX

MOVHCF, BX

POP BX

POP AX

RET

HCF ENDP

-

3

-

)

Define a stack segment.

; Size is 50 words.

Top of the stack can be referred

using variable name STACK_TOP.

Define a code segment.

; Initialize CS register.

Initialize top of the stack.

Initialize code segment register.

Find HCF of two numbers (x1 and x2)

Save lower word of LCM.

Save upper word of LCM.

Define a procedure with a name (HCF).

Indicates end of a procedure

170 Microprocessors and Interfacing

POINTS TO REMEMBER

e The addressing modes in the 8086 are classified as register, immediate, data

memory, stack memory, and program memory addressing modes.

e The data memory addressing modes are classified as direct, base, index, base plus

indexed, base-relative, index-relative, and base-relative plus index addressing modes.

e The program memory addressing modes are classified as direct, relative, and

indirect addressing modes.

= The 8086 instructions are classified as data transfer, arithmetic, logical, shift/rotate,

flag manipulation, control transfer, string, and machine control instructions.

The assembly language programming of the 8086 can be done with a line assembler

or an assembler.

= Assembler directives are used while writing an assembly language program that is

to be assembled by using an assembler.

e The formulation of complex programs from numerous complex sequences, called

program modules, each of which performs a well-defined task, is referred to as modular

programming.

It is possible to develop a library of procedures for most commonly used tasks, which

can be shared by users from library.

Procedures provide a flexible and convenient way of exchanging information between

the application programs.

e It is necessary for the programmer to define and initialize the stack area in the user

memory area before a processor is expected to execute the procedure. Since the stack

area is used by the processor and user, extra care is necessary while using stack group

of instructions.

The assembler automatically codes a near RET for a near procedure and a far RET for

a far procedure.

A macro is a group of instructions that performs a task which is inserted in the program

during the assembly process.

KEY TERMS

Addressing mode This mode is the way in which the microprocessor addresses the

operands while fetching data during the execution of an instruction or the way in which

the microprocessor calculates the memory address from where the next instruction to

be executed is taken, in the case of jump or call instructions.

Assembler It is a software that is used to convert assembly language programs into

machine language programs. ‘

Assembler directives These are commands to the assembler, which give various

details in a program such as the required storage class for a particular constant or

variable (byte, word, or double word), logical name of the segments (CODE, STACK,

or DATA segment), type of procedures or routines (FAR, NEAR, PUBLIC, or EXTRN),

end of a segment (ENDS), and macro definition (MACRO, ENDM).

Inter-segment jump This refers to the operation of jumping from one code segment

to another.

Intra-segment jump This refers to the operation of jumping within the same code

segment.

Library It is a collection of object files created with the LIB command and has

extension .lib.

Addressing Modes, Instruction Set, and Programming of 8086 171

Line assembler It converts each line in an assembly language program into the

corresponding machine language program, as soon as it is entered in the system.

Macro A macro is a sequence of code that needs to be written only once, but whose

basic structure can be repeated several times within a module by giving it a name.

Procedure A procedure is a group of instructions that usually performs one task,

which is stored once in memory, but used as often as necessary.

N

—

(V
8]

REVIEW QUESTIONS

. What is the function of segment override prefix? Give two examples.

. What is the difference between inter-segment and intra-segment jumps in the
80867

. What is the difference between short and near jumps in the 8086?

. What is the function of the assembler directives FAR PTR, NEAR PTR, and

SHORT PTR?

. Write the different steps performed by the 8086 when it executes the instructions
PUSH CX and PUSH [SI].

. What are the different uses of stack in a microprocessor?

. Write the different steps performed by the 8086 when it executes the instructions
POP CX and POP [BX].

. Write the operation performed by the 8086 when it executes the XL AT instruction.
What is the use of XLAT?

. What is the difference between fixed port and variable port addressing in the
80867

. Which instructions of the 8086 are used to communicate with the I/O devices in

the I/O-mapped I/O scheme?

. Write the function of the assembler directives BYTE PTR and WORD PTR.

. What is the difference between the MUL and IMUL instructions in the 80867

. What is the difference between the DIV and IDIV instructions in the 80862

. What are the default operand and result locations for 8- and 16-bit data
multiplication instructions in the 80867

. What are the default operand and result locations for 8- and 16-bit data division
instructions in the 808672

. What is the function of the DAA instruction in the 80862 ;

. Write the operations performed when the instruction AAD is executed in the
8086.

. Which instructions of the 8086 are used to set and reset the D and I flags?

. What is the range of the relative address that is used in the conditional jump
instructions?

. What is the function of the INT n instruction? Which instruction of the 8086 is

used to return from the interrupt service routine to the main program?
. What are the operations performed when the instructions LOOP and LOOPNE are

executed in the 80867?

. What is the function of the D and I flags in the 80867
. Which registers are used as offset registers and segment registers for pointing to

the source and destination during the execution of the string instructions in the

80867
. What is the function of the REP and REPE prefixes used with string instructions

in the 80867

172 Microprocessors and Interfacing

2%

36.
3

SN

[

—

N

What is the function of the LOCK prefix used with an 8086 instruction?
. What is the function of the assembler and assembler directives?
. What is the function of the assembler directives ORG and DB?
. What is a macro? Give an example.
. What is the difference between a macro and a subroutine?
. What is the need for passing parameters to a macro?

. Describe the different data memory addressing modes in the 8086 giving an
example for each.

. Describe the different program memory addressing modes in the 8086 giving an

example for each.

. Explain the stack memory addressing modes in the 8086 giving examples.

34. Explain the different data transfer instructions in the 8086 giving examples for

each.

. Explain the different arithmetic instructions in the 8086 giving examples for

each.
Describe the different logical instructions in the 8086 giving examples for each.

Write the function of assembler directives that are used to define variables and

constant data with an example for each.

_ What are the assembler directives that are related to segment declaration? Explain

with examples. _

Write the function of assembler directives that are related to code location, with

an example for each.

. What are the assembler directives that are related to procedure declaration?

Explain with examples.

. Explain the function of the assembler directives PTR, TYPE, SHORT, GLOBAL,

and LOCAL with an example for each.

PROGRAMMING EXERCISES

. Write an 8086 assembly language program to find the sum of 100 words present
in an array stored from the address 3000H: 1000H in the data segment and store
the result from the address 3000H: 2000H.

. Write an 8086 assembly language program to find the prime numbers among
100 bytes of data in an array stored from the address 4000H: 1000H in the data
segment and store the result from the address 4000H: 3000H.

. Write an 8086 assembly language program to find the number of occurrences of
the character ‘A’ among 50 characters of a string-type data stored from the address
5000H: 1000H in the data segment and store the result in the address 2000H:
5000H. |

. Write an 8086 assembly language program to check whether the two strings, one
stored from the address 2000H: 1000H in the data segment and the other stored

from the address 2000H: 3000H, are equal or not. If they are equal, store the value
00H in AL. Otherwise, store the value 01H in AL.

. Write an 8086 assembly language program to find the number of bytes that have
the hexadecimal digit ‘F’ in their upper nibble among 100 bytes of data in an array
stored from the address 8000H: 1000H in the data segment. Store the result in the

address 8000H: 3000H.
. Write an 8086 assembly language program to complement the lower nibble of

16.

.3

Addressing Modes, Instruction Set, and Programming of 8086 173

each byte in 100 bytes of data in an array stored from the address 8000H: 1000H
in the data segment. Store the result from the address 8000H: 3000H.

. Write an 8086 assembly language program to add two matrices having word-type

data in each element of the matrix. Assume that each element of the result after

addition of the corresponding elements of the matrix is also word-type data. The

data for one matrix is present in an array stored from the address 8000H: 1000H

in the data segment, and the corresponding data for another matrix is present in an

array stored from the address 8000H: 2000H in the data segment. The result is to

be stored from the address 7000H: 1000H.
. Write an 8086 assembly language program to multiply two square matrices

having word-type data in each element of the matrix. Assume that each element

of the resultant matrix is of double word type. The data for one matrix is present

in an array stored from the address 8000H: 1000H in the data segment, and the

corresponding data for the other matrix is present in an array stored from the

address 8000H: 1000H in the data segment. The result is to be stored from the

address 7000H: 1000H.

. Write an 8086 assembly language program to find the factorial of the given byte of

data using a recursive algorithm. The result is to be stored in the address 7000H:

1000H.
. Write a non-recursive assembly language subroutine for the 8086 to evaluate the

number F =F, ,+F, , forany given n > 1 given that ;= 0 and ', = 1. Consider

the number # in such a way that F, is not more than a 16-bit number.

. Solve problem 1 assuming that the program is to be assembled by an assembler.

. Solve problem 7 assuming that the program is to be assembled by an assembler.

. Solve problem 10 assuming that the program is to be assembled by an assembler.

. Write a procedure chg_to exchange the contents of two memory locations. Write a

main program which accepts a string terminated by full stop (.), from the keyboard,

reverses it using chg and displays both the strings on the terminal.

. Write a program segment to accept a string from the keyboard consisting of digit and

non-digit characters and display the sum of the digits present in the input string.

Write a procedure str_match that receives two pointers to strings: string and substring

and searches for substring in string and returns the starting position of the first match

if operation is successful else (FF) is returned.

THINK AND ANSWER

Let the content of the different registers in the 8086 be as follows: DS = 1000H,

SS = 2000H, ES = 3000H, BX = 4000H, SI = 5000H, DI = 6000H, and BP =

7000H. Find the memory address/addresses from where the 8086 accesses the

data while executing the following instructions: /

(i) MOV AX, [BX] (vii) MOV AX, [BX + DI
(i) MOV BX, [SI] (viii) MOV BX, [BP + DI + 5]

(iiiy MOV CX, [BP] (ix) MOV AH, [BX + 10H]
(iv) MOV AL, [DI] (x) MOV CX, DS: [BP +14]
(v) MOV BH, SS: [SI] (xi) MOV BX, [SI - 5]
(vi) MOV CX, ES: [DI] (xii) MOV AX, [BX + 10]

Which registers of the 8086 are modified while executing inter-segment and intra-
segment jump instructions?

174 Microprocessors and Interfacing

3. Is it possible to exchange the content é)f two n;.em(;rélviloc?ations or the content of
isters using the XCHG instruction’ y? :

4. ?fhzefigur (:fi”l;t; = IOO%H and SI = 2000H, what is the value present in CX
after the 8086 executes the instructions LEA CX, [BP + SI], and‘ LEA QX, [§I].

5. Isit possible to use two memory operands in the ADD and SUB 1nstm§tlon§.
6. Is the carry flag affected by the execution of the INC and DEC instructions in the

8086?
7. What is the difference between SUB and CMP instructions?
8. What is the difference between TEST and AND instructions? .
9. Which instructions of the 8086 are used to handle procedure or subroutine?

10. What is the difference between arithmetic and logical right-shift?
. What are the common applications of left-shift and right-shift operations?

12. When is the CL register used with the shift and rotate instructions?
13. Consider the following pair of partial programs:

(i) MOV AX, 4000H (ii) MOV AX, 4000H ADD AX, AX ADD AX, AX ADC AX, AX RCLAX, 1 JC DOWN
JC DOWN

AX after execution of the third instruction and
tch the next instruction after execution of the

For each case, what is the data in
from where does the processor fe
fourth instruction?

14. How is the WAIT instruction used to coordinate the operation between the 8086 and the 80877

Ir\u()’[{'

O

8086 Interrupts

LEARNING OUTCOMES

After studying this chapter, you will be able to understand the following:
» Different types of interrupts in the 8086, such as hardware and software interrupts
* Processing of an interrupt by the 8086

* Interrupt vector table and interrupt vectors in the 8086

* Functions of the different interrupts in the 8086

¢ Priority among the interrupts in the 8086

~ * Writing interrupt service routines

* Afew BIOS (basic input/output system) interrupts or function calls

5.1 INTRODUCTION

The 8086 allows normal program execution to be interrupted in one of the
following ways:

(1) An external signal given through one of its interrupt pins (INTR/NMI)
(i) A special instruction in the program, such as the software interrupt

instruction (INT N)

(iii) The occurrence of an error condition such as divide-by-0
(iv) A trap interrupt

After receiving the interrupt, the microprocessor stops the execution of the
current program and calls a procedure called interrupt service routine (ISR),
which services that interrupt. The IRET instruction executed at the end of the
interrupt service routine returns the execution to the interrupted program.

5.2 INTERRUPT TYPES IN 8086

There are 256 interrupt types in the 8086. Among these, a few interrupt types are
assigned for sf)écific interrupts such as the divide-by-0 interrupt, trap interrupt, and
the NMI interrupt. A few interrupt types are reserved by Intel for future expansion.
The programmer is free to use the remaining interrupt types according to his/her
requirement. \

An 8086 interrupt can come from any one of the following four sources:
(i) An external signal applied to the non-maskable interrupt (NMI) pin or to

the interrupt (INTR) pin. An interrupt caused by a signal applied to one of
these inputs is called @7fw—fifé7fiter .

—(ii) The execution of the ifistruction INT n, where n is the interrupt type that can
take any value between 00H and FFH. This is called@@fi@l‘@gg\

(i) An error condition such as divide-by-0, which is produced in the 8086 by
the execution of the DIV/IDIV instruction.

(iv) A trap interrupt.

2

9 Sey

g~
Lz < Figure 5.1 shows the processing of an

176 Microprocessors and Interfacing

5.3 PROCESSING OF INTERRUPTS BY 8086

After executing each instruction in a program, the 8086 checks if any interrupt

has been requested. If an interrupt has been requested, the 8086 processes it by

performing the following series of steps:

(i) Pushes the content of the flag register onto the stack to preserve the status

of the interrupt flags (IF) and trap flags (TF), by decrementing the stack

pointer (SP)yby 2~

(ii) Disables the INTR interrupt by clearing IF in the flag register

(iii) Resets TF in the flag register, to disable the single step or trap interrupt

(iv) Pushes the content of the code segment (CS) register onto the stack by

decrementing SP by 2

(v) Pushes the content of the instruction poin

decrementing SP by 2
' .

vi) Performs an indirect far jump to the start of the interrupt service routine

ISR) corresponding to the received interrupt

ter (IP) onto the stack by

interrupt by the 8086.

S / =
Push flag register
Clear IF and TF

Interrupt service
routine (ISR)

Save register contents
in stack

/ } Program for the

l/ Push CS and IP

Load CS and IP

\ with ISR address

Pop IP and CS
Pop flag register

i Dl akie F.gSI 0 flPrfi;cesfiing of an mterrupt by the 8086

task to be done

Retrieve register
: Lcontents from stack

Y IRET

3086 does an indirect far jump to the start

of the ISR of the received interrupt. When the 8086 responds to an interrupt, it

refers to four memory locations present in the interrupt vector table (IVT), to get

the new values of CS and IP. These memory locations are used to find the starting

address of the ISR of the received interrupt in the memory. In an 8086 system, the

first 1 KB of memory f{;o_mfthg addresses 00000H—003FFH is set aside as a table

called interrupt vector table (IVT) for storing the interrupt vectors (IVs). Each

interrupt vector indicates the starting address of the ISR of a particular interrupt

in the memory. It contains four bytes, in which the lower two bytes are called

offset and the upper two bytes are called segment. The offset part of the interrupt

vector is loaded in the IP register and the segment part is loaded in the CS register.

While using interrupts in the 8086, the ISR of the different interrupts must be

initially stored in the memory at the desired locations. Then the interrupt vectors

corresponding to the various interrupts are stored in the IVT. For example, if the

ISR of interrupt type O is stored in the memory starting at the address 30000H,

the segment part of the interrupt vector is entered as 3000H and its offset part is

Now, let us see in detail how the

8086 Interrupts 177

entered as 0000H in the IVT. When these two values are loaded in the CS and

IP registers, respectively, the 8086 calculates the address of the next instruction

to be executed using the relation CS x 10H + IP, and obtains 30000H, which is

the starting address of the ISR of interrupt type 0. Since four bytes are required

to store the CS and IP values for each ISR in the IVT, and the IVT must hold the

interrupt vector for a maximum of 256 interrupts, the maximum size of the IVT
is 1 KB. Each interrupt vector is also called interrupt pointer and the IVT is also
referred to as the interrupt pointer table.

Figure 5.2 shows the 256 interrupt vectors arranged in the IVT in the memory.

The IP value is inserted as the lower-order word of the interrupt vector and the

CS value is inserted

as the higher-

order word of the

interrupt < vector. [REEENREIE G Has [
Each interrupt \Avggfgfs'?ztg%upt 003FCH -
vector is identified ’

by a number called

its fype, which is

an 8-bit number.

Address

003FFH | Type FFH vector (available)

~
~

Type 21H vector (available)

Type 20H vector (available)

Type 1FH vector (reserved)

R ervedmterrupt
Hence the different = vectors(27) ki T
Interrupt types - e Sk 00014H | Type 05H vector (reserved)
vary: from 0 t0:255 B U L aiE L e ,

i 000101 | Type 04H vector (overflow)

fOOH s tindll D e : Type 03H vector
owest five - types vestors(s) | 0000CH| (1-byte INT instruction)
are dedicated to 0000BH

. s &y DR R OOOOSH Type 02H Vector (NMI)

specific interrupts ‘
h he divi 3 Ll S 00007H Type 01H vector

suc a.s the divide- . » 00004H (Trap or single step)
by-0 interrupt, the CS e _[00003H e

i T ol I L_00002H ype vector
t«‘.mgle step (trap) | TN 00001H (Divide-by-0 error)
nterrupt, the NMI L—— 1 L—-00000H L =

interrupt, the one- < ¥4 =0 daas 2 8 bits
byte INT instruction

interrupt, and the

overflow interrupt. Interrupt types 5-31 are reserved by Intel for use in advanced
microprocessors such as the 80286 and the 80386. The upper 224 interrupt types

are available for the programmer to use for hardware/software interrupts.
The interrupt vector for each interrupt type requires four memory locations.

For example, the interrupt vector for type 00H occupies the memory locations

00000H-00003H, the interrupt vector for type O1H occupies the memory

locations 00004H—00007H, and so on. When the 8086 responds to a particular

type of interrupt, it automatically multiplies the type of that interrupt by 4 to find

the desired address in the vector table, from where it takes the interrupt vector

and loads it in the IP and CS registers. For example, if the interrupt type 03H is

currently received by the 8086, it goes to the memory address given by 03H x 04H

= 000CH, to get the interrupt vector for type 03H.

- Flg 52 'In'té‘t“'rup‘t» \}éctb\f table ifi\thé 8086

178 Microprocessors and Interfacing

5.4 DEDICATED INTERRUPT TYPES IN 8086

The lowest five interrupt types in the 8086 (i.e., types 00H—04H) are dedicated to

specific interrupts such as the divide-by-0 interrupt, the single step (trap) interrupt,

the NMI interrupt, the one-byte INT instruction interrupt, and the overflow

interrupt. Let us now discuss these interrupt types in detail.

5.4.1 Type 00H or Divide-by-zero Interrupt

Whenever the quotient from a DIV or IDIV operation is too large to fit in the result

register, which occurs while dividing a number by 0, or if the divisor is very small

compared to the dividend, the 8086 automatically generates a type 0 interrupt.

5.4.2 Type 01H, Single Step, or Trap Interrupt

The type 1 interrupt-is-used for single step operation, in which the 8086 executes

one instruction in the main program and then executes the ISR of the trap interrupt.

In this ISR, we write the instructions to verify the contents of certain registers and

memory locations, and display them in an output device, such as a seven-segment

display or CRT (cathode ray tube) monitor. If the expected data are present in the

registers and/or memory locations, the 8086 can be made to proceed to the next

instruction. The 8086 trap flag and type 1 interrupt response make it easier to

implement a single step feature in an 8086-based system. If the trap flag in the 8086

is set, the 8086 automatically generates a type 1 interrupt after each instructionin

the main program is executed. After executlng the IRET instruction in the I SR , the

8086 again goes to execute the next instruction in the main program.

5.4.3 Type 02H or NMI Interrupt

The 8086 generates a type 2 interrupt automatically when it receives a low-to-high

transition on its NMI pin. The NMI interrupt cannot be disabled by software and

hence it is used to inform the 8086 that some condition in an external system must

be taken care of.

One of the common uses of the type 2 or NMI interrupt is to save important

data in the RAM in case of a system power failure. An external circuitry detects the

failure of the power given to the system and sends an interrupt signal to the NMI

input of the 8086. Due to the large filter capacitor present in most power supplies,

the DC power to the 8086 remains for a few ms (say 25 ms or 50 ms) after the AC

power has failed. This time is sufficient for the NMI interrupt’s ISR to copy the

important data used in the program to a RAM chip with battery-backed power

supply. When AC power is restored, the data stored in the battery-backed RAM

can be retrieved and the program resumes execution from where it stopped.

The NMI interrupt is also used to sense hazardous situations such as fire,

smoke, and unsafe pressure or temperature limits in an industrial environment,

when the 8086 is used to control the industrial processes. In these applications,

an appropriate sensor is used to detect the abnormal condition and its output is

connected to the NMI interrupt. Whenever the NMI interrupt is activated, the 8086

runs the NMI interrupt’s ISR, which is used to issue an alarm signal and shut off_

the process if needed. »

I

Co W e €

8086 Interrupts 179

5.4.4 Type 03H or One-byte INT Interrupt

The type 3 interrupt is produced by the execution of the INT 03H instruction. It is
a single-byte instruction, which is mainly used to implement a breakpoint function
in the 8086 system, for debugging a program. When we insert a breakpoint in the

program, the 8086 system executes the instructions up to the breakpoint and then

executes the ISR corresponding to the breakpoint interrupt. Unlike the single-step

technique in which the execution is stopped after each instruction, the breakpoint
technique allows us to execute all the instructions up to the inserted breakpoint in
the main program. The processor then goes on to execute the ISR of the breakpoint

interrupt.

In an 8086 system, the breakpoint is inserted in the main program at a

particular place by temporarily replacing the instruction byte at the address with
the instruction byte CCH, which is the opcode of the INT 03H instruction. When
the 8086 executes the INT 03H instruction, the type 3 interrupt is produced. In
the type 3 interrupt’s ISR, all the register contents are saved in the stack. Then,

depending on the system requirement, the desired register and/or memory location

contents may be sent to a CRT display for debugging, while the system waits for a

command from the user to proceed further.

5.4.5 Type 04H or Overflow Interrupt

The 8085 overflow flag (OF) is set if the result of an arithmetic operation on signed

numbers is too large to be stored in the destination register or memory location.

There are two ways to detect and respond to an overflow error in a program:

(i) Place the jump on overflow (JO) instruction immediately after the arithmetic

instruction. If the overflow flag is set due to the result of the arithmetic

instruction, execution is transferred to the address specified in the JO

instruction. At this address, an error routine that responds to the overflow in

the required manner can be placed.

(i) Place the interrupt on overflow (INTO) instruction immediately after the

arithmetic instruction in the program. If the overflow flag is not set when

the 8086 executes the INTO instruction, it is treated as a NOP (no operation)

instruction. However, if the overflow flag is set, the 8086 generates a type

4 interrupt after executing the INTO instruction. Instructions in the ISR

~ produce the desired response to the error condition. The advantage of using

the INTO instruction is that the type 4 interrupt’s ISR can be easily accessed

from any program in a multitasking environment.

5.5 SOFTWARE INTERRUPTS—TYPES 00H-FFH

The INT instruction of the 8086 can be used to generate any one of the 256 possible

interrupt types, which are called software interrupts. The desired interrupt type is

specified as part of the INT instruction. For example, the INT 21H instruction
causes the 8086 to generate an interrupt of the type 21H. The response of the 8086

to the software interrupt is same as that for any of the interrupt types described in

Section 5.4.

In general, when the 8086 executes the INT » instruction where » is the

180 Microprocessors and Interfacing

interrupt type, the 8086 pushes the content of the flag register, CS, and IP values

into the stack register, and clears IF and TF. Then the 8086 goes to the memory

address (given by 4 x n) to obtain the interrupt vector for the type » from the IVT

and loads it in the IP and CS registers. This makes the 8086 execute the ISR for the

interrupt type n. The IRET instruction at the end of the ISR makes the 8086 return

to the main program to the instruction next to the INT n instruction, to continue the

execution of the main program.

Software interrupts produced by the INT instruction have the following uses:

(1) Inserting break points in a program for debugging. The INT 03H instruction

is used for this purpose.

(i1)OTesting the function correctness of various ISRs. For example, the INT 02H

instruction can be used to test the ISR for the NMI interrupt, without giving

any input signal to the NMI pin of the 8086.

5.6 INTR INTERRUPTS—TYPES 00H-FFH

The 8086 INTR interrupt allows an external signal to interrupt the execution

of a program. The INTR interrupt can be masked (disabled) so as to not cause

an interrupt. If IF is set, the INTR interrupt is enabled and if IF is cleared,

INTR is disabled. IF can be set and cleared at any time, using the STI and

CLI instructions, respectively. After the 8086 is reset, IF is set using the STI

instruction, if the user needs to use the INTR interrupt. The INTR interrupt is

activated by a high level (i.e., logic 1) signal in the INTR pin. The minimum

duration for which the INTR signal must be kept high to be recognized by the

8086 is equal to the execution time of the instruction that takes longest time for

execution. This is because the 8086 tests the INTR signal during the last clock
cycle of an instruction cycle.

If the INTR input is high and IF is set, the 8086 is interrupted. As part of the

response to the interrupt, the 8086 automatically clears IF. This is done for the
following two reasons:

(1) To prevent a signal on the INTR input from interrupting a higher priority

ISR in progress. If needed, IF can be set at the beginning of the lower

priority ISR, so that 8086 can be interrupted by an INTR interrupt while
executing that ISR.

(i) To make sure that a signal in the high state, existing for a sufficient duration
~ (say, a few ps), on the INTR input, does not cause the 8086 to interrupt it

again before completing the execution of its ISR.

The IRET instruction at the end of the ISR restores IF and TF to their original
value. When the 8086 processes an INTR interrupt signal, its response is slightly
different from its response to other interrupts. For an INTR interrupt, the interrupt

type is sent to the 8086 from an external hardware device such as a programmable

interrupt controller (the 8259) or a tri-state octal buffer (IC 74244) connected to

an 8-bit DIP switch having the specific interrupt type.

Figure 5.3 shows the 8086 INTR interrupt’s acknowledgement cycle.

Figure 5.4 shows the simplified diagram for interfacing the 8259 with the 8086.

8086 Interrupts 181

’ Ti l T2 | F3 ' T4 ‘ Tl I T2 l T3 l T4 ’

~ From 8086 to
Lo 8259 A0r 74244

< ADO \. Float / Type vector from >

ADIE \ 8259 or 74244

Fig.5.3 8086 INTR interrupt’s response

When the 8259 receives an interrupt signal on one of its IR inputs (IRO-IR7), it

sends an interrupt signal (INT) to the INTR input of the 8086. If the INTR interrupt

is enabled (in the 8086) by setting IF, the 8086 responds as shown in Fig. 5.3.
The 8086 does two interrupt acknowledge cycles when it receives the INTR

INTR < INT ey
| \ le——IR1

T ‘ Data bus |
AD7 | A /- D7

8086 & / po 8259
: e GhADOLY T T PTG

A ‘ TN le—IR7
: Interrupt mputs |

V Flg 5.4 Slmp|lfied d|agram of mterfacmg the 8259 wnth the 8086

mterrupt During the first acknowledgement, the 8086 floats the data bus AD15—

ADO and sends out an Interrupt Acknowledgement (INTA) pulse through its INTA

pin. This pulse instructs the 8259 to perform certain internal operations to get the

interrupt type related to the interrupt received by it. The interrupt type for the IR0

interrupt in the 8259 is pre-programmed in it during its initialization process. The
interrupt type for successive interrupts in the 8259 (IR1, IR2,.. .IR7) is one greater

than the interrupt type of the previous interrupt. For example, if the interrupt type
assigned to IR0 is SOH, the interrupt type assigned to IR1 is S1H, that assigned to

IR2 is 52H, and so on. During the second acknowledge cycle, the 8086 sends out

another pulse on its INTA pin. In response to this second INTA pulse, the 8259
places the interrupt type on the lower eight lines of the data bus (AD7-ADO),

which is read by the 8086. After receiving the interrupt type, the 8086 goes on to

execute the ISR of the received interrupt type. The advantage of using the 8259

with the 8086 is the ability of the 8086 to handle multiple hardware interrupts and

not merely two (INTR and NMI).

182 Microprocessors and Interfacing

While using the tri-state octal buffer (IC 74244) with its inputs connected to an

8-bit DIP switch and outputs connected to the data bus (AD0-AD?7), the required

interrupt type is set in the 8-bit DIP switch and the INTA signal of the 8086 is
connected to the enable inputs of the octal buffer (1G and 2G). When the 8086

receives the INTR interrupt, it makes INTA low, which enables the octal buffer IC.

The interrupt type, which was set in the 8-bit DIP switch, is now placed in the data

bus (D7-D0) and the 8086 reads it.

5.7 PRIORITY AMONG 8086 INTERRUPTS

Suppose two or more interrupts Table 5.1 Priority among 8086 interrupts

occur at the same time, how would

the 8086 respond? The highest Interrupt Prorty
priority interrupt is serviced first Divide-by-0, INT Highest
by the 8086, followed by the next n, INTO
highest priority interrupt, and so NMI

on. Table 5.1 shows the priority INTR

assigned to the different interrupts Single step or trap Lowest

in the 8086.

To explain the use of the assigning of priority among interrupts, consider the

following example. Let the INTR interrupt be enabled in the 8086. Assume that the

8086 receives an INTR interrupt while executing the division (DIV} instruction.

If divide-by-0 occurs during the division process, the 8086 first executes the ISR

of the divide-by-0 interrupt. During this time, IF and TF are temporarily cleared.

This disables the INTR interrupt from being processed. An IRET instruction at the

end of the divide-by-0 ISR again enables the INTR interrupt by setting IF. This

facilitates the 8086 to execute the ISR of the INTR interrupt, if it is still active.

When the 8086 responds to any interrupt, IF and TF are cleared after the flag

register contents are stored (to save the initial content of the different flags) in the

stack. If needed, IF, TF, or both the flags can be set at the beginning of the ISR of any

interrupt, in case the user wants to enable them while executing the current ISR.

5.8 INTERRUPT SERVICE ROUTINES

While using an interrupt, the programmer must set its interrupt vector with the CS

and IP addresses of the starting location of the ISR of that interrupt type, either

through the program or externally. The method of defining the ISR for software

and hardware interrupts is the same. This is explained with a few examples.

Example 5.1

Figure 5.5 shows the interfacing of an ASCII keyboard with the 8086 through 2

port in the 8255 having the address FFEOH. When a key is pressed on the keyboard,

the ASCII code of that key is available on its data lines (D7-D0) and the KBINT

pin is pulled low for some time. This causes the NMI input of the 8086 to go high,

thereby interrupting the 8086. In the NMI interrupt’s ISR, the ASCII code of the

key pressed can be read through the 8255.

Now, let us write an NMI

ISR such that it stores the ASCII

code of the key pressed in an

array named ASC _STRING,

and after the ASCII codes of 50

keys are received, sets a byte

named DONE to 01H, which

initially has the value O0OH.

The main program is used to

initialize the array and the other

variables, and set the interrupt

vector for the NMI interrupt

in the IVT. The ISR is written

such that it can be accessed by

any program module.

Solution:

ASSUME CS:

8086 Interrupts 183

- ASCIHI Port
keyboard FFEOH

DO DO ADO

8255

D7 D7 AD7

KBINT

+5V 8086

10K

) NMI

'Fig.5.5 Interfacing an ASCII keyboard

CODE, DS: DATA, SS: STACK

with the 8086

DATA SEGMENT WORD PUBLIC ; This data segment can be

accessed by any other module.

ASC_STRING DB 50 DUP (@) ; Reserve 50 bytes for storing

the ASCII codes.

ASC_POINTER DW OFFSET ASC_STRING

CHR_COUNT DB 50

DONE DB ©@©H

DATA ENDS

STACK SEGMENT

DW 100 DUP (9)

STACK_TOP LABEL WORD

STACK ENDS

PUBLIC CHR_COUNT, DONE, AS

EXTRN KEYBRD: FAR

CODE SEGMENT WORD PUBLIC ;

START: MOV AX, STACK

MOV SS, AX

MOV SP, OFFSET STACK_TOP ;

e

-
e

e

J

J

)

“
e

)

-

J

Pointer to ASCII string.

Assign the number of ASCII

codes to CHR_COUNT. '
Initialize DONE to ©O©H.

End of the data segment.

Set up the stack segment needed

for handling the interrupt.

Reserve 100 words for the

stack.

; Assign the label STACK_TOP

to the top of the stack.

; End of the stack segment.

C_POINTER

Make the variables available

to other modules.

KEYBRD procedure (which is

the NMI ISR) is present in

another module.

Code segment to initialize

NMI IV starts.

Initialize the SS register

with the segment address of

the STACK.

Initialize the SP register.

184 Microprocessors and Interfacing

MOV AX, DATA

MOV DS, AX

MOV AX, ©0006H

MOV ES, AX

MOV WORD PTR ES: @0@AH, SEG KEYBRD

MOV WORD PTR ES: ©0008H, OFFSET KEYBRD

HERE: JMP HERE

CODE ENDS

END START

B

ASSUME CS: CODE, DS: DATA

e

e

)

3

e

Initialize the DS register

with the segment address of

DATA.

Store the segment address and

offset address of the KEYBRD

procedure in the interrupt

vector table in the addresses

0008H-000BH.

Initialize ES with the segment

address 0000H, as the IVT is

stored in this segment.

. Move the segment address to

KEYBRD to the IVT.

. Move the offset address of

KEYBRD to the IVT.

Wait until a key is pressed in

the keyboard.

- The KEYBRD procedure (i.e., NMI ISR) follows.

DATA SEGMENT WORD PUBLIC

>
; This segment can be accessed

by any other module.

EXTRN CHR_COUNT: BYTE, DONE: BYTE, ASC_POINTER: WORD

DATA ENDS

PUBLIC KEYBRD

-
 These variables are present in

another module.

End of data segment

The procedure KEYBRD can be

accessed by some other module.

CODE SEGMENT WORD PUBLIC

KEYBRD PROC FAR

PUSH AX

PUSH BX

PUSH DX

CMP CHR_COUNT, ©

JZ EXIT

MOV BX, ASC_POINTER

MOV DX, OFFE@H

IN AL, DX

-

e

*
w
e

3

e

Code segment having KEYBRD

procedure starts

Beginning of the KEYBRD

procedure

Store the content of the AX,

BX, and DX registers in the

stack.

Check whether CHR_COUNT = ©.

If it is @, go to EXIT.

Move the value in ASC_POINTER
to BX.

Store the address of the 8255

port in DX.

Get the ASCII code of the key

from the keyboard.

MOV [BX], AL
INC ASC_POINTER
DEC CHR_COUNT
INZ NOT_DONE
MOV DONE, 01

8086 Interrupts 185

; Store it in the ASC_STRING array.

; Increment the ASC_STRING pointer.

; Decrement CHR_COUNT by:T.

; If CHR_COUNT is not @, go to NOT_DONE.

; Move 1 to DONE to indicate that 50

ASCII codes have been received.

JMP EXIT ; Go to EXIT.

NOT_DONE: MOV DONE, 00 ; Move @ to DONE.

EXIT: POP DX ; Pop the register contents from the

stack.

POP BX

POP AX

IRET 5> Return from ISR.

KEYBRD ENDP ; End of ISR

CODE ENDS 5 End of segment

END

Example 5.2

Write a program that displays the message ‘IRQ2 IS WORKING’, in the monitor

of the personal computer (PC), if a hardware interrupt signal appears on the IRQ2
pin present in the I/O channel of the PC, and the message ‘IRQ3 IS WORKING’ if
a hardware interrupt signal appears on the IRQ3 pin present in the I/O channel of

the PC. Make use of the DOS (disk operating system) interrupt INT 21H.

Solution:

When a hardware interrupt signal appears on the IRQ2 pin present in the I/O
channel of the PC, it activates the INTR pin of the CPU (8086). When the CPU

sends the INTA pulse, the interrupt type 0AH is supplied to the CPU by the I/O
channel of the PC. Hence, the effect of this action is the same as that of executing
the software instruction INT OAH. Similarly, when a hardware interrupt signal

appears at the IRQ3 pin present in the I/O channel of the PC, it activates the INTR
pin of the CPU (i.e., processor), and when the CPU sends the INTA pulse, the

interrupt type OBH is supplied to the CPU by the I/O channel of the PC. Hence,

the effect of this action is the same as that of executing the software instruction
INT OBH. -

The DOS interrupt or function call INT 21H, which comes along with the DOS

program, is used for performing various functions in the PC such as accessing
the printer, monitor, and keyboard, and creating files. Before using INT 21H for

executing a specific instruction, the register AH, DX, or DS, or a combination of
these registers has to be loaded with a specific value. Now the specified operation
is carried out and a particular value is returned in specific registers or in flags, after

the execution of the INT 21H instruction, to reflect the result of the operation.

Main program:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

MESSAGE1 DB

MESSAGE2 DB

“IRQ2 IS WORKING”, ©AH, @DH, »$”

“IRQ3 IS WORKING”, ©AH, @DH, *$”

186 Microprocessors and Interfacing

DATA ENDS

CODE SEGMENT

START:

MOV AX, CODE

MOV DS, AX

MOV DX, OFFSET IRQ2_ISR

MOV AX, 250AH

INT 21H

MOV DX, OFFSET IRQ3_ISR

MOV AX, 250BH

INT 21H

HERE: IJMP HERE

IRQ2_ISR PROC NEAR

MOV AX, DATA

MOV DS, AX

MOV DX, OFFSET MESSAGE1l ;

MOV AH, @9H
INT 21H
IRET
IRQ2_ISR ENDP

IRQ3_ISR PROC NEAR

MOV AX, DATA

MOV DS, AX

MOV DX, OFFSET MESSAGE2 ;

MOV AH, @9H

INT 21H

IRET

IRQ3_ISR ENDP

CODE ENDS

END START

“
e

)

e

e

J

e

L
Y

J

“
e

“
e

e

J

e

e

Set DS with the segment address of

CODE, for setting the IVT.

; Set DX with the offset of IRQ2_ISR.

Set the IVT using the function

value 250AH in AX (AH = 25H,

AL = @0AH (interrupt type))

Call the DOS interrupt INT 21H to set

the IVT.

; Set DX with the offset address of

IRQ3_ISR.

Set IVT using the function value 250BH

in AX (AH = 25H, AL = @BH (interrupt

type)).
Call the DOS interrupt INT 21H to

set the IVT.

Set DS with the segment address of

DATA.

Set DX with the offset of MESSAGE1.

Display MESSAGE1l in the monitor.

Return from ISR.

Set DS with the segment address of
DATA.

Set DX with the offset of MESSAGE2.

Display MESSAGE2 in the monitor.

Return from ISR.

In this program, a data segment is first defined with the messages to be displayed

in the monitor of the PC when the interrupt signal is given in the I/O channel of

the PC. Then, storing the segment address of CODE in the DS, the offset address

8086 Interrupts 187

of the ISR (IRQ2_ISR) in the DX, the function value 250AH in AX (i.e., AH =
25H and AL = 0AH (interrupt type)), and by using the DOS interrupt INT 21H,

the interrupt vector for the interrupt type OAH is created in IVT. Similarly, the
interrupt vector for the interrupt type OBH is created in the IVT. In the IRQ2 ISR,

the segment address of DATA is placed in DS, the offset address of MESSAGE] is
placed in DX, AH is loaded with the value 09H, and by calling the DOS interrupt
INT 21H, MESSAGE]1 is displayed in the monitor of the PC. A similar procedure

is used in IRQ3 ISR as well.
The 0AH, ODH, and $ characters given in MESSAGE1 and MESSAGE2

represent the ASCII code of line feed (LF), ASCII code of carriage return (CR),

and end of string, respectively.

Example 5.3
Write a program to create a file named AGE in the PC and store 100 bytes of data

in it, which have to be taken from the memory block starting at 3000H: 2000H,

if the software instruction INT 0AH is executed by the PC. Make use of the DOS

interrupt INT 21H.

Solution:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

FILENAME DB “AGE”, “$”

MESSAGE DB “FILE CREATION WAS NOT SUCCESSFUL”, ©AH, ODH,”$”

DATA ENDS

CODE SEGMENT

START:

MOV AX, CODE

MOV DS, AX ; Set DS with the segment address

of CODE, for setting the IVT.

MOV DX, OFFSET ISR ; Set DX with the offset address of

ISR.

Set the IVT using the function

value 250AH in AX.

Execute the DOS interrupt INT 21H

: to set the IVT.

MOV DX, OFFSET FILENAME ; Set DX with the offset address of

MOV AX, 250AH e

INT 21H “
e

FILENAME.

MOV AX, DATA

MOV DS, AX ; Load the segment address of DATA

in DS. |

MOV CX, ©0H

MOV AH, 3CH

INT 21H ; Create a file with the file name

‘AGE’, using INT 21H.
If there is no carry, the file

creation operation was

successful. So go to the

JNC SUCCESS

e

188 Microprocessors and Interfacing

location SUCCESS.

MOV DX, OFFSET MESSAGE ; If there is a carry, display the

message using INT 21H.

MOV AH, O9H

INT 21H

JMP END1

SUCCESS: INT ©AH Execute the software INT ©AH

‘ instruction to write the data

into the file.

Return to DOS prompt.

ISR for interrupt type OAH is as

follows:

e

END1: MOV AH, 4CH

INT 21H

e

-

ISR PROC NEAR

MOV BX, AX ; Take the file handle information

in AX to BX.

MOV CX, 100 5 Move the number of bytes to be

transferred, to CX.

Store the offset address of the

data to be moved into the file

in DX.

Store the segment address of the

data to be moved into the file

MOV DX, 2000eH

e

MOV AX, 3000H

e

in AX.

MOV DS, AX 5 Move the segment address in AX

to. DS.

MOV AH, 46H 5 Using INT 21H, write the data

into the file.
INT 21H

IRET

ISR ENDP

CODE ENDS

END START

In this program, a data segment is first defined with the file name to be assigned

to the file and the message to be displayed in the monitor, if the file creation is not

successful. Then, storing the segment address of CODE in DS, the offset address

of the ISR in DX, and the function value 250AH in AX (i.e., AH = 25H and AL

= 0AH (interrupt type)), and by using the DOS interrupt INT 21H, the interrupt

vector for the interrupt type 0AH is created in the IVT. Next, storing the offset

address of the file name in DX, the segment address of DATA in DS, 00H in CX,

and 3CH in AX, and by using the DOS interrupt INT 21H, the file named AGE is

created.

If the file creation operation is successful, the carry flag is cleared after the

execution of INT 21H and the AX register is loaded with the file handle information.

Otherwise, the carry flag is set. If the carry flag is cleared, the processor goes to the
location named SUCCESS in the program and executes the INT 0AH instruction,

which causes the execution of the ISR, to store 100 bytes of data taken from the

memory block starting at 3000H: 2000H into the file. If the carry flag is set after

8086 Interrupts 189

the execution of INT 21H, the processor executes INT 21H with DX having the

offset address of the message and AH having the value 09H, to display the message
‘FILE CREATION WAS NOT SUCCESSFUL’ in the monitor of the PC.

In the ISR, the file handle information in AX is first transferred to BX, followed

by the loading of CX with the number of data bytes to be stored into the file.

Then DX and DS are loaded with the offset address and the segment address,

respectively, of the memory block from where the data is to be taken. By loading
AH with the value 40H and by using INT 21H, data is moved into the file.

5.9 BIOS INTERRUPTS OR FUNCTION CALLS

The BIOS (basic input/output system) is boot firmware, which is designed to be
the first program run by a PC when powered on. The initial function of the BIOS
is to identify, test, and initialize system devices such as the video display card,

hard disk, floppy disk, and other hardware. The BIOS prepares the machine for a

known state, so that the software stored on the compatible media can be loaded,

executed, and given control of the PC. BIOS function calls, also known as BIOS

interrupts, are stored in the system ROM and in the video BIOS ROM present in
the PC. These BIOS function calls directly control the I/O devices with/without

DOS loaded in the system. Some BIOS function calls that are used to control the

monitor (video), disk, COM port, I/O devices, keyboard, and printer in the PC are

briefly discussed in this section.

5.9.1 INT IOH

The INT 10H BIOS interrupt, which is also called video services interrupt, directly

controls the video display in a system. INT 10H uses register AH to select the

video service provided by this interrupt. The video BIOS ROM is located on the
video board and varies from one video card to another used in the PC.

5.9.1.1 Video Mode Selection

The mode of operation for the video display is selected by placing 00H in AH,

followed by one of the mode numbers in AL. Table 5.2 shows the mode of
operation found in VGA (video graphics array) type video display systems using

standard video modes.

Table 5.2 Video display modes

Mode Columns Rows Type Resolution Colours

0OH 40 25 Text 360 x400 £.3
01H 40 25 Text 360 x 640 16

02H 80 28 Text 720 x 400 2

03H 80 25 , Text 720 x 400 16

07H 80 25 Text 720 x 400

11H 80 30 Graphics 640 x 480

12H 80 30 Graphics 640 x 480 16

13H 40 25 Graphics 320 x 200 256

190 Microprocessors and Interfacing

The set of instructions used to place the video display in mode 2 is as follows.

After the instructions are executed in the PC, the mode of the display is changed

and the screen is cleared.

MOV AH, @©H ; Video mode service

MOV AL, ©2H ; Select mode 2.

INT 16H ; Call BIOS interrupt.

To know the current video mode used in the display, AH is set to OFH and
INT 10H is executed. After execution, AL has the current video mode, AH has the
number of character columns, and BH has the page number. The instructions are
as follows:

MOV AH, OFH ; Select read video mode.

INT 10H ; Call BIOS interrupt.

If an SVGA (super VGA) or an Table 5.3 Extended VGA functions
EVGA/XVGA (extended VGA)
adapter is available, the SVGA BX Extended mode
mode is set by using the INT 10H 100H 640 x 400 with 256 colours
Interrupt with AX = 4F02H and 3 101H 640 x 480 with 256 colours
BX = VGA mode. This conforms - to the VESA (Video Electronics 102H B
Standards Association) standard 103H 800 x 600 with 256 colours
for VGA adapters. VESA is an 104H 1024 x 768 with 16 colours
International standards body for i : 1024 x 768 with 256 col computer graphics, founded in e : e 1989 by NEC Home Electronics 106H o Lo colonrs
and eight other video display 107H 1280 x 1024 with 256 colours
adapter manufacturers. Table 108H 80 x 60 in text mode
5.3 shows the modes selected
by the register BX for this INT 109H
10H interrupt. Most video cards 10AH 132 x 43 in text mode
are equipped with the driver (oBH 132 x 50 in text mode
called VVESA.COM or VVESA.
SYS, which ensures that the card

conforms to the VESA standard

functions.

132 x 25 in text mode

10CH 132 x 60 1n text mode

5.9.1.2 Cursor Control

The INT 10H interrupt is also used for cursor control in the video display (i.e.,

monitor). Table 5.4 shows the function codes placed in AH, which are used to

control the cursor on the video display. The code is shown in the Entry field and

the result obtained after execution of INT 10H is shown in the Exit field. These

cursor control functions work on a wide range of video displays—from the VGA

display to the latest SVGA display.

8086 Interrupts 191

Table 5.4 Functions provided by INT 10H for cursor control

Function

Select cursor type

Select cursor

position

Read cursor

position

Read attribute/

character at current

cursor position

Write attribute/

character at current

cursor position

Write character

at current cursor

position

~ Entry

AH=01H
CH = Starting line number

CL = Ending line number

AH = 02H

BH = Page number (usually 0)

DH = Row number (beginning with 0)

DL = Column - number

(beginning with 0)

AH = 03H

BH = Page number

AH = 08H

BH = Page number

AH = 09H

AL = ASCII character code

BH = Page number

BL = Character attribute

CX = Number of characters to write

AH=0AH

AL = ASCII character code

BH = Page number

CX = Number of characters to write

Exit

Cursor size changed

CH = Starting line number

(cursor size)

CL = Ending line number

(cursor size)

DH = Current row

DL = Current column

AL = ASCII character

code

AH = Character attribute

(Note: This function does

not advance the cursor.)

(Note: This function does

not advance the cursor.)

(Note: This function does

not advance the cursor.)

59.2INT IIH

This interrupt is used to determine the type of equipment installed in the system.

To use this interrupt, the AX register is loaded with FFFFH and then the INT

11H instruction is executed. In return, INT 11H provides information in the AX

register, as given in Fig. 5.6.

15 14 Bl 170" 1o 18 1718 |5 a8 2.} Bit 0

P1 PO G [S2|Sst1]so|D2|D1

L

T
R

B
e

P1 and PO = Number of parallel ports

82, 1, and SO = Number of serial ports

Fig.5.6 Content of AX register after execution of INT | 1H i

G =1, ifgame /O is attached

D2 and D1 = Number of disk drives

192 Microprocessors and Interfacing

5.9.3 INT I2H

The memory size present in the system is obtained by the INT 12H interrupt.

After executing the INT 12H instruction, the AX register contains the number of

1 KB blocks of memory (conventional memory in the first 1 MB of address space)

installed in the computer.

5.9.4 INT I3H

This interrupt controls diskettes that are within 5.25 or 3.5 inches in size and

also hard disk drives attached to the system. Table 5.5 shows the functions

available to this interrupt via register AH. The direct control of the hard disk drive

by a programmer using INT 13H leads to problems, including the alteration or

corruption of important programs such as operating system programs, compilers,

and other software that are stored on the disk. This may result in system failure.

Only upon reinstallation of the operating system programs in the hard disk will the

PC function normally. This wastes a lot of time for the programmer. Therefore, the

functions are listed without details about their usage. Before using these functions,

the BIOS literature available from the company that produced the particular

version of the BIOS ROM in the system should be referred to.

5.9.5INT I4H

The INT 14H interrupt controls the serial COM (communication) ports attached

to the computer. There are two COM ports—COM]1 and COM2—in a computer

system. In newer AT style machines, the number of COM ports is extended to

four (including COM3 and COM4). Communication ports are normally controlled

using software packages that allow programming of microcontrollers/digital signal

processors (DSPs) serially, or by transmitting and receiving data through a modem

andatelephoneline. The INT 14H instructionisusedto control these ports, as givenin

Table 5.6.

5.9.6 INT I5H

The INT 15H interrupt controls various I/O devices interfaced with the computer.

It also allows access to protected mode operation and the extended memory system

on an 80286, Pentium Pro, etc., but it is not recommended for use by the normal

user; it is commonly used by programmers to develop OS-related programs. The

functions provided by INT 15H are given in Table 5.7.

5.9.7 INT I6H

The INT 16H interrupt is used to control the keyboard in a system. This interrupt is

usually accessed by the DOS interrupt INT 21H, but can also be accessed directly.

Table 5.8 indicates the functions provided by INT 16H.

5.9.8INT I7H

The INT 17H interruptaccesses the parallel printerport, called LPT1 inmost systems.

Table 5.9 shows the functions provided by INT 17H.

Table 5.5 Functions provided by
INT I3H

T Function it

00H Reset the system disk |

01H Read disk status to AL

02H Read sector

03H Write sector

04H Verify sector

05H Format track

06H Format bad track

07H Format drive

08H Get drive parameters

09H Initialize fixed disk

characteristics

0AH Read long sector

OBH Write long sector

OCH Seek

ODH Reset fixed disk system

OEH Read sector buffer

OFH Write sector buffer

I0H Get drive status

I1H Re-calibrate drive

12H Controller RAM diagnostics

I3H Controller drive diagnostics

14H Controller internal diagnostics

ISH Get disk type

16H Get disk changed status

I7H Set disk type

18H Set media type

I9H Park heads

_1AH Format ESDI drive

8086 Interrupts 193

Table 5.7 Functions provided by

INT I5H

AH Function

O0H Cassette motor on

01H Cassette motor off

02H Read cassette

03H Write cassette

OFH Format ESDI pertodic

interrupt

21H Keyboard intercept

80H Device open

81H Device closed

82H Process termination

83H Event wait

84H Read joystick

85H System request key

86H Delay

87H Move extended block of
memory

88H Get extended memory size

89H Enter protected mode

90H - Device wait

91H Device power on self test

(POST)

COH Get system environment

ClH Get address of extended BIOS

data area

C2H Mouse pointer

C3H Set watchdog timer

C4H Programmable opinon

select

Table 5.6 Functions provided by INT 14H

Extended initialize communications port

AH Function

00H

01H Send character

02H Receive character

03H Get COM port status

04H

05H

Initialize communications port

Extended communications port control

194 Microprocessors and Interfacing

Table 5.8 Functions provided by Table 5.9 Functions provided by
INT16H . - INT I7H

AH Function | : AH Function

O00H Read keyboard character O0H Print character

OIH Get keyboard status 01H Initialize printer

02H Get keyboard flags 02H Get printer status

03H Set repeat rate

04H Set keyboard click

0O5SH Push character and scan code

5.10 INTERRUPT HANDLERS

Any program, in general, requires to access hardware I/O devices for I/O operations

such as reading data from the keyboard, displaying data on the CRT, reading/

writing data on the disc, sending data to the printer or serial data transfer through

EIA232C (485). The programming techniques used to handle I/O operations are

as follows: S R T e

Direct access There are I/O instructions provided by the manufacturers of the

processors. Using these instructions, program can be developed for interaction

with peripherals. This method is time consuming since the user has to develop the
code using basic I/O instructions.)

High level language (HLL) support There are functions provided by the OS,

such as library functions, to handle I/O operations. User can use these functions in
the program which makes development faster and easier.

DOS services It is known that most of the peripherals or I/O devices are interfaced

to the system employ interrupt driven data transfer. Disk operating system (DOS)

has built-in routines for I/O operations. These routines, termed as DOS services,

are included in the library as interrupt handlers. Application of these service

routines makes program more legible and compact. DOS interrupts are used for

specific purposes, such as file access, and so on. Thus, DOS interrupts facilitate

the work with files, so that the user doesn’t need to have a full knowledge of this

file-system in order to create, read, and write a file. They can access basic input

output services (BIOS) and DOS functions from their programs through software

interrupts (INT instruction).

BIOS services System has built-in routines for I/O operations, which are resident

in the ROM. They are called BIOS. Application of these service routines makes

program more legible and compact. BIOS interrupts allow access to low-level

system resources (hardware).

We will now study how to apply last two methods to the development of application

programs.

8086 Interrupts 195

5.11 DOS SERVICES:INT 21H

Invoking an interrupt can be done using the assembly language instruction INT

XX. DOS services are used to accept data from the input devices and display data

on video terminals. INT 21H is used for these I/O operations. We will discuss the

uses of some of the basic functions provided in INT 21H. It is to be noted that

sub-function code has to be loaded in AH register before issuing the command

INT 21H.

Termination of a program There are two possible requirements for termination

‘of a program—the user wants to go either to the OS or to the parent program. The

sub-functions 00H and 4CH can be used as follows:

(a) MOV AH, ©0H ; Segment used to terminate program

INT 21H

END

(b)Mmov AH, 4CH ; Terminate the program but AL will decide

whether to return to OS or parent program.

MOV AL, XX

INT 21H

END

Accepting input from a standard input device (keyboard) The data entered

through the standard input device is either displayed on the default output device

(terminal) for confirmation or not. The sub-functions [01], [07] and [08h] can be

used as follows:

(a) MOV AH, ©1H ; Accepts one character from default device

; with echo on output terminal

INT 21H ; (AL)—ASCII code of input character

END :

(b)MOV AH, @7H ; Accepts one character from default device without

echo on output terminal

INT 21H (AL)—ASCII code of input character

END ; ~c will terminate the entry operation

(c)MOV AH, @8H ; Accepts one character from default device without

echo on output terminal

INT 21H ; ~“c will generate INT 23H to decide the next operation

END

e

e

e

Display data on the standard output device (terminal) The two modes of data

display functions are provided based on whether the program needs to display a

single character or a character string. The sub-functions [02] and [09h] can be used

as follows:

(a)MOV AL, XX ; (al)-ASCII code of character to be displayed

MOV AH, O@1H ; Displays one character on the default device

INT 21H

END

196 Microprocessors and Interfacing

(b)MOV DX, YYYYH ; Offset of the string in memory to be displayeq

MOV AH, @9H ; Displays string on the default device
INT 21H

END

(c)mov AL, XX ; (AL)-ASCII code of character to be diSplayéd

MOV AH, @1H ; Displays one character on the default device

INT 21H

END

Example 5.4

Write a procedure to display a 4-digit value in the [AX] register.

Solution:

DISPPROCNEAR

PUSH CX

MOV CL, ©4H ; Counter

SET_LOCATION:
ROLAX, CL ; Position digit

PUSHAX

ANDAL, OFH ' ; Convert into ASCII code.

ADDAL, 30

CMPAL, 9’

JIBEDIS_SECT
ADDAL, 7H

DIS_SECT:
MOVAH, ©02H

MOVDL, AL

INT21H

POPAX

DECCX

INZSET_LOCATION ; Repeat for all four digits.

POP CX

RET

DISPEDNP

Example 5.5

Write a program segment to display types of roots of quadratic equation ax* + bx

+c=0.

Solution:

DISPLAY-MSG MACRO MSG

MOV AH, O9H

MOV DX, OFFSET MSG

INT 21H

ENDM

8086 Interrupts 197

DATA

CR DBODH

LF DBOAH

A DD1.©

B DD3.90

€ DD1.0©

FLAG DD?

CONTROL -WORD DD?

STATUS -WORD DD?

MSG-REAL DB ‘Roots are real’, ‘$’

MSG-EQUAL DB ‘Roots are equal’

MSG-IMAG DB ‘Roots are imaginary’, %’

CODE

STARTUP
MAIN: MOVAX, @DATA

MOVDS, AX

FINIT

MOV CONTROL-WORD, ©3FFH

FLDCWCONTROL -WORD

FLD1 ; 1.0

FLADDST, ST ; 2.0

FLADDST, ST ; 4.9

FLDDWORDPTR a

FLDDWORDPTR ¢

FMUL s a¥*c, 4

FMUL ; 4*a*c

FTST ; Tests status of ST

FLD b ; b, 4*a*c

FMULST, ST ;b*b, 4*a*c

FSUBR 38 ¢ Il 3 R

FTST ; Tests status of ST(@)

FSTSW WORDPTR FLAG ; Stores status in memory

FWAIT

MOV AX, WORD PTR FLAG

SAHF

JZ EQUAL

JC IMAG

DISPLAY-MSGMSG-REAL

JMP OVER

EQUAL :

DISPLAY-MSGMSG-EQUAL

JMP OVER

IMAG:

DISPLAY-MSGMSG-IMAG

198 Microprocessors and Interfacing

OVER:

MOV AH, 4CH

MOV AL, ©©H

INT 21H

ENDS

5.12 SYSTEM CALLS—BIOS SERVICES

The BIOS program is always located in a special reserved memory area, the upper

64 KB of the system area (addresses FOOOOH-FFFFFH). On system startup, the

BIOS places addresses into the IVT. When DOS or an application wants to use

a BIOS routine, it generates a software interrupt. On processing the interrupt,

the IVT value in the table provides the jump address to the BIOS routine. BIOS

functions contain two types of routines:

(1) Test (post) and initialization routines

(1) Control routine for I/O operations

BIOS functions available to the user can be activated by the instruction INT XX,

which generates a software interrupt of the type specified in the instruction that

depends upon the desired I/O operation through low-level access to hardware

resources. Table 5.10 depicts some of the interrupt services used normally.

Table 5.10 Normally used interrupt services

Int. No. Function Purpose

05H Print screen Print page (video)

10H Video services » Set/get mode

» Read/write pixel; write string

» Read page; set color

e Write TTY mode

11H M/C configuration Syétem information

12H Memory information Size (KB)

13H Disk I/O Function code: AH

Drive code: DL

14H Serial I/O Initialize

» Send/receive or status

15H APM

16H - Keyboard services » Read/status/flag INT

17H Printer I/O Printer status

19H Warm reboot * Avoid POST

* Reset

1AH Date/Time services Time/date/day/alarm

Each interrupt is associated with number of sub-functions, which can be specified

by loading its corresponding number in (AH) register. Depending on the complexity

8086 Interrupts 199

of a function a series of parameters can be specified by following its pattern and
placing values in GPR or data structures specified by the vendor. In this section,
we will study some of the basic /O operations using these BIOS calls.

5.12.1 Print Screen Service: INT 05H

This service is used to print all the printable characters present on the screen

either in text or graphics mode. This system call does not return the status in any

register but it is stored in the form of a code at the reserved location [0500:00001.

The content of this location may be [00], [01], or [FF], and indicates whether the

print screen operation was successful, disabled, or has an error been encountered

respectively.

Example 5.6

Write a program segment to perform print screen operation and display one of the

following messages: ‘success’, ‘disabled’, ‘error encountered during print screen

operation’ BIOS service INT 05H.

Solution:

5 PROGRAM SEGMENT TO CHECK PRINT SCREEN STATUS

PRINT_SCREEN_MSGMACRO MSG

MOV AH, ©9H

MOV DX, OFFSET MSG

INT 21H

ENDM

DATA SEG

CREQUODH

LFEQUOAH :

DOS_SEG_ADDREQU ©050H

MSG © DB ‘PRINT SCREEN STATUS’, °$’

MSG 1 DBCR, LF, ‘PRINT SCREEN OPERATION SUCCESSFUL’> ¢’

MSG 2 DBCR, LF, ‘PRINT SCREEN IS ALREADY IN PROGRESS’

DB ‘SCREEN IS DISABLED’, ‘$’

MSG 3 DBCR, LF, ‘ERROR ENCOUNTERED DURING PRINT SCREEN, ¢$’

PASSDB ?

ENDS
CODE_SEG
START:

MOV AX, DATA_SEG
MOV DS, AX
MOV AX, DOS_SEG_ADDR
MOVES, AX

MOV SI, ©@eeH
MOV AL, BYTE PTRES:[SI]
MOV PASS, AL

200 Microprocessors and Interfacing

CMP AL, ©OH
INENEXT 1
PRINT_SCREEN_MSGMSG1
IMP SKIP
NEXT 1:

CMP AL, @1H
INE NEXT-2
PRINT_SCREEN MSGMSG2
IMP SKIP
NEXT 2:

CMP AL, OFFH
INE NEXT_3
PRINT_SCREEN_MSGMSG3
NEXT_3:

MOV AH, 4CH
MOV AL, ©@H
INT 21H
ENDS
END START

5.12.2Video Services: INT |10H

A collection of video BIOS functions are termed as video services. They allow more

control over the video display and lower execution time than DOS functions.

It is necessary to detect the cursor position before using the video screen so that it

can be cleared and started at any desired location. The cursor position assumes that

the left-hand page column is column 0 progressing across a line to column 79.

The row number corresponds to the character line number on the screen. Row

0 is the uppermost line whereas row 24 is the last line on the screen. For text

mode, the video adapter defines 80 characters per line by 25 lines.
Table 5.10 gives a summary of the function codes and their purposes. The page

number is often ignored after a cursor read. Page zero is available in the color
graphics adapter (CGA), enhanced graphics adapter (E.GA), and variable

graphics array (VGA) text modes of operation. These functions are provided for

the use of the video terminal in either the character or the graphic mode. Normally,

video RAM is used for displaying data in charactejr or graphlc modes. The use of

interrupt helps programmers in avoiding ca?culatlon 'of video memory addresges

at which every character has to be written. V1.deo services can be called by loading

the function code from Table 5.11 in AH register.

Table 5.11 Sub-function code for BIOS services—INT |0H

Function code Description

00H Set video mode

01H Set cursor shape

02H Set cursor position

(Contd)

Table 5.11

8086 Interrupts

Sub-function code for BIOS services—INT 10H (Contd)

201

:}\:\ T Z RN R A R ,E/’ SRR

Get cursor position and shape 03H

04H Get light pen position

05H Set display page

06H Clear/scroll screen up

07H Clear/scroll screen down

08H Read character and attribute at cursor

09H Write character and attribute at cursor

0AH Write character at cursor

O0BH Set border color

OEH Write character in TTY mode

Get video mode:
OFH Returns no. of characters/row in AH register

number of bytes in a video page @word location [4CH]

13H Write string

Example 5.7

Write a program segment to clear the screen using the BIOS service INT 10H.

Solution:

In the text mode, two bytes are stored in video RAM for one character as per the

format shown in Fig. 5.7.

1001 Light blue

1010 Light green

1011 Light cyan

1100 Light red

1101 Light magenta

1110 Yellow

1111 Bright white |

*ié T»,; Fes Syl | 6 : 4.3 ‘ SRR ;__—0

/ASCII code of the character l B l Background colour Foreground colour

0 Blink / 000 Black 0000 Black
-1 Donotblink 001 Blue 0001 Blue
Tt 010 Green 0010 Green

011 Cyan 0011 Cyan
100 Red 0100 Red ‘
101 Magenta 0101 Magenta
110 Brown 0110 Brown |
111 White 0111 White

1000 Dark gray

Fig.5.7 Character storage format in text mode

i S TRV BN ETIOATY Renpe i b Gt

202 Microprocessors and Interfacing

Algorithm:

1. Divide the number of bytes by two to find the number of characters in the

page.

2. Obtain the number of rows by dividing the number of characters in a page by

the number of characters per row.

3. Set the cursor at the beginning of row 0.

(function: 9: 10H -> write a dummy character with black color on black

background. This will make the row blank.)

4. Repeat the procedure for all the rows till the entire screen is blanked.

The code development based on this algorithm is left as an exercise for the reader.

5.12.3 Keyboard Services: INT 16H

The keyboard unit contains a processor, which is programmed to carry out

housekeeping operation such as scan, key press, key release, and identification. It

maintains a buffer, and transmits each keystroke serially to the PC’s system unit.

There are two bidirectional data lines in the cable connecting the keyboard unit to

the system unit. Data are transmitted serially at 10KBPs along with the baud rate

clock. In the system unit, the character received is reconverted to parallel format,

gated into port 60H, and a interrupt is sent on IRQ1 to the interrupt controller,

which triggers INT 9 for IRQI.

KBD_INT, the name given to the default BIOS keyboard INT 9 handler, reads

the scan code from port 60h and carries out following operations:

(1) Sends clear signal and re-enables the handshaking signal to the keyboard

unit

(11) Processes the scan code

(111) Sends an end-of-interrupt (EOI) to the interrupt controller to port 20h

(iv) Returns from the interrupt

The information word, regarding keyboard status, is maintained at the word size

location [0040:0017h]. Figure 5.8 depicts the format of the status word.

o ae b0 b7 [0417] b0

dBlulplefulwfofs]r]s|s]a]s]2] | o |

[msert~7 Right control Scroll lock O Right shift
Yk Capslock - Left alt— Number lock ON | | Left shift

‘\ ' Number lock System request Caps lock ON Control key

NScroll lock Pause ON Insert ON Alt key
T A N N RIS R e

Fig.5.8 Format of keyboard status word

This information can be used in the program by the user for the desired operation

in keyboard status.

Example 5.8

Write a program segment to display the keyboard status.

Solution:

MAIN:

SKIP1:

SKIP2:

SKIP3:

8086 Interrupts 203

PRINT_STRING MACRO MSG

PUSH AX

PUSH DX

MOV AH, Q9H

MoV DX, OFFSET MSG

INT 21H

POP DX
POP AX

ENDM

DATA

CR EQU ODH

LF QU OAH

MSG DB ‘Keyboard status is as follows.’

MSGBO® DB ‘Right shift key - pressed.’

MSGB1 DB ‘Left shift key - pressed.’

MSGB2 DB ‘Ctrl key - pressed.’

MSGB3 DB ‘Alt key - pressed.’

MSGB4 DB ‘Scroll Lock ON.’

MSGB5 DB ‘Num Lock ON.’

MSGB6 DB ‘Caps Lock ON.’

MSGB7 DB ‘Insert ON.’

ends

CODE

STARTUP

MOV AX, _DATA
MOV DS, AX
PRINT_STRING MSGO

MOV AH, ©2H
INT 16H

TEST AL, ©1H

JZ SKIP1

PRINT_STRING MSGB@

TEST AL, ©2H

JZ SKIP2

PRINT_STRING MSGB1

TEST AL, 04H

JZ SKIP3

PRINT_STRING MSGB2

e

-

Gets keyboard flags

.’ calls BIOS keyboard driver, ax-contains

keyboard status

Masks b, of al

Checks Left Shift key

Checks Ctrl key status

204 Microprocessors and Interfacing

TEST AL, ©8H

JZ SKIP4

PRINTSTRING MSGB3

SKIP4:

TEST AL, 1©H

JZ SKIP5S

PRINTSTRING MSGB4

SKIP5:

TEST AL, 20H

JZ SKIP6

PRINTSTRING MSGB5

SKIP6:

TEST AL, 46H

JZ SKIP7

PRINTSTRING MSGB6

SKIP7:

TEST AL, 8@H

JZEXIT_PROGRAM

PRINTSTRING MSGB7

EXIT_PROGRAM:

Write a program segment to enter a random number when any key 18

; Checks Alt key status

)

)

)

)

]

. Checks Scroll key status

. Checks Num Lock key status

. Checks Caps Lock key status

. Checks Insert key status

pressed.

: Is a key available?
)

Issue interrupt command

JZ INITIALIZE_NUMBER

MOV AH, 4CH

MOV AL, O@H

INT 21H

ENDMAIN

Example 5.9

Solution:
START: MOV AH, 1

INT 16H

MOV AH, ©

INT 16H

INITIALIZE_NUMBER: MOV CX, ©

PROCESS: INC CX

MOV AH,1

INT 16H

JZPROCESS

XOR CL, CH
MOV AH,®
INT 16H

J

]

3

J

5.12.4 Printer Services: INT |7TH

It is necessary to initialize the printer port, write characters, or read the status Of
the printer. The status of the printer is returned by the handler in the format show?
in Fig. 5.9.

: Initialize “random” number

; See if a key is available yet?

; Randomize the content

Read character from buffer

8086 Interrupts 205

A@kof last character Printer selectéd; -

SrECICICEEST
- Outofpaper /O error Timer OULEITOT. v s §

Fig.5.9 Printer status format

The printer number [00-02] is loaded in DX and the sub-functions [00], [01], and

[02h] can be used.

Example 5.10

Write a program segment to check whether the printer is online.

Solution:

DISPLAY_STRING MACRO MSG

MOV AH, O9H

MOV DX, OFFSETMSG

INT 21H

ENDM

DATA

MSG_ON DB CR, LF,’ON_LINE’CR,LF,’$’

MSG_OFF DB CR; LF, OFF LINE”> .°§°

STATUS_INFO DB ?
ENDS

CODE

STARTUP

MAIN:.

MOV AX, DATA
MOV DS, AXMSG ©

tus.
MOV AH, @2H ; Sub-function code for reading the sta

MOV DX, LPT Vo
INT 17H ; Issue BIOS command for printer S€F

MOV STATUS_INFO, AH
MOV AL, STATUS_INFO

AND AL, 10H

CMP AL, o0

JE SKIP_PRINT_CHARACTER
DISPLAY STRING MSG_ON

- MOV ST, OFFSET MSG_OFF

~Character:

206 Microprocessors and Interfacing

CMP DL, °$’

JNE PRINT_CHARACTER

JMP END_PROCESS

SKIP_PRINT:
DISPLAY_STRING MSG_OFF

END_PROCESS:

MOV AH, 4CH ; Terminate the program segment.

MOV AL, ©©eH

INT 21H

ENDS

Example 5.11 '

Write a program segment to check and display the status of a printer.

Solution:

MODEL SMALL

DATA

STATUS_MSG DB ‘PRINTER STATUS XX’,@DH,0AH,’$’

BO DB ‘TIME-OUT ERROR$’

Bl DB ‘RESERVED$’

B2 DB ‘RESERVED$’

B3 DB ‘I/O ERROR$’
B4 DB ‘PRINTER SELECTED$’

BS DB ‘OUT OF PAPERS$’

B6 DB ‘ACKNOWLEDGE$’

B7 DB ‘PRINTER NOT BUSY$’
MESSAGE_STRING DW Be, Bl, B2, B3, B4, B5, B6, B7

CODE
STARTUP

LEA DX, STATUS_MSG
MOV AH, @9H

INT 21H

MOV AH, @2H

MOV DX, ©@H

INT 17H

MOV CX, ©8H

LEASI, MESSAGE_STRING
REPT: .

SHR AH, ©1H

PUSH AX

INC SKIP

MOV DX, [SI]

MOV AH, @9H

INT 21H

SKIP:

POP AX

8086 Interrupts 207

ADD SI, ©2H

LOOP REPT

END

POINTS TO REMEMBER

An interrupt is an external or internal event in a microprocessor that diverts it from

the execution of the main program, to another program called the interrupt service

routine (ISR).
The interrupt can be either a hardware interrupt or a software interrupt. The 8086
has two hardware interrupts—NMI and INTR. The software interrupt is created in

the 8086 using the INT instruction.
There are 256 interrupt types available in the 8086 and the interrupt vector for each

type, which is four bytes long, is stored in an interrupt vector table (IVT) from

address 00000H in the memory.
Whenever an interrupt is received, the 8086 saves the current value of IP, CS, and

the flag register in the stack, clears TF and IF, and loads CS and IP with the interrupt
vector corresponding to the received interrupt type. This causes the 8086 to start the

execution of the ISR.
The IRET instruction at the end of the ISR makes the 8086 return to ‘the main

program.
There exist different levels of priority among the interrupts, and if two interrupts

avpear simultaneously in the 8086, the interrupt having higher priority is serviced

first.
BIOS function calls (also called BIOS interrupts) are stored in the system ROM and

the video BIOS ROM present in the PC. These BIOS function calls directly control

the I/O devices with/without the DOS (disk operating system) loaded in the system.

Interrupts can be invoked using the assembly language instruction INT XX. Each

interrupt is associated with a number of sub-functions, which can be specified by

loading the corresponding number in the AH register.
Depending on the complexity of a function, a series of parameters can be specified
by following its pattern and placing values in GPR/data structures specified by the

vendor.
BIOS functions contain two types of routines—test (post) initialization routines

and control routine for I/O operations.
DOS services are used to accept data from the input devices and display data on the

video terminals. INT 21H is used for these I/O operations.

BIOS program is always located in a special reserved memory area, the upper 64

KB of the system area (addresses FOOOOH-FFFFFH).
The zero page is available in the colour graphics adapter (CGA), enhanced

graphics adapter (EGA), and variable graphics array (VGA) text modes of

operation.

- KEYTERMS

Hardware interrupt It is an interrupt generated by activating the interrupt pin of

the microprocessor.
Interrupt vector Itisa four-byte entry in the IVT, which contains a 16-bit offset

208 Microprocessors and Interfacing

part and a 16-bit segment part that are loaded in the IP and CS registers, respectively

when an interrupt is received. ’

Interrupt vector table (IVT) It is a table in the memory that contains the interrupt

vectors of the different interrupts.

INTR [t is 2 maskable hardware interrupt in the 8086 that can be enabled/disabled

using the I flag.
Non-maskable interrupt (NMI) It is an interrupt that cannot be disabled by

software.

Software interrupt It is an interrupt generated by the execution of the software

interrupt instruction in the microprocessor.

Trap interrupt It is used for performing single-step operations in the 8086 and can

be enabled/disabled using the T flag.

! REVIEW QUESTIONS

. What is the function of an interrupt in a microprocessor?

. What is the difference between maskable and non-maskable interrupts?

. What is the difference between hardware and software interrupts?

How many interrupt types are present in the 8086 and how they are classified?

Name the dedicated interrupts in the 8086 along with their functions.

. What are the differences between INTR and NMI interrupts in the 80867

. How does the 8086 recognize an NMI interrupt?

. What is the function of the T and I flags in the 8086 and how can they be set/

reset?
. Write the sequence of steps performed by the 8086 when it receives an interrupt

other than INTR.

10. How does the 8086 return to the main program after completing the ISR of an

interrupt?

11. What is an interrupt vector? What is the maximum number of interrupt vectors

that can be stored in the IVT of the 80867
12. How is a software interrupt generated in the 80867
13. What is the function of the INTO instruction?
14. What are the advantages of software interrupts?
15. Write the priority among the interrupts in the 8086.
16. Explain the interrupt structure of the 8086 in detail.

17. With the necessary timing diagram, explain the processing of the INTR interrupt

by the 8086.
18. Draw the diagram showing the supply of the interrupt type 80H through an 8-bit

DIP switch and the 74244 IC, when the 8086 receives the INTR interrupt.
19. List the BIOS interrupts used to select the video mode and cursor control in the

computer monitor. .

20. What are the BIOS interrupts used to control the keyboard and the COM port?
21. Enlist the advantages of modular programming.
22. What is an interrupt handler?

23. Explain the term video services. Enlist and explain the video services provided by
BIOS.

24. Differentiate between DOS and BIOS services.

25. Discuss techniques for developing programs to handle operations of I/O devices.

0
N
N
V

D
A
W
N

-
\
O

[a
—

8086 Interrupts 209

. PROGRAMMING EXERCISES

. Write an 8086 ISR to add the byte type data stored in an array starting at the
address 2000H: 5000H in the memory with the corresponding data in another

array stored in the memory starting at the address 3000H: 5000H and store the

result in another array in the memory starting at the address 4000H: 5000H, when

the NMI interrupt is given to the 8086. The number of byte type data in the array

is 100. Assume that the result after addition of all the data in the array is an 8-bit

data. The ISR must be accessible by any module.

. Write an 8086 ISR to send the byte type data stored in the address 6000H: S000H

in the memory, to port A in the 8255, whose address is FFOOH, when the IRQ2

interrupt in the I/O channel of the PC is activated.

. Write an 8086 ISR to receive byte type data through port B of the 8255, whose

address is FFO1H. Store the data in the address 7000H: 5000H in the memory,

when the software interrupt INT 0BH is executed by the PC.

. Write a program to display the keyboard status.

. Write a program to determine the status of a printer.

. Write a program segment to accept a string consisting of digit and non-digit

characters from the keyboard and display the sum of the digits present in the input

string.

“ THINKAND ANSWER

. For what purpose is the NMI interrupt commonly used in an 8086-based system?

2. What is the minimum duration for which the INTR signal must be kept high for

being recognized by the 8086?

. Is it possible to store the IVT starting from the address 20000H in the memory of
the 8086? Why?

. If the ISR of interrupt type O is stored from the memory address 2000: 3000H,
what is the segment and offset part of the interrupt vector?

. If the ISR of interrupt type 40H is stored from the memory address 8000: 4500H,

what is the segment and offset part of the interrupt vector?

. Is it possible to enable the INTR and the trap interrupts again when the 8086 starts

executing the ISR of an interrupt? How?

. How does the 8086 obtain the specific interrupt type when it receives the INTR

interrupt?

. If the interrupt type allotted for the interrupt IR0 is 70H in the 8259, what is the

interrupt type allotted for IR2 and IR4?
. How can the breakpoint technique for debugging a program be implemented in

the 80867

. Is it possible to access the divide-by-0 ISR by using a software interrupt in the

8086? How?

. If both INTR and NMI occur simultaneously in the 8086, which interrupt is
processed first? Why?

. ‘It is necessary to initialize a stack before using procedures.” Comment on the
validity of this statement.

Memory and I/O Interfacing

LEARNING OUTCOMES

After studying this chapter, you will be able to understand the following:

~« Physical memory organization in the 8086
 Generation of separate address and data buses in the 8086

+ Interfacing RAM and EPROM chips with the 8086

_ + Difference between [/O-mapped and memory-mapped /O

* Interfacing /O devices with the 8086

6.1 PHYSICAL MEMORY ORGANIZATION IN 8086

Since the 8086 has 20 address lines, it can access 1 MB (= 2% bytes) of memory.

The memory addresses in the 1 MB memory range from 00000H to FFFFFH. The

memory is constructed using RAM and ROM/EPROM chips. The 1 MB memory

in the 8086 is physically organized as an odd bank and an even bank, where each of

the 512KB (= 1 MB/2) is addressed in parallel by the 8086. Each memory location

stores one byte of data. The byte data at an even memory address is transferred

through the 8-bit data bus D7-DO0, while the byte data at an odd memory address

is transferred through the 8-bit data bus D15-D8. The 8086 provides two enable

signals, BHE and A0, for the selection of odd banks and even banks, respectively.

Figure 6.1 shows the physical memory organization in the 8086. The 8086 is a 16-

bit processor and hence it can transfer two bytes of data in one memory read/write

cycle (or I/O read/write cycle).

Fig. 6.1 Physical memory organization in the 8086

Address
Address

00001H 00000H

8086 00003H | Odd address bank f‘;}ifl adldfesz 00002H
System 00005H| (selected when \;hen(foe—it(e)) 00004H

BHE = 0) -

8-bit memory 8-bit memory

FFFFFH D7-DO 57-D0 FFFFEH

o) fl
D15-D8K 7
p-pok——— 7.

Memory and I/O Interfacing 211

Two memory locations are needed to store a word in the memory in an 8086

system. While reading or writing word data (16 bits), the bus interface unit of the

8086 requires one or two memory cycles, depending upon whether the lower-

order byte of the word is located at an even or odd memory address, respectively.

It is better to store the word type data in the memory such that its lower-order byte
is stored at an even memory address, since only one read cycle is required to read

the data through the 16-bit data bus (D15-D0) of the 8086. If the lower-order byte
of the word is located at an odd memory address, the first read cycle is required

for accessing the lower-order byte of the word through the higher-order data bus

(D15-D8), and the second is required for accessing the higher-order byte of the

word through the lower-order data bus (D7-D0). Thus, two bus cycles are required

to access a word whose lower-order byte is stored in an odd memory address in the

memory. While initializing data structures such as an array of word type data or a

stack, they should be initialized at an even address for efficient operation. This is

also applicable to the memory write operation.

The use of the BHE and A0 signals to fetch data or instruction from the memory

and to write data in the memory is given in Table 6.1.

Table 6.1 Function of BHE and A0 signals

E__ A0 Operation b
16-bit data is read from or written into the memory.

8-bit data is read from or written into the odd memory bank.

8-bit data is read from or written into the even memory bank.

Q
D

D

Memory is not accessed.

The BHE and AO signals, along with a few higher-order address lines of the

8086, are used to generate the Chip Select (CS) or Chip Enable (CE) signal for
different memory chips.

6.2 FORMATION OF SYSTEM BUS

The 8086 has a multiplexed 16-bit address/data bus (ADI15-AD0) and a
multiplexed 4-bit address/status bus (A19/S6-A16/S3). The multiplexed address
bus can be split into a separate address bus and data bus/status bus, using the
Address Latch Enable (ALE) signal of the 8086 and three external octal latches

(IC 74373). Figure 6.2 shows the de-multiplexing of the address bus and the data

bus using the 74373 ICs.
The data bus can be buffered using two bidirectional buffers (74245). Since

the data can flow in either direction (i.e., from and into the microprocessor) while

accessing the memory or I/O devices, the bidirectional buffers are used for deriving

the data bus. The signals DEN and DT/R indicate the presence of data on the bus
and the direction of the data (i.e., from/to the microprocessor), respectively. They

are connected to the chip enable and direction pins of the buffers, as shown in

Fig. 6.3.

212 Microprocessors and Interfacing

74373 | 4
e 4 Vo Q3-Q0/—> A19-Al6 |
A19/86-[—/ —_1D3-D0
A16/S3 —>|CLK ;

4373 kg
8 L Q7-QO0[- /> Al5-A8 i

AD15-AD8 [—/ > D7-D0 ;
—» CLK ¢

74373 | g i.
8 Q7-QOZ—> A7-A0 U

AD7-ADO[—Z —D7-D0 f
ALE LSl CLE: g.

‘ F|g62 "\‘Ii‘)e-f\r'\ultipl;\a*i}h’g éhe.éddfesfi bu§ and data .bus“ o

8086 74245
DT/R > DIR : 4

e —— Y7-YOK=Z—>D15-D8§ ;
DEN— »EN Y07

AD15-ADO[—/ ——X7-X0

74245 k
—>(DIR ’)

. Y7-YOKZ/=>D7-D0 ?
g >| EN 8 ;

j : b
AD7-AD0 [> X7-X0

© Fig.6.3 Buffering the data bus of the 8086 using IC 74245
If DEN is low, it indicates that the data is available on the multiplexed address/

data bus (ADO-AD15). Both the bidirectional buffers (74245s) are enabled to

transfer that data since their enable inputs are activated at that time. When the DIR

pin goes high, the data available at the X pins of the 74245 are transferred to the Y

pins, i.e., data is transmitted from the 8086 to either the memory or the I/O device

(write operation). If the DIR pin goes low, the data available at the Y pins of the

74245 are transferred to the X pins, i.e., data is received by the microprocessor

from the memory or the I/O device (read operation). For generating the Memory

Read (MEMR) and Memory Write (MEMW) control signals, the RD, WR, and
M/IO signals of the 8086 are used along with the combinational circuit (as shown

in Fig. 6.4) during the minimum mode operation of the 8086. In the case of

maximum mode operation of the 8086, a bus controller chip (8288) derives all

the memory control signals using the status signals SO, ST, and S2. Section 9.4 in
chapter 9 gives the complete details of the 8086 bus timings, such as memory read/

write operations, I/O read/write operations, etc., in minimum and maximum mode

operation.

Certain locations in the memory are reserved for specific CPU operations.
After resetting the 8086, CS and IP are initialized to FFFFH and 0000H,

Memory and I/O Interfacing 213

M/10 & =

e o] > VEMW

s Flg 64 Generation of control signals for the meméry in the 8086

respectively; the first instruction for execution is taken from the address FFFFOH

in the memory. Hence, the locations from FFFFOH to FFFFFH in the memory are

reserved for storing instructions, execution of which causes the 8086 to jump to

the initialization program of the system. The memory locations 00000H-003FFH
are reserved for the interrupt vector table. These memory locations are assigned to

the ROM/EPROM chips in an 8086-based system, so that the programs stored in

them are permanent. The interrupt vector table may be located in the RAM chips

in some systems. The memory chips can be interfaced with the 8086 using only

logic gates, or using both logic gates and the decoder IC 74138. This is explained
in Sections 6.3 and 6.4.

6.3 INTERFACING RAM AND EPROM CHIPS
USING ONLY LOGIC GATES

When RAM and ROM/EPROM chips with the same or different storage capacities

have to be interfaced with the 8086, it can be easily done using logic gates. The

following example illustrates this concept.

Example 6.1

Interface two 8K x 8 EPROMs (2764) and two 8K x 8 RAM chips (6264) with the

8086 using logic gates, such that the memory address ranges assigned to them are
FCO00H-FFFFFH and 00000H-03FFFH, respectively.

Solution:
First, let us see the interfacing of the two 8K x 8 EPROM chips with the 8086,

so that they have the address range FCOOOH-FFFFFH. The addresses FCOOOH—-

FFFFFH are given in binary form in Table 6.2.

Table 6.2 Memory addresses assigned to the EPROM chips

A19 A18 A17 A16 A15 A14 A13 A12 A11 A10 A9 AB AT AG A5 A4 A3 A2 A1 AQ Address
1 1 1.1 1 1 0 0 0 0 000000000 0 FCOO0H
1 1y b ki 1. 40,0100 0,,.0:0 0.0 0 :0.0:0 0.1 FCOOIH

b sdeil- 4 bole@t @0 0. 0:00 02800 1.0 .1 -6« FEOORH

1t t 11 ¢t i@ 0 00U0® 6 0 000 0.1 1/PFPCOO3H

dl AR SR N BEE R (R SRR A S SO B S O e G VO L R N D v 0

214 Microprocessors and Interfacing

It can be noted from Table 6.2 that even addresses such as FCO00H, FC002H, and

FCO04H are assigned to one 8K x 8 EPROM chip (say, 2764-A), which acts as an

even memory bank and odd addresses such as FCO01H, FC003H, and FCO05H are

assigned to another 8K x 8 EPROM chip (say, 2764-B), which acts as an odd memory

bank. Since the address line A0 is 0 for all even addresses, it is used to generate the

Chip Select or Chip Enable signal for 2764-A, along with some of the higher-order

address lines of the 8086. Similarly, BHE is used along with some of the higher-order
address lines of the 8086 to select the odd memory bank formed by 2764-B.

First, the number of address lines in the 8K x 8 EPROM chip is noted, which is

13 (A12-A0) since 2"*= 8K. The address lines A1-A13 of the 8086 are connected

to the address lines A0O-A12 of 2764-A and 2764-B, since the address line A0

of the 8086 is used for selecting the even memory bank. The remaining address

lines A19-A14 of the 8086 are used for address decoding. Figure 6.5 shows the
interfacing of two EPROM chips with the 8086.

MEMR

BHE
/ A0

Al19
AlB

/AALT
%AIG

Al5 L
Al4 I

OE CE CE OE Al3 ; K A13 i

Al2 | j w12 |
8086 All All

/ : : g(“-g © 2764-B
A - b 4 8

% : EPROM L
A2 . A Al
Al oy Al [G

3 AY D7-DO g D7-D0
13

D7 8 Even 0Odd
DO bank bank 8

%(D15

¢4 D8
Circuit for address/data bus demultiplexing and control signal generation

Fig. 6.5 Interfacing EPROMs with the 8086 using logic gates

Since all the address lines A14—A19 are 1 for the addresses FCOOOH-FFFFFH,

these address lines are directly connected to an AND gate to produce the output

‘1’. The AND gate output and the inverted A0 signal are given to a NAND gate

and the output of this NAND gate is connected to the chip enable pin of 2764-A,

which is the even memory bank. Similarly, the same AND gate output and the

inverted BHE signal are given to another NAND gate, whose output is used to

select the 2764-B chip, which is the odd memory bank.

Memory and I/O Interfacing 215

When the 8086 wants to access a byte from any odd address in the address

range FCOOOH-FFFFFH, the value in the address lines A1-A13 of the 8086 is

used to select one of the locations within 2764-B, as A1-A13 of the 8086 are

connected to AO—A12 of 2764-B. The address lines A14—-A19 contain the value

1, which makes the AND gate output 1. The 8086 now activates the BHE signal

(i.e., BHE is made 0), due to which the CE pin of 2764-B goes low and is selected.
Since A0 = 1 for odd memory addresses (as it is the LSB of the address), CE of

2764-A is high and is not selected.
When the 8086 wants to access a byte from any even address in the address

range FCOOOH-FFFFFH, the values in the address lines A1-A13 and A14-A19

are used for the purposes we have just discussed. Now, the address line A0 is 0

while the 8086 sends out an even address. BHE is made 1 by the 8086. Due to

this, CE of 2764-A is made low and is selected. Since BHE = 1, CE of 2764-B is

in high state and is not selected. While accessing a byte from either an odd or an

even memory bank, the 8086 activates MEMR after sending the memory address

to get the data.
When a word (16-bit data) whose lower-order byte is stored in an even address

is accessed by the 8086, both AQ and BHE are made 0, due to which both the chips

are selected. One byte from each memory bank is placed in the data bus (D15-D0)

when the 8086 activates the MEMR signal. The 8086 processor then reads the

entire word in the data bus. For example, if the 8086 wants to read the word whose

lower-order byte is stored in the address FFFFEH, all the address lines (A1-A19)

of the 8086 contain 1. A0 and BHE are made 0. This makes the AO—A12 lines of

both the memory chips 1 and the CE input to both the chips 0. Due to this, the data

in the last memory location in both the chips are placed in their data buses, when

the MEMR signal is activated by the 8086.
Now, let us discuss the interfacing of the two 8K x 8 RAM chips with the 8086,

so that they have the address range 00000H-03FFFH. The addresses 00000H-

03FFFH are given in binary form in Table 6.3.

Table 6.3 Memory addresses assigned to the RAM chips

19 A18 A1T A16 A15 A14 A13 A12 AT1 A10 A9 AB AT A6 A5 A4 A3 A2 At AD Address
00 . 0:2 00 10 00 A0 1040707007070 0. 01000500000 H

0--0"0 "0-0 0 00 0 0 _0°0-00°0 0-9-0"0"1-00001E

0..,0.0.0.0.0.0:0:0 00400 0020 0.0:1 0.00002H

O: e 1507407505300 -0 000 25 0+ 70 50:70--0:::0::02,:0 (0371, :1:-:00003H

0 50 Onsali+ 40,050y wlsgg o1 5 S Losdednilos ks (el 120 03RFEH

Ot 02 503 01 = 7000 T R 2L i BTNk 113 Fo e sl s 003FFRH

The even addresses such as 00000H and 00002H are assigned to one 8K x 8 RAM

chip (say, 6264-A), which acts as an even memory bank and the odd addresses

216 Microprocessors and Interfacing

such as 00001H and 00003H are assigned to another 8K x 8 RAM chip (say, 6264-

B), which acts as an odd memory bank.

As discussed in the interfacing of the EPROM chip, the inverted A0 line
and the output of the address decoder formed using the AND gate are given to a
NAND gate, and the NAND gate’s output is connected to the CE input of 6264-A.

The inverted BHE line and the same address decoder output are given to another
NAND gate, and the output of that NAND gate is connected to the CE input of
6264-B. The interfacing of the RAM chips with the 8086 is shown in F ig. 6.6.

8086

T
R

: . tl
3l al

Fig. 6.6 Interfacing RAM chips with the 8086 using logic gates

Since the address lines A14-A19 contain 0 for the addresses 00000H—03FFFH,
the signals in these lines are inverted and then given to the AND gate, so that

they produce an output of 1 for the same addresses. This AND gate output and
the inverted A0 signal through the NAND gate activate the CE input of the even

memory bank. The same AND gate output and the inverted BHE signal activate

the CE input of the odd memory bank. The CE input of both the memory chips are
activated when the 8086 wants to access a word whose lower-order byte is stored
in the even memory bank.

The MEMR signal of the 8086 is connected with the OE (Output Enable) input.
The 8086 activates the MEMR signal while reading a byte or word from the RAM,
after sending the address through the address bus. The MEMW signal of the 8086

is connected with the WE (Write Enable) input. The 8086 activates the MEMW
signal while writing a byte or word in the RAM after sending the address through

the address bus and placing the data in the data bus.

Memory and I/O Interfacing 217

6.4 INTERFACING RAM/EPROM CHIPS USING DECODER IC
AND LOGIC GATES

When RAM/EPROM chips with the same storage capacity have to be interfaced

with the 8086, the interfacing can be easily done using a decoder IC and logic

gates. The following examples illustrate this concept.

Example 6.2

Interface two 8K x 8 EPROM chips with the 8086, such that the memory address

range assigned to them is FCOOOH-FFFFFH, using an address decoder made up

of the 74138 IC and logic gates.

Solution:

The 13 address lines AO—A12 in the 2764 are connected to the address lines

A1-A13 of the 8086. For the entire address range FCOOOH-FFFFFH, the value

in the address lines A19—A14 is equal to 1. The address lines A19—A15 are used

to enable the 74138 decoder IC, and the address lines A14, A0, and BHE are

connected to the selection lines of the 74138 IC.

Figure 6.7 shows the interfacing of the EPROM chips with the 8086 chips

using the 74138 decoder. For simplification, only the decoder and EPROM chips
are shown in the figure. The connection of the EPROM chips with the 8086 is the

same as in Example 6.1.

Yo Yhe Y3551 e Decoder—
outputs

b—— YO
< b—— Y1 - MEMR
74138 P Y2 b e ——L—L—’__ S

~decoder p—— Y3 CE OE oX e
e Y
b Y5

CMSB) b v6 2764-A Z1en
B , p—r— N7
A (LSB)

Gl G2A G2B Even Odd bank
ey bank '

 AI9AIBAITAIGALS

" Fig.6.7 Interfacing EPROM chips with the 8086 using 74138 decoder

When the address lines A19—A14 are 1, the decoder is enabled. The selection

of a particular EPROM chip under that condition is explained in Table 6.4.

When wewant to interface more RAM and EPROM chips of the same capacity

with the 8086, we can use two separate decoders (74138), one for accessing the

lower bank and the other for accessing the upper bank. A0 and BHE are used to
enable the two decoders.

218 Microprocessors and Interfacing

Table 6.4 Selection of EPROM chips

. : | CEOF | CEOF |
BHE A0 A“EYS Y3 Y1 | 2764-A | 2764-B Opgrafion

0 0 1 1 10:0 L0 ' A word is read from the memory.

0 1 1 : 1 0 1 : 1 L0 i A byte is read from the odd memory bank.

1 0 1 :0 11 10 'l LA byte is read from the even memory bank.

Example 6.3

Interface four 8K x 8 RAM chips (6264) with the 8086, to assign the address range

80000H—87FFFH using two 74138 ICs.

Solution:

The addresses assigned to various memory chips are written in binary form as

shown in Table 6.5.

Table 6.5 Addresses assigned to various memory chips

Address in
hex

(For

6264-1L)

1 0o 0o 0 00 00 0 0 0OOOOOUOOGO 0 80000H

1 0 0 0 0 0 0 0 0O 0 OOOOOUOOOT1T O 80002H

A19 A18 A17 AT6 A15 A14 A13 A12 A1 A10 A9 AB AT A6 A5 A4 A3 A2 A1 A0

1 0o 0 0 0 0 060 0 0 00O0OO0OOOO®OTO 1 80001H

1 o0 0 0 00 00 O 0 O0O0OOOOOOOT1 1 80003H

6264-2L)

1 0 0o 0 01 00 0 0 0O0OO0OOTOOOGOO 0 84000H

1 0 0 0 01 0 0 0 0O O0OOOOOGOOOT1 0 84002H

Il 000 01 1 1 1 1 111111111 1 8FFFH

Memory and I/O Interfacing 219

Here, 6264-1L and 6264-2L are the RAM chips forming the lower banks.

6264-1H and 6264-2H are the 6264 RAM chips forming the higher banks.

For simplification, only the decoder and RAM chip connections are shown in
Fig. 6.8. The connection of the RAM chips with the 8086 is as explained in

Example 6.1.

Y0
Y1 l

74138-1 Y2b— i JE

Al6—C(MSB) Y3p— CE CE

Al5—B %b—
Al4—A(LSB p—— ,

W e W opm 626421 | ook | 6264-1L
- Y7p—

‘ D7-D0 D7-D0
Gl G2A G2B To D7-D0 - / [

Al19 |_’_| of 8086 /g

Alg A0

Al7 BHE

Glm@ng

Y1
74138-2 Yob— = 19

Al6—C Y 3P CE CE |

= Al5—B Rl —
i

o Ald—A Yope== 0dd
91 Y6p— 6264-2H | bank | 6264-1H

' Y7p—
D7-D0 D7-D0

To D15—D8 % i} J

5 of 8086 /g

Fig. 6.8 Interfacmg RAM chlps usmg two 74|38 decoders

The data for selection of the different chips is shown in Table 6.6.

Table 6.6 Data for selection of different RAM chips

M9 A8 A17 | A6 A5 A14 0 A0 BHE | RAM chipsand byteword
W 1 2 HEDN i selected

I 0 0 {0 0 0 {0 0 ! 6264-ILand6264-1H;
: a word is read/written

I 0eg 038 0oui 00000 £40 . (1, 1 6264-1L; a byte is read/
§ : ' written

I 0 0 {0 0 0 1 0 | 664IHabyteis
E i read/written

L0 0 {0 0 1 10 0 | 6642Land6264-2H;
& : a word is read/written

: . B 2D - ! 0 1 | 6264-2L; a byte is read/

§ : | written

; " Ozrr i+ . el 0 E 6264-2H; a byte is

— ' : »read/written

220 Microprocessors and Interfacing

6.5 /0 INTERFACING

In this section, the operation of I/O instructions (IN and OUT), the concept of I/O-

mapped I/O and memory-mapped /O, and the interfacing of simple I/O devices

such as DIP switches and LEDs with the 8086 are discussed.

6.5.1 1/O Instructions in 8086

The IN instruction is used to read data from an input device to AL or AX in the

8086. The OUT instruction is used to send the data in AL or AX to an output

device. The I/O device’s address is stored either in the register DX as a 16-bit I/O

address or in the byte immediately following the opcode of the IN/OUT instruction

as an 8-bit I/O address. Table 6.7 lists all versions of the IN and OUT instructions

in the 8086.

Whenever data are transferred using the IN or OUT instruction, the I/O device’s

address, often called port number, appears on the address bus. The external /O

interface decodes this address to select a particular I/O device. The 8-bit fixed port

number appears on the address lines A7-A0, with the address lines A15-A8 as

O0H. The address lines A15—A19 are undefined for an I/O instruction. The 16-bit

port number in DX appears on the address lines A15-A0.

Table 6.7 Input/output instructions in the 8086

(nstucton Operaton
IN AL, XXH Read a byte from the input device with address XXH and store it

in AL.

IN AL, DX Read a byte from the input device with the address specified by

DX and store it in AL.

IN AX, XXH Read a word from the input device with the address XXH and

store it in AX.

IN AX, DX Read a word from the input device with the address specified by

DX and store it in AX.

OUT XXH,AL Send a byte from AL to the output device with the address XXH.

OUT DX, AL Send a byte from AL to the output device with the address

specified by DX.

OUT XXH,AX Send a word from AX to the output device with the address XXH.

OUT DX, AX Send a word from AX to the output device with the address

specified by DX.

6.5.2 1/0-mapped and Memory-mapped I/O

Similar to the 8085, there are two methods for interfacing I/O devices with the

8086—1/O-mapped I/O and memory-mapped I/O schemes. In:I/O-mapped

I/O scheme, the IN and OUT instructions are used to transfer data between the

microprocessor and the I/O devices. In memory-mapped I/0O, any instruction that

references the memory can be used to transfer data.

Memory and I/O Interfacing 221

6.5.2.1 /1O-mapped I/O

The most common I/O data transfer technique used in the Intel microprocessor-

based system is I/O-mapped 1/O; it is also called isolated I/O scheme. The term
isolated indicates that the I/O locations are isolated from the memory system in a

separate I/O address space. Figures 6.9 (a) and 6.9 (b) show both the isolated I/O

and memory-mapped I/O address spaces for the 8086.

Address , Address Address Address |

FFFFFH FFFFH FFH FFFFFH

(or) 2

RIS IM B "

00000H| bits | and 0000H 00H 00000H
- Memory 1/0 /0 : Memory +1/O ;

rse ee——— : e P ——E———

Fig.6.9 Memory and /O maps for the 8086 (a) I/O-mapped I/O (b) memory-

mapped I/O

The address for isolated I/O devices, called ports, is separate from the memory

in the isolated I/O scheme. As a result, the user can expand the memory to its full

size (i.e., 1 MB) without using any of its address space (00000H-FFFFFH) for /O

devices. A disadvantage of I/O-mapped /O is that the data is transferred between
the 8086 and the I/O devices only by the IN and OUT instructions. Separate control

signals for the I/O devices are generated, which indicate an I/O read or an /O

write operation. The generation of the JOR and IOW signals in the minimum mode

operation of the 8086 is shown in Fig. 6.10. In the maximum mode operation of

the 8086, the TOWC and TORC signals generated by the 8288 bus controller are

used to interface the I/O devices with the 8086.

—_—

BB WR - MAO SESa o

,‘ EE | o——— [OW

RS &

of the 8086

6.5.2.2 Memory-mapped 110
The memory-mapped I/O scheme does not use the IN and OUT instructions. Any
instruction that transfers data between the microprocessor and the memory can

be used for transferring data between the 8086 and the I/O devices. The main

222 Microprocessors and Interfacing

advantage of this scheme is that there are many memory transfer instructions in

the 8086 and all of them can be used to access the I/O device. The same control

signals used for accessing the memory (MEMR and MEMW in the minimum

mode and MRDC and MWTC from the 8288 in the maximum mode) are used for

accessing the I/0 devices. This reduces the additional circuitry needed to generate

the control signals. The main disadvantage of the memory-mapped I/O scheme

is that a portion of the memory system is used as the I/O map. This reduces the

amount of memory available to the applications.

6.6 INTERFACING 8-BIT INPUT DEVICEWITH 8086

To interface an input device with the 8086, three-state buffers are used. A typical

example for a three-state buffer IC is the 74L.S244. Let us consider the interfacing of

an 8-bit DIP switch with the 8086 using the 74LS244 IC. Depending upon whether

an 8-bit or a 16-bit address is to be assigned to the DIP switch, the construction

of the address decoder differs. The address decoder can be constructed only using

logic gates or a combination of logic gates and decoder ICs such as the 74LS138.

6.6.1 Assigning 8-bit Address to 8-bit Input Device using

Address Decoder having only Logic Gates

Let us interface an 8-bit DIP switch with the 8086 operating in the minimum

mode, such that the address assigned to it is 8FH, using an address decoder having

only logic gates. Figure 6.11 shows the required interfacing circuitry. When the

8086 has to read the data from the 8-bit DIP switch, the instruction IN AL, 8FH or

IN AL, DX with DX already loaded with the value 008FH has to be executed by

it. During the execution of any one of these instructions, the address lines A7-A0

contain 8FH and the IOR signal is made low for some duration (a few ps) by the

8086. As a result, the enable inputs (1G and 2G) of the 74L.S244 are activated (i.e.,

made low), and the data from the DIP switch is placed on the data bus (D15-D8).

The 8086 reads that data and places it in the AL register. The data bus D7-D0 of

the 8086 is used if the I/O device address is an even number. The reason for this

is explained in Section 6.9.

6.6.2 Assigning 8-bit Address to 8-bit Input Device using
Address Decoder IC 74LS138

In Fig. 6.11, if we want to assign the address 8FH to the DIP switch using an
address decoder IC such as the 74LS138, the design of the address decoder is

done as shown in Fig. 6.12. When the 8086 places the address 8FH (10001111 in

binary form) in the address lines A7-AO0, the inputs C=B=A=1, Gl =1, and

G2A =G2B =0 in the 74L.S138 IC, due to which the decoder IC is enabled, its Y7
output goes low, and other outputs remain high. This Y7 output of the decoder IC

along with the IOR signal of the 8086 is used to enable the 7418244 IC, thereby

transferring data from the DIP switch to the AL register of the 8 when the

instruction IN AL, 8FH is executed. The same decoder IC’s other outputs (i.e.,
Y0-Y6) can be used to assign the addresses 88H-8EH to other I/O devices.

Memory and I/O Inter'facing 223

— e BT PN Y s

Flg 6.12 Address decoder using 74LSI38 IC

€ S T

45V

10K 333

: < . DI5 / e /
1A2 |« < 2]

Z" L / 1Y2

/ . ¥ 7

/ < 2Y4 2A4 < 8086 % e
/ A7 7415244 o

Zhss : 4

72 3 /A:,

/ A / A0

Z—»JD—R
8 b1t DlP sw1tch !

Fig.6.11 Interfacmg an 8-bit DIP switch with the 8086 (8-bit address)

A2 c (MSB) YOP——— 88H
Al
5o A (LSB) Ylp———— 89H

2P 8AH

¥3p———+=r— SBH

YA~ RCH
From
8086 A3 L. TAESISE. iy ah i ks SRl

Yo7 3BH

Y7 8FH

Ad G2A Inverter To

A5 1G and 2G
A6 G2B of 74LS244

- f
IOR {>o——-

224 Microprocessors and Interfacing

6.6.3 Assigning |6-bit Address to 8-bit DIP Switch using

Address Decoder having only Logic Gates

The interfacing of an 8-bit DIP switch with the 8086, such that the address assigned

to the DIP switch is FFFOH, is shown in Fig. 6.13.

5V
10K 333

7 e D1 8/ 1y1 1Al (< /

%~ = / e 2 i

%@ : 2v4 21;4 ‘
7 po / ;
/AIS 7418244 o

%, 1431 v =
G

' ézfli >_1D_E§G 8086 LY
2

5 %AZ‘D"‘A L 8-bit DIP switch

-]
% T

Fig.6.13 Interfacing an 8-bit DIP switch with the 8086 (16-bit address)

When the 8086 executes the instruction IN AL, DX with DX already loaded

with the value FFFOH (this is done using the MOV DX, FFFOH instruction), it

places the address FFFOH in the address lines A15-A0 and activates the JOR

signal for some duration (a few ps). This makes 1G and 2G of the 7415244 low,
thereby enabling the 74L.S244. Data from the DIP switch is placed in the data bus

(D7-D0) of the 8086. The 8086 reads that data and places it in the AL register.

The 16-bit address decoder can be designed using a combination of logic gates and

decoder ICs (74LS138), as explained using the 8-bit address decoder.

6.7 INTERFACING 8-BIT OUTPUT DEVICEWITH ‘

To interface an output device with the 8086, latches are used. A typical example

of an octal latch IC is 74LS373. Figure 6.14 shows the interfacing of a set of 8

LEDs with the 8086 using the 74L.S373 IC. Either an 8-bit or 16-bit address can be

Memory and |/O Interfacing 225

/ » D7 Q7 F—W—P—

= >1 D6 Q6 —W—f—

: /] Q5 — M

DO / Q4 —MW—P——

74LS373 31— w4

3)
Q2 —W——

A3 }@‘CLK oA
=1 >0 Ql —MW—p— A2

>0 A
Ao 0 F——WW——— A0, | Q

%

| s0s

s i TR0
IOW

\\
\\

\\
\\

\\
\\

\\
\\

\\
\\

\\
\\

1
8

e

~ Fig.6.14 Interfacing eight LEDs with the 8086 (8-bit address)
assigned to the set of LEDs, as explained in the interfacing of input devices with
the 8086. The address decoder can be constructed either using only logic gates or
using a combination of logic gates and decoder ICs such as the 741.S138.

Let us discuss the interfacing of an 8-bit output device having an 8-bit address

with the 8086. In Fig. 6.14, the address assigned to the LEDs is FOH. When the
8086 has to send the data in the AL register to the LEDs, either QUT FOH, AL or

OUT DX, AL with DX already loaded with the value 00FOH has to be executed by

it. During the execution of any one of these instructions, the address lines A7—A0Q

contain FOH and the data lines D7-DO contain the data in the AL register. The TOW
signal (assuming that the 8086 is operating in minimum mode) is made low for some
duration (a few ps) by the 8086. This activates (i.e., makes high) the clock (CLK)
signal of 74L.S373 IC. The data in the data bus D7-D0, which is the content of the
AL register, is latched in the 74LS373 IC and held there until the OUT instruction
with the same address is again executed by the 8086. The OC pin in the 74L.S373 IC

is made low to enable the tri-state inverter connected to each output pin.

6.8 INTERFACING PRINTERWITH 8086

There are different types of printers available today, such as the dot matrix printer,

line printer, inkjet printer, and laser printer. The dot matrix printer uses print heads
that contain pins arranged in matrix form. These pins can print characters in one

of the fol matrix formats: 5 X 7, 7 X 7, or 9 x 9. Line printers differ from

dot mafli’ers in that they print line by line and not character by character.

The inkjet printer reproduces digital images by propelling ink droplets of variable

size onto a page. The laser printer produces high quality text and graphics on plain
paper, at a very high speed. Like digital photocopiers, laser printers employ
a xerographic printing process. However, they differ from analog photocopiers

226 Microprocessors and Interfacing

in that images are produced by the direct scanning of a laser beam across the

printer’s photoreceptor.

The printer can be interfaced with a microprocessor through a serial or a

parallel interface. The serial interface normally used is the RS-232C standard,

When the serial interface is used, the printer receives the data bit by bit from

the microprocessor and stores it in its internal input buffer. The input buffer can

normally hold the characters for one line to be printed. On receipt of the print

command from the microprocessor when its input buffer is full, the printer sends

the Busy signal to the microprocessor and starts printing the characters.

In the parallel interface, the printer is connected with the microprocessor througha

set of data lines (seven or eight bits) and control lines. The microprocessor places the

data to be sent to the printer in the data lines and activates a strobe signal. The printer

accepts the data, stores it in its internal buffer, and then sends an acknowledgement

signal to the microprocessor. The printer also sends status signals such as Busy,

PE (paper exhausted), and Error to the microprocessor, which are used to identify

the readiness of the printer for data transfer. Most of the printers accept the data in

ASCII (American Standard Code for Information Interchange) form. Data transfer

through a parallel interface is faster and simpler than that through a serial interface.

The Centronics interface is a popular parallel interface that is used for interfacing the

printer with the microprocessor and is named after the manufacturer of the Centronics

printer, who introduced it. Table 6.8 shows the pin number and the description of

various signals in the Centronics printer connector.

Table 6.8 Pin connections and signals in the Centronics interface

PlnSignal e Direction of signal Description of signal

no. e (with respect to

S o ~the printer) :

1 STROBE Input When the STROBE signal goes low, the

printer reads the data in the data lines

and stores them in its internal buffer.

The minimum low state (i.e., 0) duration

of the STROBE signal must be 0.5 ps.

2-9 DATAI-DATAS Input This represents the data (eight bits) to be

printed in the printer.

10 ACK Output When the printer has received data and
~ is ready for next data, it makes the ACK

signal low (i.e., 0) for a minimum period

of 5 ps.

11 Busy Output The Busy signal is high (i.e., 1) when

the printer is unable to r data. It is

high during data entry i printer,

during printing operation, when the

printer is in offline state, or when it is in

error state.

(Contd)

Memory and I/O Interfacing 227

Table 6.8 Pin connections and signals in the Centronics interface (Contd)

Directlon on .éignal D_escription of signal

-~ (with respectto ¢
~ theprinter) e e e

12 - PE Output If the printer is out of paper, the PE

signal goes high.

13 SLCT Output When the printer is in selected state,

SLCT is high.

14 AUTOFEEDXT Input When this signal is low, the paper is
automatically fed one line after printing.

15 - NC : — Not used

16 0V - Logic ground level

17 CHASSISGND - Printer chassis ground. In the printer,

the chassis ground and logic ground are

isolated from each other.

18 NC - Not used

19- GND - This is the twisted pair return (ground)

30 signal for the STROBE, DATA, ACK,

Busy, and PE signals.

~:317 INIT Input When the INIT signal is made low (for
more than 50 ps), the printer controller

is reset to its initial state and the printer

buffer is cleared.

32 ERROR Output This signal goes low when the printer
is in ‘offline state’, ‘paper end state’, or

‘error state’.

33 GND = Ground

34 NC - Not used

35 . £5V. Output This signal is pulled up to +5V through

a 4.7 kQ resistor.

36 SLCTIN Input Data entry to the printer is possible only

when this signal is low.

Figure 6.15 shows the timing diagram of the important signals involved in
interfacing of the Centronics printer with the microprocessor. When the Busy
signal is 0, which means that the printer is ready for accepting the character from
the micro sor, the microprocessor places the ASCII code of a character or the
code of 1 command in the data lines (DATA1-DATAS). After a minimum

time of 0.5 ps, it activates the STROBE signal (i.e., makes it 0) for a minimum

period of 0.5 ps. The data in the data lines is kept at the same value for a minimum
period of 0.5 ps after the STROBE signal is deactivated (i.e., made 1). When the
STROBE signal is activated, the Busy signal from the printer immediately goes

228 Microprocessors and Interfacing

high (i.e., becomes 1). It remains high until the printer sends the ACK signal,

as shown in Fig. 6.15. This is done because the microprocessor should not send

another data to the printer before the first data is processed in the printer. During

the rising edge of the ACK signal, the Busy signal goes low (as shown in Fig. 6.15)
and now, another data can be sent to the printer.

Busy- - ‘ W I

+ T]

ACK

Data Valid data

i v B
'STROBE : "”i“'“

Sps(approx) T2 = OSps(mm),T3 05us(m1n)T4 OSps(mm)

s g

F|g 6 I5 Tlmlng dlagram of |mportant SIgnaIs in the Centronlcs printer mterface

Table 6.9 indicates the signals that are mainly required for interfacing the

Centronics printer with the microprocessor. There are totally ten output signals

that have to be sent from the microprocessor to the printer and four input signals

that have to be received by the microprocessor from the printer. Microprocessors

such as the 8085 and the 8086 can use one 8255 IC (programmable peripheral

interface) to interface a Centronics printer.

Table 6.9 Signals needed to interface the Centronics printer with the microprocessor

,fSignal descnptlon Signainame ~ Inputoutput (with respect.
5 Dienee e B , ~ tothe microprocessor)

Datalines ~ DATAI1-DATAS 8 il Output |
Strobe STROBE 1 Output

Acknowledge ACK 1 Input

Busy Busy 1 Input

Error ERROR 1 Input

Paper exhausted PE 1 Input

1 Initialize INIT Output

Figure 6.16 shows the interfacing of 8086 microprocessor with.Centronics

printer using one 8255 IC. It shows the main signals involved in the data transfer.

In Fig. 6.16, port A is used to send the data (eight bits) to the printer and hence

it should be configured as an output port. Port B is used to send the INIT and

Memory and I/O Interfacing 229

[——

PAT el o T

PA6 — 31 D6

PAS ——>I D5
PA4 ——-u i D4

PA3 ——-—>ID3

PA2 ——— > D2
8255 PA.1 > D1 Cent_ronics g

PAO 56 printer v

PB.1 > INIT
PB.0 » STROBE
PC.3 |« PE

PC.2 [« ERROR
PC.1 |« BUSY
PC.0 |« ACK

GND GND FGND

Fig.6.16 Interfacing the Centronics printer with the 8086 using the 8255

STROBE signals to the printer and hence it should be configured as an output port.
Port C is used to receive status signals such as ACK, Busy, ERROR, and PE from
the printer and hence it should be configured as an input port.

The complete sequence of steps to be carried out in software, for the Centronics
printer to print a message having several lines, is given in the flowchart shown
in Fig. 6.17. The ASCII code of various characters in the message to be printed
is first stored in some portion of the RAM in the microprocessor system. The
microprocessor has to send the ASCII code of characters in the RAM to the printer
one by one, with the line feed and carriage return characters (OAH and ODH,

respectively) as the last code. Printers are often capable of executing commands

that are sent through the data lines by the microprocessor. The difference between
the data and the command is achieved by means of escape (ESC) codes. Whenever

the microprocessor sends an ESC code, the printer interprets the following code as

a command. Such commands are needed to specify the desired font, the size of the

margin, the line spacing, etc., in the message that is printed.

6.9 INTERFACING 8-BIT AND 16-BIT I/O DEVICES

OR PORTSWITH 8086

Let us see how data are transferred between the 8086 and 8- or 16-bit I/O devices.

Data transferred to an 8-bit I/O device or port exists in one of the I/O banks of the

8086. The I/O system contains two 8-bit I/O banks, just like the memory system
of the 808 is is shown in Fig. 6.18, which indicates the separate I/O banks

for a 16- . When an 8-bit address is used for I/O devices, the even bank

contains e dresses such as 00H, 02H, and 04H and the odd bank contains

odd addresses such as 01H, 03H, and 05H. When a 16-bit address is used for I/O
devices, the even bank contains even addresses such as 0000H, 0002H, and 0004H

and the odd bank contains odd addresses such as 0001H, 0003H, and 0005H.

230 Microprocessors and Interfacing

s
'Y

Reset printer (INIT = 0)

Yes
Send paper exhausted

message
to the operator

Send one character on
DATA1 to DATAS

Has the last
character in a line

been sent?

Yes

Send print command
0AH followed by 0DH

Have the
characters in the

last line
been sent?

Stop

- o Em —— o

Fig.6.17 Software sequence for interfacing the Centronics printer with the
microprocessor

An 8-bit I/O device having an even address is connected to the s D7-D0

of the 8086, and a device having an odd address is connected to D15-D8 of the

8086. A 16-bit I/O device is connected to the data bus D1 5-DO0 of the 8086. When

address line A0 is 0, the even I/O bank is accessed and when BHE is 0, the 0dd /O

bank is accessed.

BHE=0 Address A0=0

FFFFH

High or odd Low or even
bank bank

DiSe D8 D77 d DO

Flg 6.18 I/O banks in an 8086 based

system with |6-bit addresses

Since two I[/O banks exist,

separate write strobes to function correctly. These are generated as shown in

Fig. 6.19. /O read operations do not require separate read strobes because as with

the memory, the 8086 only reads the byte it expects and ignores the other byte.

Figure 6.20 shows a system that contains two different 8-bit output devices
located at the 8-bit I/O addresses FOH and F1H. Since these are 8-bit devices and

appear in different I/O banks, separate I/O write signals are needed. In Fig. 6.20,

the connections of only the address decoder and the 74LS373 ICs are shown. The

remaining connections to the 8086 are the same as in Fig. 6.14.

IOWH

8 e P

T Y YR T Ny AT

Fig.6.20 1/O port decoder to select 8 bit output ports FOH and FIH

>__

Memory and I/O Interfacing 231

IOW — ki L
IOWH

BHE =

IOWL
A0

IOWH—Write strobe for high I/O bank

IOWL—Write strobe for low I/0O bank

Flg 6 I9 Generatlon of write

strobes for 1/O banks

any 8-bit I/O write operation requires

DI5 8 b7 Q——
D14 D6 Q6——

Port F1H

D8 DO QO}b———

74LS373
CLK .

0C

8 D7 D7 QI——
D6 D6 Q6}———

: Port FOH

DO DO QOf———

74LS373
CLK

o~

__>__4

- -

232 Microprocessors and Interfacing

Another way to interface an 8-bit output device having an even address with

the 8086 is using the address line A0 along with the remaining address lines (A7-

Al for 8-bit address and A15—-A1 for 16-bit address) in the address decoder and

directly using the IOW signal as shown in Fig. 6.14. Similarly, to interface an 8-bit
output device having an odd address with the 8086, the BHE line is used instead

of the address line A0. The other steps remain the same as for an output device

having an even address.

When selecting 16-bit wide I/O devices, the A0 and BHE pins have no function
because both I/O banks are selected together. To interface the 16-bit ADC or DAC

ICs with the 8086, 16-bit ports are needed. Here, two successive addresses are

assigned for the same I/O device. One address is an even number such as 00H

(for 8-bit address) or 0000H (for 16-bit address), where the lower-order byte of

the 16-bit data is present. The other address is an odd number such as 01H (for

8-bit address) or 0001H (for 16-bit address), where the higher-order byte of the

16-bit data is present. In the IN or OUT instruction, only the address of the lower-
order byte of the 16-bit data is specified either directly or implicitly through DX

Figure 6.21 shows the interfacing of a 16-bit innut device connected to function

at the 8-bit I/O addresses F4H and F5H. In the figure, only the connections for the
address decoder and the 741.S244 ICs are shown. The remaining connections to

the 8086 are as shown in Fig. 6.11. Using the instructions IN AX, F4H or IN AX,

DX with DX already loaded with the value 00F4H, the data from the 16-bit input

port can be read and placed in AX.

To 8086 D15 8 Ty IAlle—
, D14 1Y2 TADjEL ;

2 ’ : : ; PortFSH |

D8 2Y4 A4 f——— :

IOR v
1G 741.5244

S
‘From 8086 i

A7
A6
A5 8
s D7 1Y1 1A] l&e—
232 — o D6 1Y2 TADbE =

Al s . . Port F4H

DO 2Y4 ARl
To 8086 BT ?

9 1G 7415244 ,
2G

il L e (o i o i it AN T

Fig.6.21 16-bit input port decoded at I/O addresses F4H and F5H

Memory and I/O Interfacing 233

6.10 INTERFACING CRT TERMINALWITH 8086

- The CRT (cathode ray tube) terminal uses the RS-232C interface for communication

with the microprocessor. Three signals in the RS-232C—TXD, RXD, and GND—

are mainly used for interfacing the CRT terminal with the microprocessor. TXD

is used for transmission of data from the CRT to the microprocessor and RXD

is used for receiving data from the microprocessor into the CRT. The GND

(ground) signal in the CRT interface is connected to the GND (ground) signal in

the microprocessor. The RS-232C interface transmits or receives data by serial

communication, i.e., one bit of data is transmitted or received at a time. Each byte

of data transmitted or received by the RS-232C interface is enclosed by one start bit

and 1, 1.5, or 2 stop bits. Figure 6.22 shows the RS-232C format for transmission

or reception of one byte of data, 4DH (which is equal to 01001101 in binary form),

with one start bit and two stop bits. When no data is transmitted or received, the

TXD and RXD lines remain high. In the RS-232C standard, any voltage between

+3V and +12V in the data lines (TXD and RXD) is used to represent binary 0

and any voltage between =3V and —12'V is used to represent binary 1. Due to this

reason, the RS-232C standard is said to be using negative true logic.

Start :
TE T SRS | 0

l l ; - Time

‘12V~—J ‘_J ; QA 1 SR 1 1

PO Dl D2:P3::D4::D5 ::D6. - DT Stop

\

Fig.6.22 RS-232C format for transmission or reception of a byte of data (4DH)

There are three methods by which a CRT terminal can be interfaced with the

miCroprocessor:
(1) Direct connection of the microprocessor with the CRT terminal

A microprocessor (e.g., 8085) that has facilities for serial input/output (through
its SID/SOD pins), can be directly connected to the CRT terminal through level

translators. The SID pin of the 8085 is connected to the TXD pin of the CRT

terminal; the SOD pin of the 8085 is connected to the RXD pin of the 8085

through level translators, as shown in Fig. 6.23. The reason for using the level

translators is the mismatch in the voltage levels for representing binary 1 and 0 in

the microprocessor and the CRT terminal. We already know that the CRT terminal

uses the RS-232C interface. Microprocessors such as the 8085 and 8086 use TTL

(transistor—transistor logic) standard, in which +5V is used to represent binary 1

and 0V is used to represent binary 0. The level translators convert the TTL signal

to an RS-232C signal and vice versa. One example for such a level translator that

is available in an integrated circuit (IC) form is MAX-232. Each MAX-232 can

convert two TTL signals to the corresponding RS-232C signals and two RS-232C
signals to the corresponding TTL signals.

234 Microprocessors and Interfacing

e 24 Level translator

SODV _ ~] (TTL to RS-232) RXD

: ‘8085
CRT terminal

i e Level translator |

b (RS-232 to TTL) =0

GND GND

R A

Fig. 6.23 Direct connection of the microprocessor with the CRT terminal

(ii) Connection of the microprocessor with the CRT terminal through serial-to-

parallel converter and parallel-to-serial converter

We can interface a microprocessor that does not have serial input/output

(e.g., 8086) with the CRT terminal using a serial-to-parallel converter, a parallel-to-

serial converter, and level translators, as shown in Fig. 6.24. Level translators are

used here because the serial-to-parallel converter and parallel-to-serial converter

operate only with TTL signals. The data (8 bits or 16 bits) that is transmitted from

the microprocessor through its data bus to the CRT terminal is first converted to

serial data using a parallel-to-serial converter and then sent to the CRT terminal

through the level translator, which converts the TTL signal into an RS-232C

signal. Similarly, the serial data that is transmitted from the CRT terminal to the

pins

| _ Databus | Serial-to- trLe‘l"?tl
K 1 parallel gy WOOSIOL L 4 XD

: wertor (RS-232 to | conve vor TTL)

- 8086
e 8086 3 CRT terminal

Level
Parallel-to- truhis

>serial convertor > (TTII? :gr —>» RXD

RS-232)

GND GND

e |

ig. 6.24 Connection of the microprocessor with the CRT terminal using seria|-

to-parallel converter and parallel-to-serial converter

Memory and I/O Interfacing 235

microprocessor, which is in RS-232C format, is first converted into a TTL signal

using a level translator, then converted to parallel data using a serial-to-parallel

converter, and sent to the microprocessor through its data bus.

(iif) Connection of the microprocessor with the CRT terminal through USART

(universal synchronous asynchronous receiver—transmitter)

There exists a special IC chip such as USART (IC 8251), which has a built-in

parallel-to-serial converter (eight bits) and a built-in serial-to-parallel converter

(eight bits). Figure 6.25 shows the connection of the 8086 microprocessor with the

CRT terminal through USART and level translators. The level translators are used

here because the USART operates only with TTL signals.

Level ;
translator :
®S232t0 [€]TXD

TTL)

CRT term'inal | ; :

Level
translator
TTL to —>| RXD

RS-232)

GND

Fig.6.25 Connection of the microprocessor with the CRT terminal using USART

The CRT terminal transmits or receives data at a fixed baud rate. Baud rate
represents the number of bits transmitted or received per second. There are some
standard values for baud rate, such as 600, 1200, 2400, 4800, and 9600. One of
these speeds can be selected in the CRT terminal by properly configuring certain
switches present in it. The microprocessor must also be programmed to the same
baud rate as the CRT terminal, for proper data transfer between them. The time
between transmitting or receiving two consecutive bits is known as bit time in

serial communication and it is the reciprocal of the baud rate. The required bit time

can be obtained using a delay program in the microprocessor. Based on the baud

rate input given to the microprocessor, the delay count used in the delay program

can be found using look-up table technique.

The microprocessor software that controls the data transfer between the

microprocessor and the CRT terminal does the following operations sequentially:

(i) During the transmission of data from the microprocessor to the CRT

terminal, the microprocessor first sends the start bit, then the data bits one
by one, and finally, the stop bit(s).

236 Microprocessors and Interfacing

(1) During the reception of data from the CRT terminal, the microprocessor

first checks whether start bit has occurred (i.e., whether RXD is made 0). If

start bit is received, then the microprocessor receives the data bits one by

one. Then it checks for the reception of stop bit(s).

The CRT terminal uses the parity bit along with the data, to ensure that the

transmission or reception of data does not involve any error. Some terminals use

odd parity and some use even parity. The number of 1s in the data is made odd

or even using the seventh bit of the data, depending upon whether odd or even

parity, respectively, is needed. The software in the microprocessor should be able

to generate odd or even parity data during transmission and check for the same

parity of data during reception.

POINTS TO REMEMBER

The maximum memory that can be connected with the 8086 is 1 MB, which is

organized as two separate banks—even/low memory bank and odd/high memory

bank.

The BHE signal is used to enable the odd memory bank and the data lines of the

odd memory bank are connected with the data lines D15-D8 of the 8086.

The address line A0 is used to enable the even memory bank and the data lines of

the even memory bank are connected to the data lines D7-D0 of the 8086.

When the lower-order byte of a word is stored in the even memory bank, the 8086

can access both bytes of that word in a single memory read cycle. Otherwise, it

takes two memory read cycles to read the same word. Therefore, while storing an

array of word type data in the memory or while initializing the stack, the lower-

order bytes of the words are stored in the even addresses.

There are two methods that can be used to interface I/O devices with the 8086—

memory-mapped I/O and I/O-mapped I/O.

In the memory-mapped I/O method, the I/O device is treated as if a memory

location and the instructions used for transferring data between the memory and
the 8086 can be used for data transfer between the 8086 and the I/O devices. The

MEMR and MEMW signals are used to activate the input device and output device,

respectively. The I/O devices have a 20-bit address in memory-mapped I/O and the

design of the address decoder is same as that of the memory address decoder.

The I/O-mapped I/O scheme is commonly used to interface I/O devices with the

8086. Here, there are two methods of addressing I/O devices—fixed port addressing

(in which the 8-bit address of an I/O device is specified in the IN or QUT instruction

directly) and variable port addressing (in which the 16-bit address of an I/O device

is specified in the IN or OUT instruction implicitly through the DX register). In
I/O-mapped I/O, only the IN and OUT instructions are used to communicate with

the I/O devices. The advantage of this method is that the user can fully utilize the 1

MB memory space, which is not possible in memory-mapped 1/O.

The 8086 can be interfaced with either an 8-bit or a 16-bit I/O port. The I/O space

in the 8086 is also organized as two separate I/O banks—odd and even I/0 bank,

Memory and I/O Interfacing 237

which is the same as the memory organization in the 8086. The odd I/O bank

contains odd I/O addresses and the data lines of the odd I/O bank are connected to

the D15-D8 lines of the 8086. The even I/O bank contains even I/O addresses and

the data lines of the even I/O bank are connected to the D7-D0 lines of the 8086.

The BHE signal is used to enable the odd I/O bank and A0 is used to enable the

even /O bank, which is the same as the process for enabling the memory in the

8086. The IOR and IOW signals are used to activate the input and output devices,

respectively, in the I/O-mapped I/O scheme.

KEY TERMS

16-bit input device It is an input device that sends 16-bit data to the 8086.

16-bit output device It is an output device that receives 16-bit data from the 8086.

8-bit input device It is an input device that sends 8-bit data to the 8086.

8-bit output device It is an output device that receives 8-bit data from the 8086.

BHE This is the Bus High Enable signal, which is used to enable the upper bank of

the memory and odd I/O bank in the 8086.

Even/low memory bank The even/low memory bank is a memory chip (or chips)

that contains even memory addresses; its data lines are connected to the D7-DO0 lines

of the 8086.

High/odd I/O bank This is the I/O bank that contains odd addresses and is connected

to the data lines D15-D8 of the 8086.

I/O-mapped I/O This is a method of interfacing an I/O device with the 8086, in

which an I/O device is treated differently from the memory.

IN and OUT instructions These are the instructions used for transfer data between

the accumulator and the I/O devices in I/O-mapped I/O.

TOR This is the I/O read control signal that is activated during the I/O read operation.

IOW This is the I/O write control signal that is activated during the /O write

operation.

Latch The latch is used for interfacing output device with microprocessor.

Low/even I/O bank This is the I/O bank that contains even addresses and is

connected to the data lines D7-DO0 of the 8086.

Memory address space or memory map The memory addresses that can be

generated by the 8086 (00000H-FFFFFH) together constitute the memory map.

Memory-mapped I/O This is a method of interfacing an I/O device with the 8086,

in which an I/O device is treated as if a memory location.

MEMR This is the Memory Read control signal that is activated during the memory
read operation.

MEMW This is the Memory Write control signal that is activated during the memory
write operation.

Odd/high memory bank The odd/high memory bank is a memory chip (or chips)

that contains odd memory addresses; its data lines are connected to the D15-D8 lines

of the 8086.

Physical memory address The memory address in the physical memory such as the

RAM or EPROM chip is called physical memory address.

238 Microprocessors and Interfacing

'Iiji—state buffer The tri-state buffer is used for interfacing the input device with the

MiCroprocessor.
wo
oR

W
S

o
o0

—

N

. What is the maximum memory, in te

. Why should the data struc

_ What are the differences between memory-mappe

REVIEW QUESTIONS

rms of bytes, that can be interfaced with the

80862 Why?

What is the memory address

How is the physical memory 018

How are the A0 and BHE signal

banks?

space in the 80867

anized in the 80867

s in the 8086 used in the selection of memory

tures such as array of word type data or stack be stored

from an even address in the memory?

How is the multiplexed address bus in

data bus? Draw the diagram for the same.

What are the functions of IC 74244 and IC 742457

How are the Memory Read and Memory Write control signals generated in the

minimum mode of operation of the 80867

What is the importance of the memory a

FFFFOH-FFFFFH in the 80867

the 8086 separated into address bus and

ddress ranges 00000H—003FFH and

d I/O and I/O-mapped I/O?

Write the different forms of the IN instruction in the 8086.

Write the different forms of the OUT instruction in the 8086.

What is meant by fixed port addressing in the 8086 and how man

be connected to the 8086 by this method?

What is meant by variable port addressing in the 8086 and h

can be connected to the 8086 by this method?

Draw a diagram showing the memory and I/O map whe

and I/O-mapped I/O schemes are used.

Draw a circuit showing the generation of I/O read and writ

minimum mode operation of the 8086.

y I/O devices can

ow many I/O devices

n memory-mapped I/O

e control signals in the

= NUMERICAL/DESIGN-BASED EXERCISES

_ Interface two 16K x 8 EPROM chips with the 8086, such that the memory address

range assigned to the EPROM chips is F8O00H-FFFFFH, using an address

decoder having only logic gates.

_ Interface two 16K x 8 RAM chips with the 8086, such that the memory address

range assigned to the RAM chips is 00000H-07FFFH, using an address decoder

having only logic gates.

. Interface two 8K x 8 EPROM chips with the 8086, such that the memory address

range assigned to the EPROM chips is FOOOOH-F3FFFH, using an address

decoder that employs the 74138 IC and logic gates.

10.

H.

12.

13.

14.

Memory and I/O Interfacing 239

. Interface two 8K x 8 RAM chips with the 8086, such that the memory address

range assigned to the RAM chips is 20000H-23FFFH, using an address decoder
that employs the 74138 IC and logic gates.

. Interface four 16K x 8 EPROM chips with the 8086, such that the memory address

range assigned to the EPROM chips is 90000H-9FFFFH, using an address

decoder that employs two 74138 ICs and logic gates.

. Interface four 16K x 8 RAM chips with the 8086, such that the memory address

range assigned to the RAM chips is AOOOOH-AFFFFH, using an address decoder
that employs two 74138 ICs and logic gates.

. Interface an 8-bit DIP switch with the 8086 operating in minimum mode, such

that the address assigned to it is FOH, using an address decoder having only logic

gates. Write the instructions needed to read the data from the DIP switch into AL,

in fixed port and variable port addressing.

. Interface an 8-bit DIP switch with the 8086 operating in minimum mode, such

that the address assigned to it is FOH, using an address decoder that employs the

74138 decoder and logic gates.

. Interface a seven-segment LED in common cathode connection with the 8086

operating in minimum mode, such that the address assigned to it is 7FH, using an

address decoder having only logic gates. Write the instructions needed to display

the number 5 in the LED, using fixed port and variable port addressing.

Interface a seven-segment LED in common cathode connection with the 8086

operating in minimum mode, such that the address assigned to it is 3FH, using

an address decoder that employs the 74138 decoder and logic gates. Write the

instructions needed to display the number 7 in the LED, using fixed port and
variable port addressing.

Interface an 8-bit DIP switch with the 8086 operating in minimum mode, such

that the address assigned to it is FF80H, using an address decoder having only

logic gates. Write the instructions needed to read the data from the DIP switch into
AL.

Interface a seven-segment LED in common anode connection with the 8086

operating in minimum mode, such that the address assigned to it is 7FFFH, using

an address decoder having only logic gates. Write the instructions needed to
display the number 5 in the LED.

Interface a 16-bit DIP switch with the 8086 operating in minimum mode, such

that the addresses assigned to it are 80H and 81H, using an address decoder

having only logic gates. Write the instructions needed to read the data from the

DIP switch into AX, in fixed port and variable port addressing.

Interface two seven-segment LEDs with common cathode connection with the

8086 operating in minimum mode, such that the addresses assigned to them

are 70H and 71H, using an address decoder having only logic gates. Write the

instructions needed to display the number F5 in the LEDs, using fixed port and

variable port addressing.

Features and Interfacing of

Programmable Devices for

8086-based Systems

LEARNING OUTCOMES

After studying this chapter, you will be able to understand the following:

* Architecture, need, features, and operation of the IC 8255

Applications of the 8255 including interfacing of switches, seven-segment displays,
~ AID converter, D/A converter, stepper motor, and intelligent liquid crystal display (LCD)

- systems

Features of keyboard/display interface of the IC 8279, interfacing of matrix keyboard,and

multiplexed LED display

* Architecture, details, interfacing, and programming of the 8253 timer

‘¢ Serial port basics and definitions
* Features, details, interfacing, and programming of USART 8251

Architecture and details of the programmable interrupt controller 8259

Features and operation of the DMA controller 8237

.

—

7.1 INTEL 8255 PROGRAMMABLE PERIPHERAL INTERFACE

Intel microprocessors can transfer data between external devices such as input and

output devices through ports. Normally, a register can act as an I/O port. However,

having a separate register and configuring it for input and output operation

becomes difficult and tedious. Hence, Intel has designed a separate IC 8255 with

the objective of interfacing input and output devices with Intel microprocessors.

The 8255 is used on a range of several I/O cards that plug into available slots in

the personal computer (PC).

The 8255 programmable peripheral interface (PPI) is a very popular and

versatile input/output chip that can be easily programmed to function in several

different configurations. This chip can perform both digital input and output (DIO)

operations from the processor in a preprogrammed manner.

The common applications of the 8255, include turning on or off an electronic

switch such as a bipolar junction transistor (BJT), a metal oxide semiconductor

field effect transistor (MOSFET), or an insulated gate bipolar transistor (IGBT),

controlling movement by use of DC/AC/stepper motors, detecting the position

using proximity sensors and interfacing different sensors (temperature, flow,

pressure or level, etc.) through an analog to digital converter (ADC), etc.

Features and Interfacing of Programmable Devices for 8086-based Systems 24|

7.1.1 Features of 8255

Each 8255 has three 8-bit TTL-compatible registers or ports, which allow

programmers to control digital outputs, inputs, or a combination of both. The

common features of the Intel 8255 IC are as follows:

(i) Three 8-bit ports named as A, B, and C are present.

(ii) Port C has been divided to two groups of 4 bits each as port C upper (PCU)

and port C lower (PCL). Each of them can be programmed independently

for input and output operation.

(iii) All the ports can be programmed for simple I/O or handshake I/O for the

data transfer in I/O modes.

(iv) Each port C bit can be set/reset individually in bit set/reset (BSR) mode.

(v) Port A bits and PCU bits are grouped as group A (GA).

(vi) Port B bits and PCL bits are grouped as group B (GB).

NG 70)
<#> Group A pAf_ :i:‘:

Group A Po§tA : = PA(" B
control @) siakk

C |
lower (4)

Group B k-
\JA:VJ\ Group B control : Port B

Fig. 7.1 Internal block diagram of 8255 PPI

7.1.2 Block Diagram of Intel 8255

The internal block diagram of the 8255 PPIis vable 7.1 Address lines and
shown in Fig. 7.1. (reglster selection of 8255

As shown in Fig. 7.1, the block diagram of

the 8255 has three basic registers called ports

By

A, B, and C, each containing 8 bits. Port A and 0, -:0

the upper 4 bits of port C are grouped together |~ 0 1 PortB

as group A. Similarly, port B and the lower | | § portC

4 bits of port C are together kn as group /
b EENaCL IOV AT BIONP Kl 1 Control register

B. In addition to the three registers A, B, and
~—~—

~

242 Microprocessors and Interfacing

C, there is another register
. T ;

called the control register. Pa3 [40@ PA4 - |

The contents written into ~ FAZ 02 3911 PAS

the control register decide PAl] 381 PA6 |

the operating modes of the PAO L4 370 FA7
three parallel ports. In order ~ RD L}s 36[1 WR
to identify the four registers, cs s 35[] RESET

the 8255 uses two address GND [}7 341 Do

lines AQ and Al. These lines A1 [l 33[] DI

get their signals from the Ao []9 45 32(1 .D2

processor address bus. The PC7 L}10 Biinlin:line 311 D3 f

identification of the registers PC6 []11 package 30[] D4

based on A0 and Al is given PC5 []12 29[b5 f
in Table 7.1. pc4 []13 281 D6

The pin details of the 8255 pco [14 271 D7

are shown in Fig. 7.2. The pc1 [J15 26[] Vg
three ports of the 8255 need pc2 16 25[] PB7

eight lines each and hence 24 pc3 [17 241 PB6

pins are allotted for the ports []18 23] PBS

and these lines are connected g 221 PB4

to external input or output 20 211 PB3
devices. DO-D7 are the lines

required for interfacing the Fig.7.2 Pin details of IC 8255
8255 with the processor. These
data lines are connected to the data bus of the processor. Out of the remaining eight

lines, two, namely A0 and A1, are allotted for selecting one of the four available

registers. The control signals for reading and writing to these registers are the active

low RD and WR signals. These signals are obtained from the processor control

signals. The entire chip is selected by activating the active low chip select (CS)
signal. This signal is obtained from the decoder, which decodes the 8086 address

lines and identifies the 8255 address range. A common reset signal can be applied
to reset the 8255 which can be same as the RESET signal given to the processor.

7.1.3 Operating Modes and Control Words of 8255

The function of each port in the 8255 is software-programmed by the programmer.
The programming of the 8255 is done by writing a control word (CW) to the

control register of the 8255. The control word contains information such as mode,

bit set, bit reset, etc., that initializes the functional configuration of the 8255.

he_basi¢ operating modes of the 8255 are shown in Fig. 7.3. There arc

on/figu ations of the 8255 namely input/output mode ((I_/Q’_I_I}jS_fl_.
and BSR mode. I/O WIM thrge different modes for the ports. The
programmer can select a particular operating mode using commands and control

words. The three ports of the 8255 are grouped as groups A and B which accept
commands from the read/write (R/W) control logic and receive control words

from the internal data bus, and issue proper commands to the associated ports.

Features and Interfacing of Programmable Devices for 8086-based Systems 243

The chip has to be programmed to configure its operation, before using it. The

configuration is done by the control word (CW) which determines whether the

ports are input, output, bidirectional, or strobed.

Operating modes e d i

,' !

' i

nput/Output mode (D7 bit in CW = 1) BSR mode (D7 bt in CW =0)
'\ e <

]

Mode 0—Basic /O |
(Applicable for ports A, B, and C)]

Mode 1—Handshake /O J
(Applicable for groups A and B) / £

Mode 2—Bidirectional /O . '
: 2y (Applicable for group A only) 7 fe

Fig.7.3 Operating modes of the 8255

7.1.3.1 1/0 Control Word Format

The control word format for the /O configuration is given in Table 7.2.

Table 7.2 /O control word format of the 8255

1 Group A Port A Port C upper Group B Port B Port C

(1= Mode select Direction Direction Mode Direction lower

[/O) 00—mode 0 select select select select Direction

0l—mode 1 1—input 1—input 0—mode 0 1—input select

1X—mode 2 0O—output O—output 1—mode 1 O0—output 1—input

0—output

The MSB D7 is set to 1 to indicate that the chip is configured in I/O mode. The

bits D6 and D5 are used to select the operating modes of group A to one of the

following three basic modes:

(i) Mode 0—Basic I/O (bits D6 and D5 are both 0)—Ports A, B, and C can

be operated as inputs or outputs. This mode uses simple I/O operation and

no interrupts are used. The outputs written to the ports are latched and

available at any time. Inputs available at the port pins are buffered through

port latches.

(i) Mode 1—Strobed or handshake /O (bits D5 and D6 are 0 and 1,

respectively)—Port A is configured in mode 1 but upper port C is used for

handshaking and control of data transfer in port A. Input and output data are

latched. :

(iii) Mode 2—Bidirectional bus (bits D5 and D6 are 1 and X, respectively)—

Port A is bidirectional (both input and output) and port C is used for

handshaking. Port B cannot be programmed to this mode.

244 Microprocessors and Interfacing

Bit D4 is used to select the direction of data flow in the port A bits, that is, it

decides whether the pins of port A are input (D4 = 1) or output pins (D4 = 0). Bit

D3 is used to decide whether the PCU pins are used for input (D3 = 1) or output

(D3 =0).

Bit D2 of the control word is used to select the mode for the group B. As

discussed earlier, only two operating modes—0 and 1—are possible for group B.

(i) Mode 0—Basic I/O for group B is selected if bit D2 is programmed as 0.

This mode uses simple /O operation and no interrupts are used as discussed

earlier.

(i1) Mode 1—Strobed or handshake I/O is selected for group B if bit D2 is set to

1. Port B is configured in mode 1 but the PCL bits are used for handshaking

and control of data transfer.

Bit D1 is used to select the data direction for port B pins. If it is 0, then they are

configured as output pins and if it is 1, they are configured as input pins.

Bit DO is used to select the data direction for PCL. If it is 0, then the port pins

are configured as output pins and if it is 1, then they are configured as input pins.

7.1.3.2 BSR Mode Control Word Format

The control word format for the BSR configuration is given in Table 7.3.

Table 7.3 BSR control word format of the 8255

B D6 D5 D4 D3 D2 D1 Do, e

0 X X X B2 Bl BO Bit set/reset

(0=BSR (Don’t (Don’t (Don’t Bit Select bits—select one of 8 bits 1= set
mode) care) care) care) of port C 0 = reset

In BSR mode, any of the eight bits of port C can be set or reset using a single

control word written to the control register. This feature helps the programmer to

control the port C pin outputs individually. This feature is also used in the mode 1

and mode 2 I/O operations wherein the individual ports of port C can be controlled

by the programmer to indicate the status and control.

7.1.3.3 1/O Mode | Operation

Mode 1 configuration of the 8255 provides a means for transferring I/O data to or

from a specified port in conjunction with strobes or handshaking signals. In mode

1, ports A and B use the lines on port C to generate or accept these handshaking

signals. The ports are divided into two groups—A and B. Each group contains one

8-bit port and one 4-bit control/data port. The 8-bit data port is either port A or port

B and can be either an input or output port. Both inputs and outputs are latched.

The 4-bit control port—either PCU or PCL is used to control and decide the status

of the 8-bit ports A and B.

The operation of handshake signals for the input operation in mode 1 of the

8255 is explained with the help of Fig. 7.4.

The sequence of operations for the data input operation from an input device to

a microprocessor through the 8255 is listed as follows.

Features and Interfacing of Programmable Devices for 8086-based Systems 245

Mode 1 (Port A)

Control word Ll

A
D7 D6 D5 D4 D3 D2 D1 DO

L1 [o [+ [+ o XIXIX
—> IBFA

PCé6, PC7
: 1= fnput

0 = Output

—> INTRA

RD——> 2
PC6, PC7 [«4> 1/0

Mode 1 (Port B)

Control word PB7-PB0

; B ,
D7 D6 D5 D4 D3 D2 D1 Do

Fig. 7.4 Control and handshake signal for input operation in mode |

Step 1 The input device places data in the data lines of port A or port B. This is
communicated to the 8255 by making the strobe input pin (STB) low. STB is an
active low signal applied through PC4 and PC2, for ports A and B respectively.

Step 2 The 8255 acknowledges the receipt of the data to the input by making
input buffer full pin (IBF) high. This also indicates that the data has been latched
into the input port.

Step 3 The 8255 then makes interrupt request line (INTR) high and applies an
interrupt to the processor. This signal is applied only when the interrupt enable
signal (INTE) is high. The INTE signal for port A is controlled by set/reset of PC4
and the INTE signal for port B is controlled by set/reset of PC2. PC2 and PC4 can
be controlled using BSR mode. :

Step 4 In the interrupt service routine, the processor reads the data from the
corresponding input port. Reading from the port is done by selecting the 8255 port
and applying RD active low signal.

Step 5 During read operation, the RD signal is low. When the RD signal goes low, — the INTR signal is reset. The IBF is reset by the rising edge of the RD input,

Figure 7.5 shows the waveforms for mode 1 input operation of the 8255.

246 Microprocessors and Interfacing

Thus mode 1 allows an input device to request service from the CPU by simply

sending its data into the port and activating the STB signal.

The control signals or handshake signals used for the output operation in mode

1 of the 8255 is shown in Fig. 7.6. The handshake signals used are output buffer

full (OBF), ACK, and INTR. The sequence of operations taking place for data

output from the processor to an output device is listed below. The waveforms for

mode 1 output operation of the 8255 shown in Fig. 7.7 is explained as follows:

Step 1 The processor initiates the data transmission by writing the data to be

tput operation'ih mode | Fig.7.6 Control and handshake signals for ou

Features and Interfacing of Programmable Devices for 8086-based Systems 247

transmitted to the output device, to the corresponding port of the 8255. This is

done by sending the port address to the 8255, placing the data on the data lines and

then activating the active low WR signal.

Step 2 To transfer the data to the output device, the 8255 makes the OBF low,

to indicate that the CPU has written data to the specified port. The OBF signal is

reset by the rising edge of the WR input.

Step 3 The data available on the output port pins is then read by the output

device. After receiving data from the port pins, the output device acknowledges

the receipt by making ACK low. ACK is an active low input signal to the 8255

from the peripheral device indicating that it has accepted a data. The OBF output

signal of the 8255 is set by the ACK input going low.

>3F]|
’ ‘ 2 P . 3

RO TR =] AT

Fig.7.7 Mode | strobed output operation of the 8255

Step4 The 8255 now informs the processor that data has been transferred to the

output device by making the INTR line high. A high on this output can be used

to interrupt the CPU when an output device has accepted the data transmitted by

the CPU. INTR is set when ACK, OBF, and INTE are all 1. INTE for port A is

controlled by the set/reset of PC6 and INTE for port B is controlled by the set/reset

of PC2. PC2 and PC6 can be controlled using BSR mode.

Step 5 In the interrupt service routine, the processor writes the next data to be

transmitted to the output device to the output port of the 8255. The INTR signal is

reset by the falling edge of the WR signal.

7.1.3.4 1/0 Mode 2 Operation

In mode 2, data is transmitted and received via port A pins (bidirectional I/O)

with handshaking capability. Only port A can be configured in mode 2 and is used

as a bidirectional port, while port C is used for handshaking signals. Interrupt

generation and enable/disable functions are also available through port C pins.

Port B can be configured to be in mode 0 or 1 but not in mode 2. Both inputs and

outputs are latched. The 5-bit control port (port C) is used for control and status

for the 8-bit, bidirectional port (port A). The basic control signal transmission and

operation of the data transfer in mode 2 is shown in Fig. 7.8.

248 Microprocessors and Interfacing

’D D4D3D2D1D0

- | Group B mode
0 =Mode 0

" 1=Model ___
RD

3 3

PC2-PCO (&<~ 1/0

Fig.7.8 Control of port A data transfer in mode 2

The input and output operation of the 8255 in mode 2 is similar to its operation

in mode 1 except that port A is a bidirectional port. For the output operation, as

in mode 1, the data transfer is initiated by the processor by making the active low

signal OBF low. This indicates that the processor has written data into the output

port. The output device, after reading the data will give an acknowledgement by

making ACK low. The processor is then interrupted by the 8255 to indicate that the

output data port is ready for next data output or transmission. Here, the interrupt

can be applied to the processor only if the INTE 1 flip-flop associated with OBF

and controlled by PC6 has already been set by the processor.

The input operation is also similar to mode 1 operation. Here, the data transfer

is initiated by the input device by placing the data on the port pins. Then an active

low control signal STB is given to the 8255 by the input device. The 8255 now

latches up the data to its port and then gives an active high signal IBF to the input

device. The 8255 then issues an interrupt signal to the processor to indicate that

data is readily available for read operation. Here, the interrupt can be applied to

the processor only if INTE 2 flip-flop associated with IBF and controlled by PC4

has already been set by the processor.

7.1.4 Programming Examples

Example 7.1

Configure the ports of the 8255 (PPI) as follows: port A = input, port B = output,

PCU = output, PCL = input. Assume that the control register’s address in the 8255

PPI is 46H. Configure the ports in simple I/O mode.

Solution:

The control word format for the given conditions is given in Table 7.4.

Table 7.4 Control word bit pattern (Example 7 I)

1 Group A PortA PCU Group B PortB ‘PCL
(1=1/0) mode—00 input—1 output—0 mode—0 output—0 input—1

Features and Interfacing of Programmable Devices for 8086-based Systems 249

The control word from this table is 10010001B, that is, 91H. The following

program instructions will configure the control word of the 8255.

MOV AL, 91H ; Load control word in the accumulator.

OUT 46H, AL ;5 Transfer it to the control register of the 8255.

Example 7.2

Find the data direction and the modes of operation of ports of the 8255, if the

control word written into it is AOH.

Solution:

The control word bit pattern is given in Table 7.5.

Table 7.5 Control word bit pattern (Example 7.2)

1 0 1 O 0 0 0 0.

1 Group A P.ort A P.ort C i Group B P.ort B P.Ort C lower
direction direction direction direction

(1=1/0) mode—1 mode—0
0—output O0—output 0—output O0—output

The direction and modes of all ports are as follows:

Port A—output port in mode 1 Port C upper—output port

Port B—output port in mode 0 Port C lower—output port

7.2 INTERFACING SWITCHES AND LEDS

In this section, we discuss the interfacing of four switches and four LEDs with the

8086 through the 8255. Data is obtained from the switches and displayed using

the LEDs.

The 8255 is interfaced with the 8086, with the 8255 ports connected to the

switches and LEDs. A latch is used to demultiplex the lower address bus and the

data bus (AD7-ADO). In the 8086-based system, either 8-bit or 16-bit addresses

are used for the I/O devices. When 8-bit addresses are used, the address of the

I/O device appears in the lines AD7-ADO when the 8086 executes the IN/OUT

instructions. When 16-bit addresses are used, the address of the I/O device appears

in the lines AD15-ADO0 when the 8086 executes the IN/OUT instructions. In this

example, it is assumed that 8-bit addresses are used for the different ports and

control register of the 8255. So, the lower-order address bus alone is enough for

addressing the 8255 and the address decoder uses the address bus A7-A0. If 16-bit

addresses are used for the different ports and control register of the 8255 then the

“higher-order address bus is required and the address decoder uses the address bus

A15-A0. The signals M/IO0, @, and WR are also used in decoding and selecting

the 8255.

The 8255 needs two address lines AO and A1 in order to select one of its four

registers, as detailed in Table 7.1 and they are respectively connected to the lines

Al and A2 of the 8086. This is because, there are two I/O banks in the 8086,

namely odd and even banks. The odd bank contains the I/O devices that have

250 Microprocessors and Interfacing

only odd addresses and their data lines are connected to the data bus D15-D8 of

the 8086. The even bank contains the I/O devices that have only even addresses

and their data lines are connected to the data bus D7-DO0 of the 8086. Since the

8255 has only 8-bit data bus namely D7-DO0, it can be connected to either D7-D0

or D15-D8 of the 8086. If the data bus of the 8255 is connected to D7-DO0 of the

8086, only even addresses can be assigned to the ports and the control register of

the 8255; if it is connected to D15-D8 bus of the 8086, only odd addresses can be

assigned to the ports and control register of the 8255.

Let us assume that the data bus of the 8255 is connected to D7-DO0 of the 8086,

so that only even addresses can be assigned to the ports and control register of the

8255 throughout the discussion of the 8255 interfacing in this chapter. If address

line AO of the 8086 is connected to line A0 in the 8255 then there occurs a problem

in selecting the port B and control register in the 8255 using even addresses. The

reason being, for all even addresses, the address line A0 is always zero and hence

it is not possible to select port B and the control register of the 8255, for the

selection of which line A0 must be 1. Hence, the lines A0 and A1 of the 8255 are

connected to lines A1 and A2 of the 8086. The IOR and IOW signals from the

8086 are connected to the RD and WR control signals of the 8255, respectively.

Figure 7.9 shows the interfacing of the switches and LEDs with the 8255

through the 8086. The four switches in Fig. 7.9 are connected to the lower-order

four bits of port A of the 8255. The switch connection is such that when it is open,

it connects logic 0, that is, 0 volts to the port and when it is closed, it connects

logic 1, that is, 5 volts to the port pins. These connections ensure that the port is

not damaged and also not sourcing over current. This ensures safe operation of the

ports and switches. The interfacing of four LEDs through an inverter (which acts

as a driver) to the ports is shown in Fig. 7.9. When logic 1 is given on the port pin,

it will be inverted by the inverter and will connect ground (logic 0) to the cathode

of the LED. This will forward bias the LED and light will be emitted by the LED.

This connection ensures that the port pin is not sourcing enormous current and also

the current required for the LED illumination is from the supply and the driver IC.

Features and Interfacing of Programmable Devices for 8086-based Systems 251

The design of the

address decoder for the A7

8255 is explained as

follows with an example.

Let us assume that we want AS —————-{>°—— ;

to assign the addresses D*——’TO_C_S_“S%S' i

40H, 42H, 44H, and 46H Ad————>0——
to port A, port B, port C,

and the control register of Ay ——— >0]
the 8255, respectively. In
Table 7.6, these addresses e woper - o

are given in binary and Fig.7.10 Address decoder for the 8255
hexadecimal form. The (shown in Fig.7.9)

address decoder is shown

in Fig. 7.10.

Table 7.6 Addresses assigned for 8255 (shown in Fig. 7.9)

~ Addressesinbinaryform Register selected
A7 A6 A5 A4 A3 A2 A1 A0 inthe 8255

- 010 0O0OO0O O Port A

42H 010 0O0O0OT1 O Port B

44H 010 0010 O Port C

46H 0. 15705 0L 053t N0 Control register

The software part consists of initializing the 8255 for port A input and port B

output operation. All the ports are initialized in mode 0. Hence, the control word

shown in Table 7.7 is used and the control word is 90H.

Table 7.7 Control word bit pattern for interfacing LEDs and switches

B e P Vs e
1 Group A Port A Port C upper Group B Port B Port C lower

(1=7/0) mode—00 input—1 output—0 mode—0 output—0 output—0

;v. R

(.

The prog;an\l for'initializing the 8255 and transferring the data available in port

A to port B is as follows:

MOV AL, 9@H ; Move control word to accumulator.

OUT 46H, AL ; Send control word in AL to control register of 8255.

IN AL, 4eH ; Get the data from port A in accumulator.

OUT 42H, AL ; Send the data in AL to port B.

HLT 5 Terminate program execution.

Example 7.3
Design a system (both software and hardware) that will cause four LEDs to flash

252 Microprocessors and Interfacing

10 times when a push button (PB) switch is pressed. Use the 8255 to interface the

LEDs and the PB switch. Assume persistence of vision to be 0.1 s. Assume that

the addresses 40H, 42H, 44H, and 46H are assigned to port A, port B, port C, and

the control register of the 8255, respectively.
The interfacing scheme is shown in Fig. 7.11 in simplified form.

8255

Ve

R
PAO o

e .
R R R =R

N NN TR 56H N N N N

PC1
PC2
PC3

Fig.7.11 Interfacing LEDs with the 8086 through the 8255

Program:

CHECK:

REP:

DELAY:

L1:

MOV AL, 90H

OUT 46H, AL

MOV BL, ©AH

IN AL, 40H

RCR AL, 1

JC CHECK

MOV AL, ©@H

OUT 44H, AL

CALL DELAY

MOV AL, OFH

OUT 44H, AL

CALL DELAY

DEC BL

JNZ REP

JMP CHECK

MOV CX, COUNT

NOP

NOP

DEC CX

-

-

e

-

J

J

“
e

e

Move the control word to configure port A as

input port and port C as output port in AL.

Move data in AL to control register.

Move count of 10 decimal (=0AH) in BL.

Input data from Port A into AL (i.e., PA@).

Rotate content of AL right by 1 bit

through carry to check LSB in AL.

If carry = 1, PB switch is not

pressed, so go to CHECK.

Turn on all LEDs by sending ©0H to port C.

Move data in AL to port C.

Call delay program of ©.1 second delay.

Turn off all LEDs by sending OFH to port C.

Move data in AL to port C.

Call delay program of 0.1 second delay.

Decrement BL. .

If BL is not @, go to REP to turn on and turn

off LEDs again.

; If BL is @, go to CHECK, to check status of PB

switch.

; Load COUNT in CX.

No operation

No operation

Decrement value in CX.

Features and Interfacing of Programmable Devices for 8086-based Systems 253

INZ L1 ; Execute loop L1, until CX becomes zero.

RET ; If time delay over, then return from

subroutine.

COUNT is calculated based on the concept explained in writing time delay

programs in 8086 assembly language programming.

7.2.1 Debouncing of Keys

Akey, in general, is a type of push-button switch, toggle switch, or electromechanical

relay, having spring contacts. Metal contacts make and break the circuit and carry

the current in switches and relays. These contacts have mass and contain springs

to control the movement. Since the moving contacts have mass and springs, with

low damping they will be ‘bouncy’ as they make and break. When a normally

open (NO) pair of contacts is closed, the contacts will come together and bounce

off each other several times before finally coming to rest in a closed position.

The effect is called contact bounce or, in a switch, it is called switch bounce. The

waveform of a switch with contact bouncing, from position 1 to 0, is shown in

Fig. 7.12.

Fig.7.12 Contact bounce waveform

If such a switch is used for sensing by input ports of a microprocessor, then

there is a chance that the microprocessor will respond several times, that is, input

will be sensed repeatedly even though the key is pressed only once. In general, the

bouncing of the switch may last for several milliseconds. Since the microprocessor

works at a speed of a few microseconds, it senses the input several times.

The simplest hardware solution uses a resistor capacitor (RC) time constant

to suppress the bounce and the circuit for this is shown in Fig. 7.13. The RC time

constant has to be larger than the switch bounce and is generally around 0.1 s.

The capacitor takes at least twice the time constant to change from one position

to the other. During this time, any change in the switch position is not transmitted

beyond the buffer. The buffer, after the switch is used to make the transition from

high-to-low or low-to-high sharp.

The key bouncing problem can be solved by software methods also. The easiest

software method is to make the processor wait until the bouncing oscillation

settles down. This wait-and-see technique is implemented using software time

delays. When the voltage from the switch changes, an appropriate delay routine is

executed and the value of the voltage on the switch line is checked again to make

sure that the line has stopped bouncing. The delay is normally 10 ms as in most of

the switches, the oscillations settle within that period.

254 Microprocessors and Interfacing

ic

>0 Out

Buffer

: Switch (inverting)

Y ral

|
L

Flg y I3 Hardware solution for debouncmg of keys

B R L L AN A R SO o ot i T L5 A

7.3 INTERFACING SEVEN-SEGMENT DISPLAYS

Seven-segment light emitting diode displays are the most commonly used low-cost

displays and are easy to interface with microprocessors. Seven-segment displays

consist of seven LED segments. Figure 7.14 shows the arrangement of these seven

and the appearance of the various digits. Seven-segment displays are available ina

single dual in-line package (DIP). There is one pin for each segment and these pins

are named from ‘a’ to ‘f” and another LED is available for the decimal point (dp).

In addition to these eight pins, the seven-segment displays have one more pin for

power supply. Seven-segment displays come in two types—common anode and

common cathode.
In common anode display, the anodes of all segment LEDs are connected

together. So, to illuminate a segment, the common anode is connected to the

supply and then the segment input, that is, ‘a’ to ‘f” is connected to a low-level

voltage or logic 0.

In common cathode display, the cathodes of all the LEDs are connected together.

So, to illuminate a segment, the corresponding segment input is connected to the

high-level voltage or logic 1 and the common cathode is connected to the ground.
This forward biases the LEDs and illuminates them.

r | oo o b
f b el e _cl e} d

g 5 4 ;

‘ e i R e
‘;p : ——d_lc ‘ el d Ic IC

Fig.7.14 Arrangement of LEDs and appearance of digits in seven-segment displays

Features and Interfacing of Programmable Devices for 8086-based Systems 255

The circuit required to

drive a single seven- \TICC +|5V
segment LED display s e L a

from a 4-bit BCD e —————-—-/\A/\z—-———cb— fl——_lb
output is shown in Fig. T . i BRI g Jigite
7.15. Cinputs —— 1 E—ww—ef Ty

The BCD to the by i A Toa
seven-segment display , : ————«N\——P—i cadpti B
decoder IC 7447 e v e]
converts the 4-bit BCD lkGND]
code applied at its =

input into the patterns

required to display

the BCD number in a seven-segment LED. The patterns generated are active low

outputs, meaning that logic 0 is given as output when a particular segment is to be

illuminated. So, the common anode display is suitable for use with the 7447.

The complete circuit diagram for interfacing the seven-segment display with

the 8086 through the 8255 and the 7447 is shown in Fig. 7.16.

Fig. 7 | 5“‘ ‘Drvi'ver 4ci|’~‘c”uit for singlé se‘vén-séglm‘e‘r:n\t‘ displéy

\{CC 5V

AAA Bt WA :

S AAAL S S
: YVYV

2 AAA

7447 R
YY.V

AAA
3 Yvy

i AAA
Yy v

SEUALAN o A e

E SRR, B Pt

7 (: £5 kit v 2t o ad SR S S ~ o~ Ok S B B e S d i L '..?‘.. 2 oy ‘m

Fig.7.16 Circuit for interfacing single seven-segment display

Let us assume that the addresses 40H, 42H, 44H, and 46H are assigned to port

A, port B, port C, and the control register of the 8255, respectively. The following

instructions can be used to display the data ‘7’ in the seven-segment display.

Program:

MOV AL, 89H ; Load the control word 80H in AL to configure port A as

output port.

OUT 46H, AL ; Output it to the control register of the 8255.

MOV AL, @7H ; Load accumulator with data to be displayed in the

lower nibble as PA3-PA@ is connected to the 7447.

256 Microprocessors and Interfacing

OUT 40H, AL ; Output data in AL to the port A, where display is

connected.

HLT ; Terminate program execution.

We can connect two seven-segment displays to a single 8-bit port. One 7447 IC

can be connected to the lower-order four bits and another 7447 can be connected

to the higher-order 4 bits. So six seven-segment displays can be connected to a

single 8255 that has three parallel I/O ports. This results in a more complicated

circuit. The complexity of the circuit can be reduced by using a technique called

multiplexed display. By using multiplexed display as many as eight displays can

be connected to the two ports. The multiplexed display concept is discussed later

in this chapter.

7.4 TRAFFIC LIGHT CONTROL

Example 7.4 ;

Design a microprocessor system

to control traffic lights. The traffic

should be controlled in the following

manner:

(1) Allow traffic from Wto E and E

to W transition for 20 seconds.

(1) Give a transition period of 5

seconds (yellow bulbs ON).

(iii) Allow traffic fromNto S and S

to N for 20 seconds.

(iv) Give transition period of 5

seconds (yellow bulbs ON).

(v) Repeat the process.

The traffic light arrangement is shown

in Fig. 7.17.

N
’

F|g7 17 Traffic contfol signal 'scih‘erAnew
for a four-road junction

Solution:

The actual pin connections of Table 7.8 Pin connections of the 8255

the 8255, controlling different controlling lights (Fig. 7.17)

lights are listed in Table 7.8.

The interfacing diagram to

control 12 electric bulbs is

shown in Fig. 7.18. Port A is

used to control the lights on

N-S road and port B is used to

control lights on W-E road.

The electric bulbs (i.e.,

lights) are controlled by relays.

The 8255 pins are used to

control relay on—off action

with the help of relay driver circuits. The driver circuit includes 12 transistors to

Features and Interfacing of Programmable Devices for 8086-based Systems 257

drive 12 relays. The interfacing of the 8255 to the system is also shown in Fig.

7.18. Instead of 230V bulbs, LEDs can be interfaced with the 8255.

+12V

Freewheeling

diode 230V AC
X Sensen 50Hz

DO DO PAO
D7 D7 Pl

PA2—— _) P A0 A0 o

Al—> Al PAG T

st +12V
IOR —4 RD gg? -
oW 4 WR Freewheeling ;

PB2— diode [
PB3 —— 230V.AC

RESET—> RESET ppy 50Hz

- UpRS ' BC547 ;
CS

o (o L

From 8086

and decoders

Fig.7.18 Traffic light control interface diagram

Let us assume that the addresses 80H, 82H, 84H, and 86H are assigned to port

A, port B, port C, and the control register of the 8255, respectively. The data bytes

to be sent to the ports of the 8255 to glow specific LEDs are shown in Table 7.9.

Let us assume that the data to be sent to port A and port B, which is listed in

Table 7.9 is stored consecutively in memory from the address1000H:2000H to

1000H:2007H. For example, data 09H is stored in memory at address 1000H:2000H

and the data 24H is stored in memory at address 1000H:2001H and so on.

Program:

START: MOV AL, 80H ; Move the control word 80H in AL to configure
port A and port B as output ports.

OUT 86H, AL ; Move the control word in AL to the control

register of the 8255. '

MOV BX, 1000H ; Move the segment address of data (=1000H) to

BX.

MOV DS, BX ; Move the segment address in BX to DS.

START: MOV AH, ©4H 5 Move the number of data sets (8/2 = 4) to AH.

MOV BX, 2000H ; Move the offset address of data (=2000H) to

BX.

258 Microprocessors and Interfacing

Table 7.9 Traffic signal subsequences for a four-road junction

Toglow PB7 PB6 PB5 PB4 PB3 PB2 PB1 PBO

R1,R2,G3 | y ;
and G4 X X 1 0 0 1

Y1,Y2:.Y3 0
and Y4 X X 0 1 0 0 1

R3,R4,G1 < 5 1
a6 X 0 1 0 0

Y1,Y2,Y3 X X 0 0

and Y4 : 0 g :

To glow - PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0 PortB PortA

e X e 0 0 09H and G4 1 0 0 1 24H

et X X 0 1 0 12H and Y4 0 1 0 12H

R3.RaGL X X 1 0 0 24H and G2 1 0 0 09H

Y1.¥2,Y3
X X and Y4 0 1 0 0 1 0 12H 12H

REP: MOV CX, COUNT1 ; Load countl corresponding to 20 seconds delay

in CX.

MOV AL, [BX] ; Move the data at [BX] in memory into AL.

OUT 86H, AL ; Send the data in AL to Port A.

INC BX ;> Increment BX.

MOV AL, [BX] ; Move the data at [BX] in memory into AL.

OUT 82H, AL ; Send the data in AL to Port B.

CMP AH, @3H ; Check whether AH = 3.

JINZ CHECK ; Otherwise check whether AH = 1.

JMP LOAD ; If AH = @3, go to LOAD.

CHECK: CMP AH, ©1H ; Check whether AH = 1.

INZ NEXT ; If AH is not equal to 1, go to NEXT.

LOAD: MOV CX, COUNT2 ; Load COUNT2 corresponding to 5 seconds delay

NEXT: CALL DELAY 5

INC

DEC

INZ

BX 5

AH ;

REP 5

in CX.

Call DELAY program to wait for 20 or 5

seconds.

Increment BX.

Decrement AH.

If AH is not zero, go to REP to send next set

of data to ports.

Features and Interfacing of Programmable Devices for 8086-based Systems 259

JMP START ;3 Jump to START to start from the first set of

data.

DELAY: MOV DX, OFFFFH

Li: NOP

NOP

DEC DX

INZ L1

LOOP DELAY ; Execute loop DELAY CX times.

RET ; If time delay is over, then return from

subroutine.

In this program, since we want two delays, one for 20 seconds and the other

for 5 seconds, two delay counts COUNT1 and COUNT2 are used respectively

in the same delay program. The logic used to load COUNT1 or COUNT?2 in the

delay program is based on checking the value of AH. If the value in AH is equal

to either 3 or 1, then at that time the data for glowing yellow lamps will be sent to

ports of the 8255 and COUNT?2 is loaded in CX to get a time delay of 5 seconds.

Otherwise COUNT]1 is loaded in CX to get a delay of 20 seconds. The LOOP

instruction takes 17 clock cycles for execution when CX is not zero, which occurs

either (COUNT1 — 1) or (COUNT2 — 1) times depending upon the initial value

loaded in CX and takes five clock cycles for execution when CX is zero, which

occurs only once, during the execution of the delay program.

7.5 INTERFACING ANALOG-TO-DIGITAL CONVERTERS

The basic function of the analog-to-digital converter (ADC) is to convert the

input analog voltage levels into corresponding discrete digital signals. An ADC is

essential in a microprocessor-based system as the microprocessor can only handle

digital data, though the real-world signals are all in analog form only.

There are many types of ADC. The major ones are counter ramp type ADC,

dual slope ADC, flash type ADC, and successive approximation type ADC. Each

type of ADC has its own advantages and disadvantages. Successive approximation

type ADC is a commonly available ADC. This ADC has fixed conversion time for

any analog input voltage level.
The specifications of the ADC are the range of analog input voltage, number

of digital bits at the output, resolution, the conversion time, and the number of

analog input channels. The analog input voltage can be either unipolar or bipolar.

Unipolar means that the input voltage can have only one polarity such as 0 to +5V

or 0 to +10 V. Bipolar means that the input voltage can range from one polarity to
the other such as —5 to +5V or —10 to +10 V. Most of the ADC chips come with an

option of selecting one of these voltage ranges using the V_; input pins. The ADC

chips are available for different number of output binary bits. ADCs are available
with 8-, 10-,12-, or 16-bit digital outputs. The number of bits will decide the
number of voltage levels sensed. For example, an 8-bit ADC will have 28 possible

levels, that is, 256 levels. The number of bits and the input voltage range will
decide the resolution. The resolution of an ADC is defined as the smallest change

260 Microprocessors and Interfacing

in the input voltage that can be sensed or detected at the output. The resolution can

be mathematically defined as the range of input voltage divided by the number of

levels at the output. For example, an ADC with the input voltage range of 0 to +5V

with eight bits at the output will have a resolution of 5/256, that is, approximately

19.5 mV. The conversion time of the ADCs will be decided by the type of the

ADC, and the clock frequency used in the converter circuits.

Some ADC chips come with an option of having more than one analog input.

One of these analog input channels are selected using select lines and an analog

multiplexer circuit. The ADC chips also have a sample and hold circuit. The

sample and hold circuit is used to maintain the analog input voltage constant,

when the conversion is in progress.

7.5.1 ADC Chips and Interfacing to Microprocessor

The single chip ADCs available in the markets have many options. The commonly

available ADC chip family is ADC 080X from National Semiconductor. ADC

0800, ADC 0804, ADC 0808, and ADC 0816 are the common chips available in

this family. ADC 0804 has one analog input channel with an 8-bit output. ADC

0808/0809 has eight analog inputs with 3-bit channel select lines and an 8-bit

output. ADC 0816 has 16 analog input channels with four select lines and 8-bit
outputs.

This section discusses the operation and interfacing of ADC 0816 with the

8086 microprocessor through the 8255 PPI. ADC 0816 is an 8-bit successive

approximation type ADC chip with an in-built analog multiplexer, which can

select one of 16 analog inputs for conversion into digital format. One of 16 analog

inputs INO-IN15 in the ADCO0816 chip can be selected by the select lines A, B,

C, and D. The analog to digital conversion can be started by using the active high

control signal Start Conversion (SC). The conversion of the analog voltage on the

input channel selected, will then take place based on the clock signal applied to

the ADC chip. After the conversion is over, the ADC chip will issue an active high

‘end of conversion’ (EOC) signal on the EOC line. The digital output can then be

read from the data lines after issuing an active high Output Enable (OE) signal on

the OE line in the ADC chip.

The interfacing of ADC 0816 with the 8255 is shown in Fig. 7.19. The 8255

PPI is in turn interfaced with the 8086 as shown in Fig. 7.9. In the interfacing

diagram shown in Fig. 7.19, it can be noted that the port A of the 8255 is used to

output or send the channel select lines and the related control signals. The port B

lines are used to get or input the digital result data from the ADC chip. The LSB of

port C (i.e., PCO) is used to check the end of conversion signal. With this hardware

arrangement, the ADC chip can only be interfaced with software polling method.

For interrupt driven interface, the EOC signal can be connected to any interrupt

input. Analog inputs can be applied to the analog input pins of the ADC 0816.

The software interfacing procedure follows the flowchart shown in Fig. 7.20.

The ADC conversion process can be started after applying the analog input to any

of the channels. The conversion process is started by initializing the 8255 with

the proper control word. The control word format for the hardware interface in

Features and Interfacing of Programmable Devices for 8086-based Systems 26 |

J o S I~

| 8255PP1

o =

F
Y

Y

as
ti
a e

> 5
w

a
8
 4

4 8
08

6~
ba

se
ds

ys
te

m
:

=
~n
 Y

3 ' . ; ; +Vref —'Vref 3

e - - : +VCC

| a 1

A INI5
B ADCO816
C
D

ALE, SC-%CLK

OE

EOC

channels

Fig.7.19 Interfacing ADCO816 with 8255

Start of

conversion /

[Wnte tfic prbberbdnt’roi'WbrdAt‘o 8255] ; oo

l Select phannA el fiumbé‘rbahd_i‘vs'gc——il’ o
© ALE/SCsignal

I Remove ALE/SC s1gna1

"’

i R

Fig.7.20 Flowchart for ADC conversion software

262 Microprocessors and Interfacing

Fig. 7.22 is given in Table 7.10. Then the channel selection and start conversion

is done simultaneously as these two control bits are tied together in the hardware.

The start conversion must be issued as a pulse for a minimum duration only.

Then the conversion takes place in the ADC chip, if it is properly powered and

clock pulses are given. After the conversion, the logic high end of conversion

(EOC) signal is issued by the ADC chip. This is sensed in the software. Then the

data is read from the data lines after issuing the logic high OE signal. The program

for the ADC conversion process is given below as a software routine.

Table 7.10 Control word bit pattern for ADC conversion

D7 D6 D5 D4 D3 D2 DI DO
1 GroupA PortA Port Cupper Group B Port B Port C lower

(1=1/0) mode 00 output output mode 0 input input

1 0 0 0 0 0 1 1 =83H

The following subroutine ADCON assumes that the channel number in which

the analog signal to be converted is present, is obtained from the memory location

named CH_NUM (i.e., if the analog data in the 5% channel has to be converted

then CH_NUM will have the data 05H) and the addresses 80H, 82H, 84H, and

86H are assigned to port A, port B, port C, and the control register of the 8255,

respectively.

Program:
ADCON: MOV AL, 83H ; Load the control word for 8255 in AL.

OUT 86H, AL ; Send it to control register.

MOV AL, CH_NUM ; Load the channel number in AL.

AND AL, OFH ; Mask the most significant 4 bits in AL as

zero.

OR AL, 1@H ; Make D4 bit in AL to 1 by OR operation with 10H

to issue ALE/SC signal.

OUT 8@H, AL ; Send it to port A.

NOP ; Wait.

NOP ; Wait.

AND AL, OFH ; Remove the ALE/SC signal by making D4 bit in

AL to @.

OUT 86H, AL ; Send it to port A.

CHECK: IN AL, 84H ; Read Port C into AL to check EOC signal.

RCR AL, 1 ; Rotate AL through carry to bring EOC signal to

carry flag.

INC CHECK ; If EOC is @, go to CHECK.

MOV AL, CH_NUM; If EOC is 1, then load channel no. in AL.

OR AL, 20H ; Combine channel no. in AL with OE signal high

(1.e., D5 = 1).

OUT 80H, AL ; Send it to port A.

Features and Interfacing of Programmable Devices for 8086-based Systems 263

IN AL, 82H ; Read the digital data result from port B into

AL.

RET 5 Return.

The resultant digital data will be available in AL register after execution of the

subroutine. |

7.6 INTERFACING DIGITAL-TO-ANALOG CONVERTERS

Digital-to-analog converters (DACs) are used to get a proportional analog voltage

or current for the digital data given out by the microprocessor. The DACs are

essential in microprocessor-based systems as the real-world applications operate

with analog data. Basically, there are two types of DACs. They are R—2R ladder

network and weighted resistor network. Many DAC chips are available in the

market. The specifications of the DAC chips are the full scale output voltage,

number of binary input bits, resolution, linearity, and settling time. The DAC

chips come with choices in the maximum output voltage as 5V, 10V, or with

a predefined maximum current output. The number of binary input bits can be

four, eight, 10, or 12. Both the number of bits and the full scale output voltage

will determine the resolution. For example, an 8-bit DAC can have 256 input

combinations and so has a resolution of (1/256) or 0.39 percentage of the full

scale output. Similarly, the 10-bit DAC will have the resolution of (1/1024) or

0.0977 percentage of the full scale output. Linearity is a measure of how straight

the output is when the output is changed from minimum value to the maximum

value. The settling time is defined as the time taken for the output to settle within

pre-specified band after the input digital value is applied. Normally, pre-specified

band is [final value + (1/2) x Minimum possible output]. The settling time is an

important specification as the DAC output may overshoot the correct value and

may oscillate for some time before settling. The settling time for a DAC chip

should be considered in applications, where high frequency operation is essential.

Digital to analog converters are required to generate the variable analog voltage

essential for control applications. Most of the speech synthesizers require a DAC

to convert the binary data into the corresponding analog speech signal.

The DAC 0800 is a common digital to analog converter chip that can be easily

interfaced to the 8086 through the 8255. This section will describe the interfacing

of the DAC 0800 with the 8086 processor. As the DAC chips can be connected

only to a port, there is a need for an output port connected between the processor

and DAC. The 8255 can act as an output port to give data from the processor to

the DAC chip. One port is enough to interface an 8-bit DAC with the 8255. The

interfacing diagram in Fig. 7.21 uses port A of the 8255 for connecting the data

to DAC 0800. The other control signals are directly correspondingly connected to

either logic 0 or logic 1. The DAC chip gives a proportional current output. This

current output in most cases is difficult to measure and so a current to voltage (I

to V) converter is used at the output. DAC chips have an in-built latch. This latch

stores the digital input given by the port A and the DAC gives out a proportional

voltage.

264 Microprocessors and Interfacing

This section explains the software for common application examples involving

the DAC interfaced with the 8255 as shown in Fig. 7.21. Four common applications

such as square wave generation, ramp wave generation, staircase wave generation,

and sine wave generation are discussed using examples.

I-to-V converter network
] o«

: L.M741 Analog
output :

: g 4 voltage |

5 b . . (V) §
‘ (LSB) PAO > B8 Lout % ;
By }(1) > B7 L3
- PA2 ’ > B6 aut I
2 8255PPL - Z s L v, 13 Ajl

3 PA4 > B4 16 2 2 0800 C }———— =
S PAS T_5p3 Conp
% PAG RERe Ry) v, ——_12V

(MSB) PA7 5 5B £ s
: Vol ol P el :l:

—AMN—{ V., ik
rwv‘— Vi

voy s

Fig.7.21 interfacing DAC 0800 with the 8086

7.6.1 Square Wave Generation

Example 7.5

Write a program to generate a square waveform using a DAC chip. Assume that

the addresses 80H, 82H, 84H, and 86H are assigned to port A, port B, port C, and

the control register of the 8255, respectively.

Solution:
The DAC chip interfaced to the 8255 and connected to the processor 8086 shown

in Fig. 7.21 is considered for all the examples. In this example, a square waveform

is generated using the DAC chip. The square waveform has 0V output for one half

period and then a voltage of amplitude ¥, volts for the other half period.

The software part of the program consists of initializing the 8255 for making
port A as an output port. Then the binary data for 0V is given to port A and a delay

routine is called to wait for half the time period. After this, the data on the port A

is made equivalent to that of 7 volts. The delay routine is called once again.

The digital data for any particular voltage V| is calculated using the following

formula:

Digital value for ¥, voltage output = [(2” — 1)/Maximum output voltage] X

where 7 is the number of binary bits in the input of the DAC.

For example, for a 3V output in a DAC with an 8-bit binary input and 2

maximum of 5V output, the equivalent digital value for 3V is [(28— 1)/ 5] 3=

51 x 3 =153 in decimal form. The same value in hexadecimal will be 99H.

The following program can generate a square of amplitude 3V and 0V with

Features and Interfacing of Programmable Devices for 8086-based Systems 265

a predefined delay and so a predefined frequency. The time delay produced by

the delay routine is explained in the programming section of the 8086. Using the

required time delay and the clock frequency of the system, the delay count can be

calculated. The square waveform generated is shown in Fig. 7.22.

e R Vo (

! l ' | l > 1 i

772 2L Ry)

Fig.7.22 Square waveform generated

Program:

START: MOV AL, 80H ; Load the control word for 8255.

OUT 86H, AL Send it to comtrol register.

REP: MOV AL, ©©H Load initial data for DAC.

OUT 80H, AL 5 Output the data to port A, where the DAC is

interfaced.

CALL DELAY Call the delay subroutine.

MOV AL, 99H ; Load the data corresponding to V, in AL.

OUT 80H, AL Send it to port A.

CALL DELAY ; Call the delay subroutine.

JMP REP ; Loop again to get continuous waveform.

DELAY: MOV CX, COUNT ; Load CX register with a count value.

e

-

e

e

o1 3 NOP 5 No operation

NOP ; No operation

LOOP L1 ; Execute loop L1 CX times.

RET ; If time delay over, then return from

subroutine.

7.6.2 Staircase Waveform Generation

Example 7.6

Write a program to generate a staircase waveform using a DAC chip. Assume that

the addresses 80H, 82H, 84H, and 86H are assigned to port A, port B, port C, and

the control register of the 8255, respectively.

Solution:

The waveform to be generated is shown in Fig. 7.23 and the hardware is assumed to

be the same as shown in Fig. 7.21. Three levels 7}, V,,, V; are assumed in the output

voltage waveform. The hexadecimal output to be given to the port is calculated

using the formula given in Example 7.5. The following program assumes the three

digital values corresponding to ¥, V,, and ¥V, are DATA1, DATA2, and DATA3

respectively. The fixed time delay is used in all the three levels.

Program:

START: MOV AL, 80 H ; Load the control word for the 8255.

OUT 86H, AL ; Send it to control register.

266 Microprocessors and Interfacing

Y MOV AL, DATAl1l ;

OUT 86H, AL 5

CALL DELAY 5

MOV AL, DATA2 ;

OUT 80H, AL 5

CALL DELAY 5

MOV AL, DATA3 ;

OUT 80H, AL 5

CALL DELAY 5

JMP L1 5

DELAY: MOV CX, COUNT ;

23 NOP 5

NOP

LOOP L2

RET

-

-

-

Load data for V,.

Output the data to port A, where the DAC is

interfaced.

Call the delay subroutine.

Load data for V,.

Output the data to port A.

Call the delay subroutine.

Load data for V,.

Output the data to port A.

Call the delay subroutine.

Loop again to get continuous waveform.

Load CX register with a count value.

No operation

No operation

Execute loop L2, CX times.

If time delay is over, then return from

subroutine.

.

>

Fig.7.23 Staircase waveform generated

7.6.3 Ramp Waveform Generation

Example 7.7

Write a program to generate a ramp waveform using a DAC chip. Assume that the

addresses 80H, 82H, 84H, and 86H are assigned to port A, port B, port C, and the

control register of the 8255, respectively.

Solution:

The 8255 port A is assigned values Volr

starting from 0 and increasing

gradually. The hardware details are

assumed to be the same as that in |,

Fig. 7.21. The following program

generates the ramp waveform shown
in Fig. 7.24 with V, =5V.

The delay calculation is slightly 0

different from the previous examples.

T 27, 3L

Here, the voltage levels are increased Fig. 7.24 Ramp waveform generated

Features and Interfacing of Programmable Devices for 8086-based Systems 267

from 0 to FFH, that is, 0—255 in decimal. So, within T seconds, there are 255

levels. Hence, the delay for each level will be 7/255. The delay time should be as
small as possible for ramp generation. Otherwise, the waveform will look like a
staircase waveform of 255 levels. The frequency of the wave is the reciprocal of
time 7.

The software part consists of incrementing the value given to port A from 00H
to FFH with a time delay routine called at each level. In the program, after the
content of AL reaches the value FFH and when it is incremented, the value 00H is

automatically obtained in AL.

Program:

MOV AL, 80H Load the control word for the 8255.

OUT 86H, AL ; Send it to control register.

MOV AL, ©0H ; Load initial data for DAC.

e

L1: OUT 80H, AL 5 Output the data to port A, where the DAC is

interfaced.

CALL DELAY ; Call the delay subroutine.

INC AL 5 Increment the data in AL to get ramp wave.

JMP L1 ; Loop again to send the data to DAC.

DELAY: MOV CX, COUNT ; Load CX register with a count value.

L2: NOP 5 No operation

NOP 5 No operation

LOOP L2 ; Execute loop L2 CX times.

RET 5 If time delay is over, then return from

subroutine.

7.6.4 Waveform Generation using Stored Data

Example 7.8
Write a program to give out a set of digital data stored in the memory locations
from the address 2000H:1000H to 2000H:1050H to the DAC chip connected to
the port A of the 8255 repeatedly. Assume that the addresses 80H, 82H, 84H, and
86H are assigned to port A, port B, port C, and the control register of the 8255,

respectively.

Solution: ,)

In this example, the voltage data to be given to the port A is stored in memory
locations starting from the address 2000H:1000H. These data can be anything to
generate any type of waveform. It can be any predefined waveform such as a sine
wave. In such cases, the sine wave is divided into many levels and each level is
converted into the corresponding digital equivalent data and the equivalent data is
stored in the memory locations. The time delay between the levels is fixed and is
generated in the delay routines. It determines the frequency of the wave.

In the software part, the segment register DS and offset register BX are
initialized with the stating address of the memory location. The AH register is
initialized with a count value equal to number of bytes to be sent to the port A. The

data from the memory is taken out and sent to the port A. The offset register BX is

268 Microprocessors and Interfacing

incremented and then counter register is decremented. If the counter register has
not become 0, then the looping is done to send the next data to the port A. This is
done after the required time delay.

Program:

MOV AL, 80H ; Load the control word for the 8255.

OUT 86H, AL ; Send it to control register of the 8255.

MOV BX, 2008H ; Initialize BX with the segment address

2000H.

MOV DS, BX 5 Move the segment address to DS.

L1 MOV AH, 51H 5 Initialize AH register with the count value

(i.e., no. of data).

MOV BX, 100@H ; Initialize BX with the offset address 1000H.

1:2:3 MOV AL, [BX] ; Load the data at [BX] in memory into AL.

OUT 86H, AL 5 Output the data to Port A, where DAC is

interfaced.

CALL DELAY 5 Call the delay subroutine.

INC BX 5 Point to next location.

DEC AH ; Decrement count value in AH.

INZ L2 5 If the count is not zero then loop back.

JMP L1 5 Jump to L1 to generate the next cycle.

DELAY: MOV CX, COUNT ; Delay subroutine starts

L2: NOP 5 No operation.

NOP 5 No operation.

LOOP L2 ; Execute L2 CX times.

RET ; Return.

7.7 INTERFACING STEPPER MOTORS

A stepper motor is a special motor that rotates in incremental steps, unlike other
motors that run continuously. They find application in printers, plotters, robots,
etc. Stepper motors are excited by pulses to get incremental displacements. The
common step size of stepper motors ranges from 0.9° to 30°. Stepper motors are
made of permanent magnet rotors with stator field excitation. Two-phase excitation
and four-phase excitation are common. A four-phase stepper motor has four stator
poles, which are excited by pulses. Each pole winding can be excited such that the
pole can be made either a north pole or a south pole. The number of teeth or the
number of poles in the rotor will decide the minimum incremental step angle when
a particular phase is excited. In this arrangement, the poles should be properly
excited in a particular sequence so that the rotor rotates in a particular direction.
If the excitation sequence is reversed, the rotor rotates in the reverse direction. A
typical stepper motor has a step angle of 1.8°. This motor has 50 teeth on the rotor
and eight poles on the stator.

The interfacing of four-phase stepper motor to the 8086 through the 8255 is
given in Fig. 7.25.

The stepper motor has six terminals—four terminals A, B, C, and D for

Features and Interfacing of Programmable Devices for 8086-based Systems 269

Supply +5V

Stepper motor

PAO

B 1D R
\3

8086- PA2 C R (F
based AALS NG

system |wv
§ B R

@)

‘ Fig.7.25 Interfacing of stepper motor using the 8255 i

excitation and two more terminals for power supply. Figure 7.25 shows the four
terminals A, B, C, and D connected to the 8255 ports through the transistor drivers.

The transistor drivers or buffers are essential as the port pins cannot directly source

the current required for the motor drive. As explained earlier, the motor terminals
have to be excited in a proper sequence, so that rotor will have continuous rotation
in one direction. Two types of excitation are possible with a four-phase motor—

one-phase excitation and two-phase excitation. In one-phase excitation, only one
phase of the stepper motor is excited at a time and in two-phase excitation, two
phases are excited at a time. The exciting sequence is fixed for a rotation in a
particular direction. The excitation sequence for the interface diagram in Fig.
7.25 is given in Tables 7.11 and 7.12. The single phase excitation results in low
current through the motor windings and it is also called wave mode. In two-phase
excitation, the excitation current through the motor winding is high and so it is
called high-torque excitation. Tables 7.11 and 7.12 also show the corresponding
hexadecimal bytes value to be given to the port A assuming that the higher-order

four bits of the data are zero.

Table 7.11 Switching sequence: One-phase excitation (VWave mode)

et l,N)Clockwise Anti-clockwise Hex value
\ -~ FAU ;vg:":‘>l :I.'.s'gque'n'cé l.sequence N T

1 4 01

o
~

o
o

=
W

1

0 2 3

0 3 2 04

0 4 1

270 Microprocessors and Interfacing

Table 7.12 Switching sequence: Two-phase excitation (High-torque excitation)

i i-clockwise

[B e e aee
0 0 1 1 1 4 03

0 1 1 0 2 3 06

1 1 0 0 3 2 0C

1 0 0 1 4 1 09

The software part of driving the stepper motor mainly consists of giving the
proper excitation sequence signal to the port A terminals of the 8255. A proper

delay can be inserted between the subsequent excitation of the motor terminals to
control the speed of rotation of the motor. A minimum delay must also be maintained
between the excitation of the coils so that the motor coils will get properly excited.

This minimum delay also sets the maximum speed of the operation of the stepper
motor.

The following examples explain the driving of stepper motor under various

conditions.

Example 7.9

Write a program to drive the stepper motor continuously at 60 rpm using the
interface diagram in Fig. 7.25. Assume that the addresses 80H, 82H, 84H, and
86H are assigned to port A, port B, port C, and the control register of the 8255,

respectively.

Solution:

It is assumed that a stepper motor with a step angle of 1.8° is interfaced in Fig.

7.25. Each step rotation is 1.8°. If we control the time delay for each step, then the
speed of the motor can be controlled. Let us assume that the required speed is N
rpm. Then the speed in revolution per second (rps) is N/60. Hence, the time taken

for one revolution will be 60/N seconds. Hence, for 360° rotation, the time taken

is 60/N seconds. Therefore, the time taken for 1.8° rotation is 60 x 1.8/ (N x 360),
which is equivalent to 0.3/N seconds. If the time delay introduced for each 1.8°
rotation is 0.3/N seconds, then for continuous rotation the speed will be N rpm.
Here the required speed N is 60 rpm. Hence, the time delay required is 0.3/60, that
is, 5 ms.

The following program is used for the continuous rotation of the stepper motor.
The count in the delay routine must be calculated to produce the required time
delay. The program first initializes the control word for the IC 8255. Then a counter
of four is set up to indicate that the switching sequence needs four steps, which is
to be repeated continuously. The segment and offset registers are then initialized
to load the switching or excitation data to be given to port A of the 8255. The

switching data is stored initially in the memory locations as a table. The following
program shows four different sets of switching tables stored in different locations
starting from the address 1000H:2000H in memory. The offset register has to be

Features and Interfacing of Programmable Devices for 8086-based Systems 27|

initialized to the proper memory address to run in a particular mode. For example,

to excite the stepper motor coils for one-phase excitation method and clockwise

rotation, the offset register must be initialized with 2008H.
Then the program gives these switching data to the port A pins of the 8255 one

after the other with a particular delay. The program will be in continuous loop for
continuous rotation of the motor.

Program:

1000H:2000H DB 03,

1000H:2004H DB 09,

1000H:2008H DB 01,

1000H:200CH DB 08,

START: MOV AL, 8@H

1a:

RPT:

OUT 86H, AL
MOV BX, 1000H
MOV DS, BX
MOV DH, 04 H

MOV BX, 2008H

MOV AL, [BX]

OUT 80H, AL

CALL DELAY

INC BX

DEC DH

JNZ RPT

JMP L1

DELAY: MOV CX, COUNT

L2: NOP

NOP

LOOP L2

RET

Example 7.10
Write a program to rotate a stepper motor by 180° using the interface diagram in
Fig. 7.25. Assume that the addresses 80H, 82H, 84H, and 86H are assigned to port

06, OCH, 09

OCH, 06, 03

82, 04, 08

04, 02, 01

J

“
e

-

e

e

“
e

.
.

e

; Store excitation values for

bi-phase clockwise rotation.

Store excitation values for bi-

phase anticlockwise rotation.

Store excitation values for one-

phase clockwise rotation.

Store excitation values for one-

phase anticlockwise rotation.

Load the control word for the 8255

in AL.

Send it to control register.

Load segment address 1000H in BX.

Load segment address 1000H in DS.

Initialize the counter DH with 4

for four excitation sequences to be

sent. ‘

Load offset address in BX for one

phase excitation and clockwise

rotation.

Get one excitation data from the

memory.

Send it to port A.

Call the delay routine.

Point to next memory location.

Decrement counter DH.

If it is not zero, then get next

data by going to RPT.

Jump to L1 to start from the

beginning.

Load count in CX.

No operation.

No operation.

Execute loop L2 CX times.

Return to main program.

272 Microprocessors and Interfacing

A, port B, port C, and the control register of the 8255, respectively. The motor

coils have to be excited by two-phase excitation method and for anti-clockwise

rotation.

Solution:

In most of the stepper motor applications, the stepper motor will not be rotated

continuously. The angular rotation of the stepper motor needs to be controlled.
In this example, it is assumed that the stepper motor shaft has to be rotated by
exactly 180°. This can be done by stopping the motor excitation when the motor

shaft has rotated 180°. This is possible because each switching state of the motor
coils rotates the shaft by exactly the step angle, that is, 1.8°. For 180° rotation, the

number of switching steps required is 180/1.8 = 100. Out of this 100 switching
steps, four switching sequences are repeated. So, we need a count of 100/4 = 25. A

count of 25 is used for exciting the motor coils with four complete step sequences,

then excitation is stopped and the motor rotation is halted. The following program
implements this by adding another loop with DL register as a counter. The program
uses the same logic and the instructions used in Example 7.9.

Program:

1000H:2000H DB @3, 06, OCH, 89 ; Store excitation values for bi-

phase-clockwise rotation.

1000H:2004H DB 09, OCH, @6, @3 ; Store excitation values for bi-

phase-anticlockwise rotation.

Store excitation values for one-

phase clockwise rotation.

1000H:200CH DB 08, 04, 02, 01 ; Store excitation values for one-

phase anticlockwise rotation.

1000H:2008H DB 01, 02, 04, 08 -

START: MOV AL, 86H ; Load the control word for 8255 in

AL. ‘
OUT 86H, AL ; Send it to control register,

MOV DL, 19H ; Initialize the counter DL with 194

. or 25D for 1802 rotation.

L1: MOV DH, @4H ; Initialize the counter DH with 4

for four excitation sequences.

MOV BX, 1000H ; Load segment address 1000H in BX.

MOV DS, BX ; Load segment address 100@H in ps,

MOV BX, 2004H ; Load offset address in BX for tyo-

phase excitation and anticlockwise

rotation.

L2: Mov AL, [BX] ", Get one excitation data from the
.o memory .

OUT 8@H, AL ; send it to port A.
CALL DELAY §"cail, the delay hoytine.

point to next memory location,
INC BX

Decrement counter DH.
DCR DH e

e

Features and Interfacing of Programmable Devices for 8086-based Systems 273

INZ L2 ; If DH is not @, go to L2 to send

next excitation data.

DCR DL ; Decrement counter DL.

INZ L1 ; If DL is not @, go to L1 to repeat

the sequence.

HLT ; Halt
DELAY: MOV CX, COUNT ; Load count in CX.

L3: NOP ; No operation.

NOP ; No operation.
LOOP L3 ; Execute loop L3 CX times.

RET Return to main program.

-

7.8 INTERFACING INTELLIGENT LCDs

Many alphanumeric liquid crystal displays (LCDs) are available in the market.

These displays have an in-built controller IC and a display section. These displays

can be easily interfaced to any microprocessor or microcontroller. The data

displayed in LCDs can be easily controlled and changed.

Liquid crystal displays are created by placing a thin layer of liquid crystal fluid

between two glass plates. Transparent electrically conductive films are pasted on

the front and back glass plates in the shape of the character to be displayed. When a

voltage is-applied between these two films, the electric field changes the behaviour

of the liquid crystal and hence the light is transmitted through or reflected by it.

Hence, the required display becomes visible.

Modern LCDs come with a controller IC and related control inputs. They get

the American Standard Code for Information Interchange (ASCII) code of the

data to be displayed and display the character in the exact location. The LCDs

come with many options such as 8—80 characters display, single line, two—line, or

four-line display, etc. Almost all these devices have 14 pins for interfacing with

microprocessor or microcontroller. The functions of these 14 pins are listed in Table
7.13. Three pins E, R/W, and RS are used for the control and handshake signals.
Eight pins are used for transferring data to the display and can be connected to the

data bus of the system. Two pins are allotted for supply and ground and one pin is

used for adjusting the contrast of the display. The voltage applied to this pin can

be varied to adjust the contrast.
The LCD consists of an internal RAM for storing the data to be displayed. The

control signal, register select (RS) given as input to the LCD indicates whether the

data available on the data lines is a command or a display data. RS is made zero to

indicate that a command to the LCD is being sent on the data lines. The RS line is

made high to indicate that the data lines contain display data that is to be read or

written. Read/write signal (R/W) is also an input control signal given to the LCD

to indicate the direction of data transfer. Enable signal is the control input to the
LCD and must be pulsed to perform the read or write operation with the LCD. A

1 to 0 transition on this line enables the corresponding operation decided by other

control inputs.

274 Microprocessors and Interfacing

Table 7.13 LCD pin configuration

Pin no. Symbol Level [0} Function

1 Vs - - Power supply (GND)

2 Vee - - Power supply (+5 V)

3 Y., - - Contrast adjust (V)

4 RS 0/1 I Command or data register select line
0 = Command or instruction
1 = Data input

5 R/W 0/1 I 0 = Write to LCD module

1 = Read from LCD module

6 E 1t00 I Enable signal

7 DB0 0/1 /O Data bus line 0 (LSB)

8 DBI1 0/1 /O Data bus line 1

9 DB2 0/1 /O Data bus line 2

10 DB3 0/1 I/O Databus line 3

11 DB4 0/1 /O Data bus line 4

12 DB5S 0/1 I/0 Data bus line 5

13 DB6 0/1 /O Data bus line 6

14 DB7 0/1 /O Data bus line 7 (MSB)

The common commands used in the LCD units are given in Table 7.14. The

display can be cleared by issuing a command with LSB alone as 1. Similarly

cursor control, display position control, and display method control can be done

using appropriate control words.

Table 7.14 LCD command words

T T N e
Command/ Code i Motnes gl R Descriptlon
lnfimm?fl RS RIW DQ}@B@QBQ%@B@ DBZ DB1: DBO S o g By

Clear 0xs: 000,07 Bne Oleyg0z 10 L9010 & Clears dlsplay and retums
display cursor to the home position

(address 0)

Cursor 00 0 0 0 0 0 0 1 x Retunscursortohome position
home (address 0). Display RAM

contents remain unchanged

Fory 00 0 0 0 0 0 1 UDS Setscursor move direction

Tl et
(I/D) and specifies whether

to shift the display (S). These

operations are performed

during data read/write.

For I/D, 1 = increment;

0 = decrement

(Contd)

Features and Interfacing of Programmable Devices for 8086-based Systems 275

Table 7.14 LCD command words (Contd)

C ‘\“\t\wma]"yd] Code

Instruction RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DBO S
Dlsplay 00 0 0 0 0 1 D C B Setson/off position of all

Descnption 7

on/off displays (D) and cursors (C)

control and blink of character at cursor

position (B)

Curso/ 0 0 0 O O 1 S/CRLx x Setsmove cursor—O0 or

display shift display—1(S/C), shifts
shift direction (R/L) left—O0 or

right—1
DDRAM contents remain

unchanged.

Functon 0 0 0 0 1 DLN F x x Setsinterface data length
set (DL)—1 for 8-bit data and 0 for

4-bit data, number of display
lines (N)—0 for one-line and

1 for two-line display, and
character font (F)—1 for 5 x 10
dot and 0 for 5 x 7 dot font

Set 0 0 0 1 CGRAM address Sets the CGRAM address;
CGRAM CGRAM data is sent and
address received after this setting.

Set 0 0 1 DDRAM address Sets the DDRAM address;

DDRAM DDRAM data is sent and

address received after this setting.

Readbusy 0 1 BF CGRAM/DDRAM address Reads busy flag (BF), which
flag and indicates that internal operation
address is being performed and reads
counter CGRAM or DDRAM address

counter contents (depending on
previous instruction).

Writeto 1 0 Write data Writes data into CGRAM or

CGRAM DDRAM

or

DDRAM

Readfrom 1 1 Read data Reads data from CGRAM or

CGRAM DDRAM

or

DDRAM

Note: x denotes don 't care condition.

The interfacing of an LCD to the 8255 is shown in Fig. 7.26 and the characters

displayed for different ASCII data is shown in Fig. 7.27. The 8255 in turn is

interfaced to the 8086 in the same way as shown in Fig. 7.9. Port A is connected to

276 Microprocessors and Interfacing

PAO Do
PA1 S ipi
PA2 2 2

8086- | pa3 10
based Ok 11 LCD display
system PA4 D4

PAS i D5

PA6 D6

PA7 D7

82
55

e = 02
! Q g = = (@]

PC2 6] s
PCI

- PCO

" Fig.7.26 LCD interfacing through 8255

Lowerfour bits| I 1jo1 10lo111{1000{1001{1010[1011[1100/1101| 11101111
order four b~

XXXX0000 | (0) | i e E"' # % i i .

XXx%0001 [() .5l © | Sl | B |

xoxxoot0|@)| 5| | i B L B R

|xooaxoton s | |-] L e R 4 el M e

XX0110{(6)| |32 1 R bt 1 1 T s
T O B B IR P o o st e o oo Bl 1 P B R B e e i
xx3061000{0) | F | &, [t il B) AL T L S e

G REE R
H

HE S G

W S L]] (1
;] R ot g ' 5 P wishe | 8 | B B R Y by (el -tk (PSP PO

I XXXX1100 (4) [<iin| = [R b el] L

5 =:::= wene | *°" E‘:‘g ..E R r=- 'E:E: - T “.:= .l o £ 2

B . ,0,9,€ 5103)} i £ M R -1 06 A N I I o - B | O -

R s o e] i'i o I] R I
XXX o il | T R | B e R L.l

$.

: F‘ig. 7.27 ASV‘CII cbaé ana correépondihg di;play paft‘e‘r"r.\ ;

Features and Interfacing of Programmable Devices for 8086-based Systems 277

the data lines of the LCD display and port C is connected to the control lines. PC2

is connected to the enable line (E) of the LCD. The RS signal is connected to the

port pin PCO. Port pin PC1 is connected to the R/W control signal.

The programming part of the LCD interface is as follows. The LCD display

works with its own internal clock pulses. So, any command or data written to the

LCD display must be enabled with enable (E) signal. This signal must be applied

for predefined time duration. Each command and data requires a minimum of 40

microseconds to about 1.6 milliseconds depending upon the type of the LCD and

its clock frequency. So, a separate subroutine is written to give proper control

signals for the predefined delay time. Here, two subroutines COMMAND and

DISP are written to write a command word and a data for display respectively.

These two subroutines use a delay routine commonly.

The first step in the program is to clear the display and then to set the cursor

to home position and start displaying data from there. The following program

displays an array of characters stored in memory locations starting from the address

1000H: 2000H. The number of characters displayed is 16 and it is initialized as

a count in the AH register. All the characters are displayed continuously. Assume

that the addresses 80H, 82H, 84H, and 86H are assigned to port A, port B, port C,

and the control register of the 8255, respectively.

Program:

START: MOV AL, @1H ; Load the command word in AL to clear display

in- LCD.

CALL COMMAND ; Call the subroutine to issue this command

to LCD.

MOV AL, ©2H ; Load the command word to initialize the

cursor to home position and start displaying

data from there.

CALL COMMAND ; Call the subroutine to issue this command

to LCD.

MOV BX, 1000H ; Initialize the segment register DS to

1000H.
MOV DS, BX

MOV BX, 2000H ; Initialize the offset register BX to

2000H.

MOV AH, 16 ; Initialize the counter AH for number of

characters to be displayed.
s AL).

NEXT: : the display data in Accumulator (MOV AL, [BX] ; Get play P
CALL DISP ; Call the subroutine to issu

LCD.
; ext data

INC BX ; Increment memory pointer to send N

for display.

DEC AH ; Decrement the counter AH.

INZ NEXT ; If AH is not zero, loop again-

HLT . Otherwise halt.

278 Microprocessors and Interfacing

COMMAND: OUT 80H, AL ; Send the command word to the data lines of

LCD.

MOV AL, @4H ; Load data with E = 1, R/W = @ (write) and

RS = @ (command) in AL.

OUT 84H, AL ; Send data in AL to port C pins PC2, PC1,

and PC@.

MOV AL, ©0H ; Load data in AL to make the E signal (PC2)

zero.

OUT 84H, AL ; Output this data to port C.

CALL DELAY ; Wait for predefined time delay.

RET H Return.

DISP: OUT 80H, AL ; Send the data in AL to the data lines of

LCD.

MOV AL, @5 ; Make data with E = 1, R/W = @ (write) and

RS =:1:(data)-

OUT 84H, AL ; Give data in AL to Port C pins PC2, PC1,

and PCo.

MOV AL, ©eH ; Make the E signal (PC2) zero.

OUT 84H, AL ; Output this data to Port C.

CALL DELAY ; Wait for predefined time delay.

RET ;5 Return.

DELAY: MOV CX, COUNT ; Move count to CX.

5 £ NOP ; No operation.

NOP ; No operation.

LOOP L1 ; Execute loop L1 CX times.

RET 5 Return.

7.9 KEYBOARD AND DISPLAY INTERFACE IC 8279

The interfacing of keys and displays with the 8086 processor has been discussed

in Sections 7.2 and 7.3. It is seen that for displaying data, an external IC such

as the 8255 is necessary. Similarly, for key interfacing, a port is necessary and

the processor needs to check the inputs from the keys for identifying whether

any key is pressed or not. Moreover, these simple interface circuits become more

complicated when more number of display units and switches are interfaced to

the processor. To reduce the hardware for large keyboard interfacing, the matrix

keyboard concept is used. To interface more number of displays, the multiplexed

display concept is used. This section introduces the matrix keyboard and the

multiplexed display concepts. These circuits require a large amount of processing

time. To reduce the processor involvement in the matrix keyboard scanning and

multiplexed display, Intel has produced a dedicated IC 8279. This IC will relieve

the processor from keyboard and multiplexed display scanning. The hardware

details about this IC and the programming of this IC are discussed in this section.

7.9.1 Matrix Keyboard

The interface of a single key switch to the 8086 through the 8255 has been

Features and Interfacing of Programmable Devices for 8086-based Systems 279

discussed earlier. The limitation of this interface is that each switch must be

allotted a separate port pin. The hardware complexity increases as more number

of switches is interfaced. The solution to this problem is using a matrix keyboard.

The matrix keypad has more number of switches organized or connected in matrix

form and is interfaced with the 8086 using the 8255 as shown in Fig. 7.28. This

figure shows a 4 x 4 key matrix. The rows of the keyboard matrix are connected

to the four output port lines. The column lines are connected to the four port lines

of an input port.

When no key is pressed, the column lines are connected to the (+5V) Vecc

line and hence the data at all the input port pins will be 1. If a low or logic 0 is

output on a single output port bit and if any switch in that row is pressed, then

the corresponding column data bit will become logic 0, while other column bits

will be at logic 1. For example, let us assume that DO of the output port is made

0 while other bits of output port are at logic 1. If key 3 is pressed, then the input

to D3 bit of the input port alone becomes 0 while DO-D2 input bits are at logic

1. So, by making DO output line to 0, we can detect which key is pressed in the

corresponding row.

To check the entire keyboard for a key press, the following technique can be

used. One of the rows is made logic 0 and the input lines along the columns are

PR PSR ST
Vi (+5V)

g
e

L
R

B

ST
A
N

NS
e

T

7
sy

> e P
> ’<‘> <>

G

B =
8. D2 Output port

B DI
: T — DO Sl A TR o 1

, |—° o 8255 .2 <::{> | 8086 | |

q— DA thE B

i R A D3 SRS S u g isas G i

TR D2
. - - ; Dl. R0 B UEL G R

e R0 it I T RN

Fig.7.28 Matrix kebeard interfacing

280 Microprocessors and Interfacing

checked for occurrence of 0s. If there is none, the next row is made logic 0 and the

procedure is repeated, until the key pressed is identified.

Once a key is pressed, then steps must be taken to remove the contact bounce

problem. Pressing a mechanical switch must produce a single pulse output.

Practically, instead of producing a single clean pulse output, the switches generate

a series of pulses because the switch contacts do not come to rest immediately. As

the microprocessor is faster than manual pressing of keys, the single key pressed

will be registered as multiple key presses. This is the main disadvantage of key

bouncing. The signals from keys fall and rise a few times within a period of about

5 ms as the contact bounces. Hence, the signal from the key must be made free

from key bouncing transients. This technique is called debouncing of keys.

Key board debouncing can be accomplished using hardware or software. The

bouncing of the key signal occurs within 5 ms. Since a human can not press and

release a switch in less than 20 ms, the debouncing logic will check the signal

after 20 ms and then recognize whether a key is pressed or not. This logic can be

implemented in hardware or software. The hardware techniques employ set-reset

flip-flops, non-inverting CMOS gates, or integrating debouncer. The software

technique uses the wait-and-see method. When the signal from a switch is sensed,

the program waits for 10 ms and look at the same key again. If the signal from

the switch still indicates the key press, then the program decides that the user has

pressed the key. Otherwise, the signal received is rejected as noise.

The software for identifying a key pressed in a keyboard matrix requires the

scanning of the rows and columns. Even after identifying the key, the key bouncing

problem must be overcome. If these tasks are accomplished using software, then

the time taken for these tasks is high and the processor may be held up for a

long time in keyboard scanning. To overcome this problem, Intel has produced IC

8279. This IC scans the keyboard, identifies the key that has been pressed, and also

takes care of the key bouncing problem.

Example 7.11

Interface a 16-key hexadecimal matrix keyboard shown in Fig. 7.28 to the 8086

microprocessor using the 8255. Write an 8086 subroutine to initialize the 8255

and to identify the key pressed. This key has to be stored in BL register. Assume

that the addresses 80H, 82H, and 86H are assigned to port A, port B, and control

register of the 8255, respectively.

Solution:

The interfacing of the matrix keyboard requires two ports—one input port and one

output port. Let us assume that the columns of the keyboard are connected to port

B, which acts as the input port and the rows of the keyboard are connected to port

A, which acts as the output port. Let the pins PAO, PA1, PA2, and PA3 of port A

acts as the pins D0, D1, D2, and D3 of the output port respectively and the pins

PBO, PB1, PB2, and PB3 of port B act as the pins DO, D1, D2, and D3 of input port

respectively. The algorithm used to find the key number pressed in the keyboard is

shown in the form of flowchart given in Fig. 7.29.

Program: _ e

© MOV AL, 82H ; Initialize PORT A as output port and port B

~ OUT 86H, AL

Features and Interfacing of Programmable Devices for 8086-based Systems 281

% (> g

*thQSQSSEEKfi@dhngpfimfl ¢.f

Read colum v“nsf'
TR

Call delay routine
BT iy Y

- Readcolumns -

Ground one row at a time

" Fig.7.29 Flowchart for interfacing matrix yb -
~ 3

s

as input port.

MOV AL, @H ; Clear all rows by sending @6H to port A.
OUT 80H, AL s R o
IN AL, 82H ; Obtain status of columns in AL by reading

port B. a
AND AL, OFH ; Mask the upper nibble in AL.
CMP AL, OFH ; Compare AL with @FH to identify whether any

key is pressed.

JZ BACK

CALL DELAY

IN AL, 82H

AND AL,

CMP AL,

OFH

OFH

JZ BACK

MOV BL, @eH

MOV AL, OFEH

OUT 80H, AL

IN AL, 82H

AND AL, OFH

CMP AL, OFH

INZ FIND

MOV BL, ©4H

MOV AL, OFDH

OUT 86H, AL

IN AL, 82H

AND AL, OFH

CMP AL, OFH

JNZ FIND

MOV BL, ©8H

MOV AL, OFBH

“
e

-

-

-

-

-

-

e

-

-

e

“
e

282 Microprocessors and Interfacing

If Z = 1, then no key is pressed and go tq
location BACK.

Call the delay program for debou

key. -
ncing the

Obtain status of columns in AL by reading
Port B.

Mask the upper nibble in AL.

Compare AL with OFH to identify whether any
key is pressed.

If Z = 1, then no key is pressed; go to
location BACK. Else go to the next step to
find the key number, which is pressed in
row 0.

Store first key number in row o (i.e., key
@) in BL.

Ground row @ alone by sending FEH to Port
A.

Obtain status of columns in AL by reading
Port B.

Mask the upper nibble in AL.
Compare AL with OFH to identify whether any
key is pressed.

If..Z-=.0, then:a key is pressed in row ©
and go to location FIND to find the exact
key number that is pressed in row 0. Else
80 to the next step to find the key number
that is pressed in row 1 B
Store first key number in row 1 (i.e., key
4) in BL.

Ground row 1 alone.

Obtain status of columns in AL by reading
port B.

Mask the upper nibble in AL.
Compare AL with OFH to identify whether any
key is pressed.

If Z = 9, then a key is pressed in row 1 and
80 to location FIND to find the exact key
number that is pressed. Else go to the next
step to find the key number that is pressed
in row 2.

Store first key number in row 2 (@5 key
8) in BL.

Ground row 2 alone.

Features and Interfacing of Programmable Devices for 8086-based Systems 283

OUT 80H, AL

IN AL, 82H

AND AL, OFH

CMP AL, OFH

INZ FIND

MOV BL, OCH

MOV AL, OF7H

OUT 80H, AL

IN AL, 82H

AND AL, OFH

CMP AL, OFH

IJNZ FIND

JMP START

; DELAY subroutine

DELAY:

G [

MOV CX, COUNT

NOP

NOP

LOOP L1

RET

; FIND subroutine

FIND: RCR AL, 1
INC GOT_KEY
INC BL

JMP FIND

GOT_KEY: RET

7.9.2 Multiplexed Display

-

-
e

-

Obtain status of columns in AL by reading

Port B.

Mask the upper nibble in AL.

Compare AL with @FH to identify whether any

key is pressed.

If Z = 0, then a key is pressed in row 2 and

go to location FIND to find the exact key

number that is pressed. Else go to the next

step to find the key number that is pressed

in row 3.

Store first key number in row 3 (i.e., key

C) in BL.

Ground row 3 alone.

Obtain status of columns in AL by reading

Port B.

Mask the upper nibble in AL.

Compare AL with OFH to identify whether any

key is pressed.

If Z = @, then a key is pressed in row 3 and

go to location FIND to find the exact key

number that is pressed.

No key is pressed and hence go to START.

No operation.

No operation.

Loop L1 CX times.

Return.

Rotate AL right through carry flag.

If carry flag is @, go to location GOT_KEY.

Increment BL to hold the next key number in

that row.

Go to location FIND.

Return from subroutine with key number in

BL.

The seven-segment display discussed in Section 7.3 uses individual port pins

for each display. This requires one port for each seven-segment display. In order
to reduce the hardware complexity for more number of display devices, matrix
display method is used. Here with two ports, as many as eight display units can be
interfaced. Such an arrangement where four display units (of common anode type)

are connected to the 8086 through the 8255 is shown in Fig. 7.30.

284 Microprocessors and Interfacing

Port pin T
to select | PBO
display
Port B

Driver ;

transistors

8255

| PortA PAO
| (Data)

PA7

Fig.7.30 Multiplexed display arrangements

The pins of each segment for all the display devices are tied together and

connected to any one data port pin. One display unit alone is selected using another

port pin through the driver transistor. This selection is done by using an active low

pin output in the corresponding port. However, the user must see the output on

all the display units simultaneously. This is done by displaying the data in quick

succession in all the display units. Due to the persistence of vision, the human eye

holds the display image in it and the user sees all the display units illuminated

simultaneously. As long as the displays are turned on and off fast enough, the eye

will perceive them as being illuminated all at the same time.

The software part for the matrix display consists of selecting one display unit

and repeating the same procedure for all the display units at a faster rate. The timer

can be used to control the rate of display and refreshing the display. This takes a

lot of processor time. To overcome this problem, IC 8279 is used.

Example 7.12

Interface a 4-digit multiplexed seven-segment LED display using the 8255 to

the 8086 microprocessor system and write an 8086 assembly language routine to

display message on the display. The different addresses assigned for various ports

in the 8255 are: port A—OOH, port B—02H, port C—04H, and control register—

06H. The seven-segment code of the message to be displayed and the data to be

sent to the digit driver port (to select a particular seven-segment LED display)

are alternatively stored in eight memory locations (i.e., four bytes for storing four

seven-segment codes and four bytes for storing 4-digit driver codes) starting from

the address 1000H:2000H.

Solution:

The multiplexed seven-segment display connected in the 8086 system using the
8255 is shown in Fig. 7.30. Hence, two ports are used for interfacing four seven-

Features and Interfacing of Programmable Devices for 8086-based Systems 285

segment LED displays. Let us assume that port A provides the segment data inputs

(i.e., seven-segment code) to the display and port B provides a digit driver code

for selecting a particular seven-segment display. In this example, ports A and B

are used as simple latched output ports. In this type of display system, only one of

the four display position is on at any given instant. Only one digit of the display is

selected at a time by giving a low signal on the corresponding port B line. Let the

pins PAO, PA1, PA2, ..., PA7 act as the pins D0, D1, D2, ..., D7 of the data port,

respectively and the pins PBO, PB1, PB2, and PB3 act as the pins D0, D1, D2, and

D3 of the display select port, respectively.

For the 8255, ports A and B are used as output ports. The control word format

of the 8255 according to the assumed hardware connections is 80H.

Program:

MOV AL, 8@H ; Load control word in AL.

OUT ©6H, AL ; Send control word to control register of the

8255,

MOV BX, 1000H ; Load segment address 1000H in DS.

MOV DS, BX

DISP: MOV BX, 2000H ; Load offset address 2000H in BX.

MOV CX, ©4H ; Load count of 4 in CX due to the presence of 4

displays.

L1 MOV AL, [BX] ; Move one seven-segment code from memory into AL.

OUT ©@0eH, AL ; Send data in AL to Port A.

INC BX ; Increment BX.

MOV AL, [BX] ; Get data to be sent to digit driver port from

memory .

OUT ©2H, AL ; Send data in AL to Port B to select a particular

display.

CALL DELAY ; Wait for some time.

INC BX ; Increment BX to point next memory location.

LOOP L1 ; Execute loop L1 four times.

JMP DISP ; Go to DISP to repeat the steps from

' beginning.

DELAY: MOV DX, COUNT ; Delay subroutine.

L2: NOP ; No operation.

NOP ; No operation.

DEC DX ; Decrement DX.

INZ L2 ; If not zero, jump to L2.

RET ;3 If zero, return.

1.9.3 Features, Block Diagram, and Pin Details of 8279

The IC 8279 is a programmable keyboard and display interface controller IC,

designed by Intel for use with Intel microprocessors. The major features of this IC

are as follows: 3

(i) Supports keyboard of size up to 64-key matrix with 2-key lockout or N-key

rollover options

286 Microprocessors and Interfacing

(ii) Supports a display interface of up to 16 digits with many options

(iii) Simultaneous keyboard and display operations

(iv) 8-character first in first out (FIFO) memory to store codes of keys pressed

(v) 16-byte display RAM corresponding to 16 digits of display

The block diagram of the 8279 is shown in Fig. 7.31.

CLK RESETDB0-DB7 RD WR CS A0

FIFOSeasor,
VO Lonuol RAMstatus, ok

j E A st B

< ;
Control 8x8 Keyboard

«— and timing | .y FIFO/ C,j de-bounce and

registers Sensor control
RAM -

«— control

(ol8 I‘BO—BBl |
: Keyboard ,sccfionSPOfSL

Fig.7.31 Internal block diagram of IC 8279

IC 8279 has the following three sections:

(i) Display section with its own display RAM.

(i) Keyboard scan section with FIFO registers.

(iii) Control logic with signals for interfacing with the processor.

The control section consists of a data bus buffer for interfacing to the processor.

This I/O section uses the control signals such as A0, CS, RD, and WR. The active

low control signal CS is used to select the IC. Similarly, RD and WR are active

low control signals for indication of direction of data transfer on the data bus,

DBO0-DB?7. The signal A0 is used to select a data or control register. A logic 1

on the A0 line means that the data bus content is a command or status. A logic 0

means that the data bus content is the data for the IC 8279. The control and timing

registers store the keyboard and display modes and other operating conditions.

Even though there are many control and data registers, the 8279 uses only two

addresses—one with AQ0 = 0 and other with AO = 1. This is done using a unique

control word for each operation. For example, two diffcrent control words are

available for accessing display RAM and keyboard FIFO. For every operation, the

Features and Interfacing of Programmable Devices for 8086-based Systems 287

corresponding control word is written, the necessary register is accessed, and then

the operation is carried out.

SLO-SL3 are the four scan lines of the 8279. There are two programmable

options for the scan lines—encoded mode and decoded mode. In encoded mode,

the SLO-SL3 lines are binary counter outputs and need to be decoded externally

for scanning keyboards and displays. In the decoded mode, the SLO-SL3 outputs

are decoded; one of the four lines has an active low output. The scan lines SLO—

SL3 are common to both keyboards and displays. RL7-RL0 are the eight return

lines and are used as inputs to sense a key press in the keyboard matrix.

The other signals available in the 8279 are as follows;

(i) BD—output signal that blanks the displays

(i) CLK—clock input used internally for timing, whose maximum clock

frequency is 3SMHz

(iii) CNTL/STB—control or strobe signal, connected to the control key on the

keyboard

(iv) Shift—connects to the shift key on the keyboard

(v) IRQ—interrupt request, becomes 1 when a key is pressed and data is available

(vi) OUT A3-A0/B3-B0—outputs that send data to the most significant/least

significant nibble of display

(vii) RESET—connects to system RESET

The complete pin diagram of the 8279 is shown in Fig. 7.32.

1.9.4 Programming of
8279 e = i %

IC 8279 can be programmed 3 im
to select the number of S DS . 14 3700 displays, the type of key s 360 s
scan, the memory to write 16 351
the display data into, a e
blank display, and the key x e
code read option, and to 8 ; P
control the interrupt request : > 8279 - :l
signal. All these operations 10 o
or commands are written - R
into the 8279 through the L2 2 -
data bus with logic 1 on A0 2 i
line. The most significant 1 e
three bits of the control 2 6L
word differentiate the . 2 j Ly
operations. The first three L 240 o1
bits of the byte sent to the ~ DB6 []18 2311 BD
control port selects one of “D’B7 O 2 _ eight control words which | e HEDI RS 211 Ao
are listed in Table 7.15. i

Fig.7.32 Pin details of IC 8279

288 Microprocessors and Interfacing

Table 7.15 Control word selection using the most significant three bits

. Pumose
Control word to select the number of displays,
display position, and type of key scan

0 0 1 Clock * Control word to program the internal clock and set

the scan and de-bounce times

0 1 0 Read FIFO Control word to be written before reading the key

code from FIFO

0 1 1 Read display Control word written before reading the display
RAM

1 0 0 Write display ~ Control word written in the control register before
- writing data to the display RAM

1 0 1 Display write Control word to blank half-bytes.

inhibit

1 1 0 Clear Control word to clear the display and FIFO

1 1 1 End interrupt ~ Control word to clear the IRQ signal to the

microprocessor

1.9.4.1 Keyboard/Display Mode Set Control Word

The mode set control word is used to set the basic control modes for display and

keyboard interfacing. As mentioned in Table 7.15, the most significant three bits

of this control word are made as 000. The next two bits correspond to the display

mode and the least significant three bits correspond to the keyboard control. The

format of the mode set control word and the meaning of the corresponding bits are
listed in Tables 7.16 and 7.17.

Table 7.16 Mode set control word format

= = e TR

X 4 i"é

e :
A T

5
‘3

oo B-disit display with 000 Encoded keyboard with 2-key lockout
left entry 001 Decoded keyboard with 2-key lockout

01 16-digit display 010 Encoded keyboard with N-key rollover
with left entry 011 Decoded keyboard with N-key rollover

10 8-digit display with 100 Encoded sensor matrix

right entry 101 Decoded sensor matrix

11 16-digit display 110 Strobed keyboard, encoded display scan
with right entry 111 Strobed keyboard, decoded display scan

Features and Interfacing of Programmable Devices for 8086-based Systems 289

The display control word bits DD produce four options—=8 bits or 16 bits, with

calculator-like right entry or typewriter-like left entry.

The lines SLO-SL3 provide encoded and decoded output options for the

keyboard interface. For encoded keyboard option, SLO-SL3 outputs are active-

high in binary form. For decoded keyboard option, they are active-low with only

one low output at any time. In strobed keyboard mode, an active high pulse on

the CN/ST input pin strobes data from the RL pins into an internal FIFO. In 2-

key lockout mode, the 8279 detects only one key pressed. If two keys are pressed

simultaneously, then the key which is released last is considered. All the keys are

debounced using the internal hardware delay for debouncing. In the case of N-key

rollover, if two or more keys are pressed simultaneously, all the keys are sensed

and stored in the FIFO according to the sequence in which the keys are recognized

by the logic. In sensor matrix mode, the debounce logic is suppressed and any key

sensed in the matrix is directly stored into the sensor RAM.

1.9.4.2 Clock Signal Programming Command Word

The clock signal programming command word format is given in Table 7.18.

Table 7.18 Clock signal programming command word format

D7 D6 D5 D4 D3 D2 il v ereiDO s

0 0 1 P P P P P

The clock command word programs the internal clock driver. The code PPPPP

shown in Table 7.18 corresponds to the binary code by which the input clock signal

must be divided to achieve the desired operating frequency. With the five bits,

division is possible by any number from two to 31. For example, for an operating

frequency of 100 KHz and a clock input of 1 MHz, the count should be 01010B

(10D). This control word decides the scan times and the debounce times.

1.9.4.3 Read FIFO Sensor RAM Command Word

The read FIFO command word format is given in Table 7.19.

Table 7.19 Read FIFO command word format

B M D5 b s DI Do
0 1 0 N 0 A A A

The read FIFO control word selects the address (AAA) of a keystroke from the

FIFO buffer (000 to 111). The bit Al in Table 7.19 selects auto-increment for the

address. If Al is set to 1, the address is incremented after every read operation. So,

continuous read operation fetches the data from the FIFO, one after the other, to

the processor. In the scan keyboard mode, the AAA and Al bits become irrelevant.

All data from the FIFO are read consecutively in the same order in which they

were entered into the FIFO.

1.9.4.4 Write Display RAM Command Word

The display RAM command word format is given in Table 7.20.

290 Microprocessors and Interfacing

Table 7.20 Display RAM command word format

D7 D6 D5 D4 D3 D2 D1 DO

1 0 0 Al A A A A

Set to 1 for auto-increment Address of the 16-byte
option display RAM in 4 bits

Writing this command to the command register sets the 8279 to get and store the

data to be displayed in the display RAM. If Al is set to 1, the auto-increment option

is implemented by which the address of the RAM is incremented automatically

after every write operation. Data written with 0 in the address line A0 are written

into subsequent RAM addresses, automatically incrementing the addresses.

7.9.4.5 Other Command Words

Other commands such as reading the display RAM, blanking display, clearing

the display or FIFO, clearing the IRQ signal to the microprocessor may not be

necessary for basic interfacing of a keyboard/display. Hence, a summary of these

commands are provided in this section. More details of these commands can be

obtained from the datasheet of the 8279. The read display RAM command word
format is given in Table 7.21.

Table 7.21 Read display RAM command word

0 0 b s D0

The display RAM read control word selects the address of one of the display

RAM positions and a subsequent read operation using A0 = 0 reads the data in that

display RAM address.

The display write inhibit command word format is given in Table 7.22.

Table 7.22 Display inhibit/mask command word

BY e D D5 D4 P32 D1 Do

The display write inhibit control word is used in applications where separate

4-bit display ports are used. One example using 4-bit data is a display which uses

a BCD decoder. This control word is used to inhibit either the leftmost 4 bits of

the display or the rightmost 4 bits using the I-I bits. Using this inhibit, it is possible

to write a nibble into the display RAM without affecting the other digits being

displayed. The masking of the bits MM is similar in operation to inhibit, but these

bits selectively blank either the left-most or the right-most display.

The clear display command word format is given in Table 7.23.

Features and Interfacing of Programmable Devices for 8086-based Systems 291

Table 7.23 - Clear display command word

D7 D6 D5 D4 D3 D2 D1 DO

1 1 0] CD CD CF CA

The clear control word can clear the display RAM using CD bits. The setting of

the D4 bit enables clearing of the display. This command has the option of making

the display RAM all Os by using 00 in D3 and D2 bits or all 1s by using 11 in D3

and D2. The setting of the CF bit clears the keyboard FIFO RAM and the CA bit

clears both the display RAM and FIFO RAM.

The end interrupt command word format is given in Table 7.24.

Table 7.24 End interrupt command word

oD sgenic DB D5 D4 D3 D2 D1 DO

1 1 1 E 0 0 0 0

End of interrupt command word is issued to clear the IRQ pin in sensor matrix

mode.

1.9.4.6 Keyboard Status Word Format

To determine if a character has been typed, the FIFO status register is checked. The

keyboard status word contains the status of FIFO, error, and display availability.

This status word can be read from the 8279 when A0 is high. The status word

format is given in Table 7.25. The least significant three bits are used to indicate the

number of keys pressed and stored in the FIFO. The next bit F is used to indicate

that the FIFO is full. Underrun error bit U is used to indicate a read attempt from

the empty FIFO. Overrun error bit O is used when the entry into a full FIFO is

attempted. S/E is used to indicate a multiple key press. The bit D is used to indicate

the unavailability of the display.

Table 7.25 Keyboard status word format

D S/E 0 U F N N'q4 7. N
L |

Number of keys pressed

7.9.4.7 Keyboard Code Word Format

In the scanned keyboard mode, the character entered into the FIFO corresponds to

the position of the switch in the key matrix and the status of the control and shift

keys. The data read from the FIFO RAM has the format as given in Table 7.26. The

MSB corresponds to the status of the control key while the next bit corresponds to

the shift key. The next three bits are from the scan counter and indicate the row in

which the key press was identified. The least significant three bits correspond to

the column lines in which the key press was identified.

292 Microprocessors and Interfacing

Table 7.26 Keyboard code word format

D7 D6 D5 D4 D3 D2 D1 DO

CTRL SHIFT S, S, S4 R, R, RS

L J L]

Encoded row position Encoded column position

1.9.5 Display Interface using 8279

The IC 8279 can be used to interface a maximum of 16 characters. The lines

A0-A3 and B0-B3 are used to give the display data to the devices. The scan lines

are used to select any one of the display devices.

The interfacing of seven-segment LEDs with the processor 8086 through the

8279 is shown in Fig. 7.33.

Column select lines

Decoder —l Ve

A7-A0

8086 - 155 2 : > 8279 A0-A3 J l

A7-A2

Circuit for < s

demulti- Address
plexing | decoder : =
AD7-ADO

Fig.7.33 Interfacing seven-segment display devices using IC 8279

The number of display devices used in this scheme is six. The seven-segment

displays are all common anode type and a transistor driver is used with each display

device. A PNP transistor drive is used to switch between the common anode and

+5V supply similar to the drivers used in Fig. 7.30. A logic low is required to turn

on the transistor driver and the same is generated using the decoder IC. Common

decoder ICs such as IC 74138 can be used, as they can give an active low signal

on any of their outputs. The segments of the display devices are all connected

together on a common bus and connected to A3—-A0 and B3-BO0 outputs of the

8279. As the displays are all common anodes, the data output for illuminating an

LED must be logic low. This means that the logic 1 on all the data lines A3-A0

and B3-B0 will blank the display and logic 0 in all these lines will display all the

segments.

The software part for the display interface consists of initializing the 8279 for

the encoded output and for 8-digit display. The writing of data to the display RAM

Features and Interfacing of Programmable Devices for 8086-based Systems 293

of the 8279 is enough to display data. The 8279 automatically scans and refreshes

the display. The following program assumes that a 6-digit display is interfaced

through the 8279 as shown in Fig. 7.33. Let us assume that the address of the

command or status register is 42H and that of data register is 40H in the 8279.

Program:

MOV AL, ©©H ; Move mode set command word to AL.

OUT 42H, AL 5 Send out the same to command port.

MOV AL, @COH ; Move clear display command to AL.

OUT 42H, AL ; Send out the same to command port.

MOV AL, 90©H 5 Move the write display RAM command word to AL.

OUT 42H, AL ; Send out the same to command port.

MOV AL, DATA1l ; Move seven-segment display code for first digit

(DATA1)in AL.

OUT 40H, AL Send out the same to data port.

MOV AL, DATA2 ; Move seven-segment display code for second digit

(DATA2) in AL.

OUT 40H, AL Send out the same to data port.

MOV AL, DATA3 ; Move seven-segment display code for third digit

(DATA3) in AL.

OUT 40H, AL Send out the same to data port.

MOV AL, DATA4 ; Move seven-segment display code for fourth digit

(DATA4) in AL.

OUT 40H, AL Send out the same to data port.

MOV AL, DATAS5 ; Move seven-segment display code for fifth digit

(DATAS5) in AL.

OUT 40H, AL ; Send out the same to data port.

MOVAL, DATA6 ; Move seven-segment display code for sixth digit

(DATA6) in AL.

OUT 40H, AL ; Send out the same to data port.

HLT ; Terminate program execution.

e

e

-

-

7.9.6 Keyboard Interface using 8279

The keyboard matrix that can be interfaced using the 8279 can be of any size from

2 x 2 to 8 x 8. Pins SLO-SL3 sequentially scan each column through a counting

operation. The 74LS138 decoder IC can drive Os on one line at a time from the

SLO-SL3 lines. The 8279 scans the RL pins synchronously with the scan. The RL

pins have internal pull-up resistors, and hence do not need external resistors. The

8279 does the three tasks of key board scan—placing a low in a scan line, checking

for a low on the return lines, and detecting and debouncing the key pressed .

A key board matrix connected to the 8279 is shown in Fig. 7.34. Three column

select lines SLO—SL2 are used to apply a low on any one column line and do

consecutive scanning on all column lines. Any key pressed can be sensed by a low

on the return lines. The 8279 does this scanning automatically and stores the key
code into the FIFO RAM. In this example, the CNTL and SHIFT lines are not used

and are connected to logic low.

294 Microprocessors and Interfacing

:} D=0 D DO-D7

AT-A0 8279

8086 Al

A0

CNTL/STB ;
E SHIFT Return lines | :

AT-A2 L Vers Keyboard matrix
[__J (77 RIORLT |

Circuitfor | Agdress |CS
demultiplexing | decoder SLOSL1SL2 ST0SLISa

s
Column select lines Decoder

Fig. 7.34 Interfacing matrix keyboard using IC 8279

The software program using the 8086 mnemonics is as follows. Initially, the

mode set command word is written into the command port. Here, the encoded scan

keyboard with 2-key lock out mode is used. After writing the command word,

IC 8279 starts scanning the key presses. Any key press can be sensed by reading

the status word from the 8279 and then checking the least significant 3 bits. The

following program checks for single key press and reads the key code from FIFO.

The key code will be then stored in the memory location named KEY_CODE in

the data segment. Let us assume that the address of the command or status register

is 42H and that of the data register is 40H in the 8279.

Program:

MOV AL, ©@eH ; Move mode set command word to AL.

OUT 42H, AL ; Send out the same to command port.

L1: IN AL, 42H ; Read the status word from the 8279.

AND AL, O7H ; Mask the higher-order bits (D3-D7) in AL:

3z L1 ; Check number of keys pressed; if no key is

pressed, then go to L1.

MOV AL, 5@H ; If a key is pressed, then move the read FIFO

RAM command word to AL.

OUT 42H, AL ; Send out the same to the command port.

IN AL, 40H ; Read the data from the data port of the 8279.

MOV KEY_CODE, AL ; Store key code in memory.

HLT Terminate program execution.

-

This program uses the polled method of data transfer from the 8279 FIFO to

the processor by reading the status word. In order to save the processor time and

to avoid the reading and checking of status register, the IRQ line of the 8279 can

be used to interrupt the processor. The IRQ signal is activated by the IC 8279

whenever a key press is sensed and its code is loaded into the FIFO RAM. This

interrupt request line can be tied to any one of the interrupt signals of the processor

Features and Interfacing of Programmable Devices for 8086-based Systems 295

and the corresponding interrupt service routine can be used to read the key code

from FIFO RAM.

7.10 INTELTIMER IC 8253

In software programming of the 8086, it has been shown that a delay subroutine

can be programmed to introduce a predefined time delay. The delay is achieved by

decrementing a count value in a register using instructions. The disadvantage of

this software approach is that the processor is locked in the delay loop and precious

processor time is lost in counting. This can be overcome by using hardware timer

and interrupts. IC 555 can be used to generate the timing signals, but only at a fixed

time interval. This cannot be easily interfaced with the microprocessor. So, Intel

has produced programmable timer devices namely IC 8253 and IC 8254. These

devices can be programmed to generate different types of delay signals and also

count external signals. Other counter/timer functions that are also common to be

implemented with the 8253 are programmable frequency square wave generator,

event counter, real-time clock, digital one-shot, and complex motor controller.

7.10.1 Features of IC 8253

Timer ICs 8253 and 8254 are manufactured by Intel with similar operating

functions. The 8254 can be operated at frequency of up to 8 MHz whereas the

8253 can be operated only up to a maximum frequency of 2.6 MHz. Following is

the list of major features of the IC 8253.

(i) Generation of accurate time delay

(ii) Three independent 16-bit down counters called channels

(iii) Six different programmable operating modes

(iv) Timer or counter operation

(v) Counting in binary or BCD

(vi) Capability to interrupt the processor.

(vii) Single +5V supply

(viii) Can operate in DC and AC up to 2.6 MHz

7.10.2 Block Diagram of IC 8253 and Pin Details

The internal block diagram of IC 8253 is shown in Fig. 7.35. The figure shows

the three independent 16-bit timers—counters 0, 1, and 2. These counters are

programmer-controlled and the programmer can initialize the count value and start

the counting process. The initialization is done through the data bus of the system.

Counting can be started and stopped using software instructions written into the

control register. The count value of the counter can be read by the programmer

at any time through the proper command and through the data bus of the system.

The pins of IC 8253 are shown in Fig. 7.36. Each counter has two input pins—

CLK (clock input) and GATE, and one pin, OUT, for data output. The control

input line GATE is used to start or stop the counting operation. The OUT signal

from each counter can be used to indicate the completion of required counting or

timing operation and also to interrupt the processor.

296 Microprocessors and Interfacing

= CEKO

<:> Data bus <:fl> <:> CONeT, e FCATE
buffer - OUTO

RD

‘WR Read/ OEky
Write <l_'—:fil> Countet. | /GATEY

A0— logic T ——OUT:1
AT

CS 4

— —— CLK 2
Control

o <}::‘J> Counter =Y GAEY
register L OUT2

1 |

Internal bus —8MMM— i

Sl dn o PP TR T v TG S .

Fig.7.35 Ifiternal block diagram of IC 8253

b6 Ol #H W ‘
D5 [3 22| RD

D4 [4 211 Cs

D3 [ls 201 A1l

D2 [l6 8253 191 A0

D1 []7 18] CcLK 2

Do [18 171 out2

CLK 0 []9 16] GATE2

ouTto-[10 151 cLK 1
GATE 0 []11 14[] GATE1 ;

GND [12 : - 130 ouT1

Fig.7.36 Pin details of IC 8253

An 8-bit data bus is available on the 8253 pins to interface the IC with the

microprocessor. A CS control signal is used to select the chip. This active low

signal can be activated using the 8086 address lines and the decoder. In addition,

the 8253 requires two address lines A and A, to be issued from the 8086 hardware.

These address lines are used to select one of four registers in the 8253—three

counters and one control register. The RD and WR control signals are issued by

the processor to indicate whether it is reading from or writing to the 8253 registers.

The control signals applied to the pins of the 8253 for various operations are given

in Table 7.27.

Features and Interfacing of Programmable Devices for 8086-based Systems 297

Table 7.27 Control signals and operation in IC 8253

cs RD WR A1 A0 Operation

0 1 0 0 0 Load count value in counter 0

0 1 0 0 1 Load count value in counter 1

0 1 0 1 0 Load count value in counter 2

0 1 0 1 1 Write control word in control register

0 0 1 0 0 Read counter value from counter 0

0 0 1 0 1 Read counter value from counter 1

0 0 1 1 0 Read counter value from counter 2

0 0 1 1 1 No operation

0 1 1 X X No operation

1 X X X X Disable chip

7.10.3 Operating Modes and Control Word of IC 8253

The complete operation of the 8253 is programmed by the system software or the

programmer. The programmer configures the 8253 to match his/her requirements.

A set of control words must be sent out by the programmer to initialize each

counter of the 8253. These control words program the mode, loading sequence,

and selection of binary or BCD counting. Then the programmer initializes one of

the counters of the 8253 with the desired quantity. Then upon proper command or

control word, the 8253 will count-out the delay and interrupt the CPU when it has

completed its tasks. It is easy to see that the software overhead is minimal and that

multiple delays can easily be maintained by assignment of interrupt priority levels.

The normal procedure for software control of the 8253 has the following four

main steps:

(i) Write the proper control word to the control register of the 8253 for each

counter used. '

(ii) Write the initial count value into the counter register.

(1i1)) Apply clock pulses to the counter.

(iv) Check for the desired count value, check for the interrupt signal from the

counter, or check for the hardware signal OUT from the counter. After

checking for the required time delay, the next operation can be carried out.

Each counter of the 8253 is individually programmed by writing a control word

into the control word register. The control word format is given in Table 7.28. The

LSB DO is used to select it’s the counting mode—binary or BCD. The next three

bits M0 to M2 decide one of six operating modes for the counter selected. RLO and

RL1 bits decide whether read or load operation is to be performed on the counter.

The counter can be made to count continuously, but the programmer can read the

count value at any time by writing a control word to latch the count value and then

read it. Similarly, initial setup can define whether an 8-bit or 16-bit value is loaded

into the counter. The most significant two bits SC0 and SC1 decide the counter for

mode and operation setting.

N
’

298 Microprocessors and Interfacing

Table 7.28 Control word format of 8253

Bit position D7 D6 D5 D4 D3 D2 D1 DO

Name SC1 SCo RL1 RLO M2 M1 MO0 Binary/BCD

Explanation Select counter ~ Read/Load option =~ Mode selection 0—Binary

00—Counter 0 00—Latch count bits counter

01—Counter 1 01—Read/Load 000—Mode 0 1—BCD

10—Counter 2 LS byte only 001—Mode 1 counter

11—Illegal 10—Read/Load X10—Mode 2

MS byte only X11—Mode 3
11—Read/Load 100—Mode 4

LSB and then 101—Mode 5

MSB

The six operating modes of the timer IC 8253 along with the function of GATE

are listed in Table 7.29.

Table 7.29 Operating modes of 8253

M2 M1 MO Operating modes GATE control Reloading of

: : Count value

0 0 0 Mode 0 Inte@pt on 0—Disables counFing No

terminal count 1—Enables counting

0 0 1 Mode 1 Programmable Oto 1 transitiqn Y'es, if

one-shot initiates counting triggered

0—Disables counting

Rate generator. 1—Enables counting

X 1 0 Mode 2 Divide-by-n 0 to 1 transition Yes

counter reloads counter and

initiates counting

0—Disables counting

Souareavave 1—Enables counting
X 1 1 Mode 3 0 to 1 transition s

rate generator
reloads counter and

initiates counting

Software- : :
1 0 0 Mode 4 ' triggered 0—Disables counFlng i

1—Enables counting
strobe

Hard - i
P 0 to 1 transition tYeS’ If gate

1 0 1 Mode 5 triggered i ¥ input goes

strobe S ECOUTLIE from 0 to 1

7.10.3.1 Mode 0: Interrupt on Terminal Count

In mode 0, the counter is used to issue an output after counting up to zero from

the pre-initialized value. The initial count value is loaded into the counter and

gets decremented for every clock pulse. The GATE signal input also controls the

Features and Interfacing of Programmable Devices for 8086-based Systems 299

counting operation. The output line OUT is made high from low, when the count

value becomes 0. The OUT signal becomes low, when the counter is loaded with

the next count value.

This mode 0 operation is a one-time operation and the OUT signal indicates

the terminal condition of the required count operation. The GATE input signal of

the corresponding counter either enables or disables the counting operation. The

waveforms for counter operation in mode 0 are shown in Fig. 7.37.

WR n _I

Output (interrupt)

Output (interrupt)

3 Il v

A+B=m et : AR E

Fig.7.37 Waveform of counter operation in mode 0

7.10.3.2 Mode I: Hardware-triggered One-shot

Mode 1 is similar to mode 0, but has a minor difference. The similarity between

the modes is that the output becomes low while counting down and becomes high

once the count value reaches zero. The first difference between the modes 0 and

1 is that in mode 1, the counting is started-or triggered whenever the GATE input

becomes high. The second difference is that in mode 1, the count value is reloaded

if in the middle of the count, the GATE goes low and becomes high again. Thus,

the operation of the counter is similar to that of a monostable multivibrator, with

i otoope il Rl B[Rl Rl fil FRIREL 5 e

WR it |2

 Trigger

™ 2z LA A L i 2l 3 Wl P EoRt ATy R T e vy ok i TV VTR g

Fig. 7.38 Waveform of counter operation in mode |

300 Microprocessors and Interfacing

the GATE input signal acting as the trigger input to the multivibrator. The duration

of the low output is the quasi-stable state of the multivibrator and is decided by the

count value loaded initially.

The waveforms for counter operation in mode 1 are shown in Fig. 7.38.

7.10.3.3 Mode 2: Rate Generator

In mode 2, the counter generates continuous signals in the output line. The down

counting starts once the counter is loaded with the count value. In this mode, the

output signal becomes high once the counting starts. After this, the count becomes

one. The OUT then remains high until the counter reaches 1, and becomes low for

one clock pulse. When the count becomes zero, the initial count value is reloaded

and decremented for every clock pulse. As only one low pulse is generated during

the entire count cycle, this mode is called rate generator or frequency divider. The

divided output frequency is given by the formula:

Output frequency = (Input clock frequency)/(Count value loaded)

This mode acts as a divide-by-» counter. The GATE input is called reset input and

if it becomes zero, then counting is disabled. After that when it becomes one, the

count value is reloaded and counting starts again.

This mode is commonly used to generate a real-time clock interrupt. The

output can be used as an interrupt signal to interrupt the processor during every

output period of the counter. The waveforms for the counter operation in mode 2

are shown in Fig. 7.39.

0(3) F0 205 101(3) % 20515 2 0:(3) 22 l
Outpfit (n=3) —l l m |_]

Reset _fi_____l

T T e I S e

Fig.7.39 Waveform of counter operation in mode 2

7.10.3.4 Mode 3: Square Wave Generator

The operation of modes 2 and 3 are similar, except that the output is a square wave

with equal low and high periods in mode 3. If the count value is loaded with n,

the output will be low for »n/2 clock periods and high for n/2 clock periods. If n

is odd, the output will be high for (» + 1)/2 clock periods and low for (n — 1/2)

clock periods. The counting will be reinitialized once the count value reaches zero.

Thus, the square wave will be generated continuously. The frequency of the square

waveform will be given by the input clock frequency divided by the count value.

The waveforms for the counter operation in mode 3 are shown in Fig. 7.40.

Features and Interfacing of Programmable Devices for 8086-based Systems 301

Clock W

Output (n = 4) | I l | l l

Output (n = 5) | \ I I |

S ———

Flg 7.40 Waveform of counter operation in mode 3

7.10.3.5 Mode 4: Software-triggered Strobe

In mode 4, the down counting in the counter is initiated by writing the count value

in the counter. The output will be low during the last clock period of every count

cycle. The GATE input controls the counting and will reinitialize the count value

as shown in Fig. 7.41. An input of zero on the GATE input inhibits the counting.

WR n=4

3.3 0 g
Output [zsse]

Loadn WR | .n=4

Gate | |

&
i

d
a
d
u
t
i
a

T
t
y

v
B

T

Output | |

Fig.7.41 Waveform of counter operation in mode 4

7.10.3.6 Mode 5: Hardware-triggered Strobe

Mode 5 of the timer IC 8253 is similar to mode 4, with the difference that the

counting is triggered by the GATE input and not by writing of the count value by

the software. The output is high once the count value is loaded. Counting starts

with the rising edge of the gate pulse. The output is low during the last count of

the counter. The waveforms for the counter operation in mode 5 are shown in

Fig. 7.42.

Clock mmwm k

Gate : | g
e R) B

;Output (n 4) 7 el)

Gate . | | |

: 43304 03D 1 0

Output (n = 4) G | E

Fig.7.42 Waveform of counter operation in mode 5

302 Microprocessors and Interfacing

7.10.4 Interfacing of IC 8253 with 8086

The timer IC 8253 can be interfaced with the 8086 as an input and output devyice

The first step in interfacing is to allot the addresses for the devices and design the

address decoding logic. In an 8086-based system, the I/O devices can be assigned

either 16-bit or 8-bit address. Here, we will assume that 8-bit address is assigned

to the 8253. The interfacing of the 8253 is similar to the interfacing of the 8255

with the 8086. Four consecutive even 8-bit addresses are allotted to the 8253 for

accessing the three counters and one control register, if the data bus of the 8253 is

connected with the data bus D7-DO0 of the 8086. The A0 and A1 address lines can

be used to select one of three counters and the control register. As usual, the lower

address bus and the data bus must be demultiplexed in any 8086 system using

a latch and ALE signal. The 8086 processor places the 8-bit I/O address on the

lower-order address bus. Hence, the lower-order address lines A7—A3 are used for

address decoding purpose as shown in Fig. 7.43. The M/IO, RD, and WR signals

of the 8086 are used to generate the read and write control signals for the 8253.

For the operation of the counters, the counters must be given proper signals on the

input pins CLK and GATE.

DO0-D7 '

ADO-AD7 Latch | 23 l CLK 0
e A0AT> | -DTD0 GATE 0

ALE > Al |A0 OUT0
8086 CLK 1

Az Al — GATE 1
AT-A3 8253 —OUT1

Tt M - CLK 2
RDWR 10 CSWR RD :gATEZ

\

Address CS

Decoder
3

Decoder

< IOW
> IOR

Fig.7.43 Interfacing the 8253 with the 8086

7.10.5 Application Examples

Example 7.13

Write a program to generate a monoshot pulse with quasi-stable state duration of

10 ms using counter 0 of the 8253 when a trigger pulse is given in the GATE input

of counter 0. The 8253 uses clock of 1 MHz. Assume that the address of counter 0

and the control register of the 8253 are 30H and 36H, respectively.

Solution:

To generate a monoshot pulse, the 8253 is programmed in mode 1. The count to be

loaded in counter is calculated as follows:

Period of the 8253’s clock = 1/(1 x 1076) = 1 microsecond

Features and Interfacing of Programmable Devices for 8086-based Systems 303

Count = Quasi-stable state duration/Period of 8253’s clock

= 10 millisecond/1 microsecond = 10000 = 2710H

The control word to be loaded in the 8253 is given in Table 7.30.

Table 7.30 Control word value (Example 7.13)

Bit position D7 D6 D5 D4 D3 D2 D1 DO

Name SCI.....SCOy+ RL1.. RLO.. M2 M1 MO Binary/BCD

Value (32H) 0 0 1 1 0 0 1 0

Program:

MOV AL, 32H ; Load the control word for the timer IC 8253 in AL.

OUT 36H, AL 5 Send it to the control register of the 8253.

MOV AL, 10H ; Load the lower-order count value in AL.

OUT 30H, AL ; Send it to the counter © of the 8253.

MOV AL, 27H ; Load the higher-order count value into AL.

OUT 30H, AL ; Send it to the counter @ of the 8253.

HLT Terminate program execution.

-

Example 7.14

Write a program to generate a square wave of 1 KHz using counter 1 of the 8253.

The 8253 uses clock of 1 MHz. Assume that the address of counter 1 and control

register of the 8253 are 32H and 36H respectively.

Solution:

To generate a square wave, the 8253 is programmed in mode 3. The count to be

loaded in the counter is calculated as follows:

Period of 8253’s clock = 1/(1 x 10"6) = 1 microsecond

Count = Period of the square wave/Period of 8253s clock

= 1 millisecond/1 microsecond = 1000 = 03E8H

The control word to be loaded in the 8253 is given in Table 7.31.

In this example, the control word is found such that BCD value will be loaded in

the counter 1 and hence the BCD value of count has to be loaded in the counter

1. However, the control word can also be found such that the binary value of

count will be loaded in the counter 1 and at that time binary value of count (i.e.,

hexadecimal count) has to be loaded in the counter 1.

Table 7.31 Control word value (Example 7.14)

Bitpositon D7 D6 D5 D4 D3 D2 DI DO
Name SCI SCO RLI RLO M2 MI MO Binary/BCD
Value (77H) 0 1 1 1 0 1 I 1

Program:

MOV AL, 77H ; Load the control word for the timer IC 8253.

OUT 36H, AL ; Send it to the control register of the 8253.

304 Microprocessors and Interfacing

MOV AL, ©@©H ; Load the lower-order BCD count value in AL.

OUT 32H, AL ; Send it to the counter 1 of the 8253.

MOV AL, 1©H ; Load the higher-order BCD count value into AL.

OUT 32H, AL ; Send it to the counter 1 of 8253

HLT ; Terminate program execution.

Example 7.15

Timer interface using polling method

Assume that a timer IC 8253 is interfaced to the 8086 such that the addresses

assigned to the 8253 are 30H, 32H, 34H, and 36H. The 8086-based system has

another IC 8255 interfaced to it at the addresses 40H, 42H, 44H, and 46H. The

two seven-segment displays are interfaced to port A of the 8255 using two 7447

decoders (BCD to seven-segment code converter). Write a program such that the

seven-segment displays in the system display the count in decimal from 00 to 99

with 1 second delay between each count. (This type of interface can be developed

as a stopwatch by adding a set of switches on a port.)

Solution:

The 8253 has been interfaced to the 8086 at the address 30H-36H. So, the address of

the control word is 36H. Here, the software polling method is used. So, the counter

must be run and then the program has to check whether the count is completed for

the predetermined period—here one second. As the display has to be incremented

for every second, we have to select a counter mode, which will have auto reload

of the count value. So, mode 2 or 3 can be used for this application. Counter 0 is

selected and the 16-bit count value has to be loaded for the binary counter. The

mode 2 control word for the above configuration is given in Table 7.32.

Table 7.32 Control word value (Example 7.15)

~ Bit position D7 Dé D5 D4 D3 D2 Dt~ DO

Name SCI1 SCO RL1 RLO M2 Ml MO Binary/BCD

Value (34H) 0 0 1 1 0 1 0 0

The next step is to find the count value. The count value should be such that the

counter becomes zero after counting the predetermined count value in one second.

So, if the input clock frequency for the counter operation is selected as 1 KHz,

then the counter will be decremented after every clock period, that is, after every 1

ms. So, the count value of 1000 decimal will result in a delay of one second, when

the counter becomes zero after 1000 counts. If the counter is designed to count in

binary, then the count value 1000 decimal must be converted to binary and loaded

into the counter as 03E8 (in hexadecimal form). If the counter is designed to count

in BCD, then the count value can be loaded in BCD format itself as 1000.

The program consists of three parts. The first part is initializing the counter

and the count value. The clock signal must be applied to the selected counter’s

clock input pin. Here, the counter is operated in mode 2 and hence the count value

need not be loaded repeatedly after the count is over. The count value is reloaded

automatically after it becomes zero. The second part is to check whether the

Features and Interfacing of Programmable Devices for 8086-based Systems 305

counter value has become zero using software polling technique. In the software

polling method, the counter is first latched with a latch counter command control

word. Then the count value is read from the counter. After the 16-bit count value

is loaded to the processor registers, it is checked for zero value. For this the two

bytes are ORed. The third part is to increment the value sent to the seven-segment

displays connected at port A of the 8255.

Program:

MOV AL, 8©H Load the control word for the 8255.

OUT 46H, AL ; Send it to control register of 8255.

MOV AL, ©©H ; Load the initial BCD number to be sent to

displays in AL.

OUT 40H, AL ; Send it to the port A of the 8255.

MOV BL, AL ; Store the BCD number currently displayed in

BL.

MOV AL, 34H ; Load the control word for the timer IC 8253.

OUT 36H, AL ; Send it to the control register of the 8253.

MOV AL, @E8H ; Load the lower-order count value in AL.

OUT 30H, AL ; Send it to counter © of the 8253.

MOV AL, ©3H ; Load the higher-order count value in AL.

OUT 30H, AL ; Send it to counter @ of the 8253.

CHECK: MOV AL, 04H ; Load the control word to latch the count value

in counter @ in AL.

OUT 36H, AL ; Send it to the control register of the 8253.

e

IN AL, 30©H ; Read the lower-order count value from Counter

@ into AL.

MOV CL, AL ;. Store: it in.CL.

IN AL, 30H ; Read the higher-order count value from Counter

@ into AL.

MOV CH, AL ; Store it in CH.

CMP CX, © ; Compare CX value with 0.

INZ CHECK ; If Z = @ then 1 second is not over, so go to

location CHECK.

INC BL ; Increment BL to hold next BCD number to be sent

to displays.

MOV AL, BL ; Move the value in BL to AL.

DAA ; Convert the result in AL to BCD form.

OUT 40H, AL ; Send it to the Port A of the 8255

JMP CHECK ; Jump to CHECK.

Example 7.16

Timer interface using interrupt method

Implement the same application illustrated in Example 7.15 with an interrupt

method.

Solution:

Here, the counter is initialized and starts counting. In mode 2, the counter gives a

306 Microprocessors and Interfacing

logic 0 pulse for a clock period after the count is over. This clock pulse is used as

an interrupt signal to the 8086 processor.

This interface uses the interrupt feature of the 8086 to increment the count value

in the display at port A of the 8255. The 8253 timer IC is programmed to generate

an interrupt signal at every second. To achieve this, one of the counters in the 8253

is programmed in mode 2 and it generates an active low pulse for one clock period

in its OUT pin after every second. This OUT signal is given to the non-maskable

interrupt (NMI) interrupt pin of the 8086 through an inverter. The NMI requires

an active high signal. However, the 8253 gives out an active low signal whenever

the counting is over in mode 2. So, an inverter is connected between OUTO and

NMI pins. Then in the ISR, the value sent to the display is incremented. In this

example, the OUTO signal from the 8253 is connected to the NMI interrupt line of

the 8086 as shown in Fig. 7.44. The clock frequency applied at CLKO is selected

as 1 KHz signal and GATEQ is connected to logic 1. The program for the same is

as follows:

(CLKO 1

GATEQ [signal]
v E S U

ADO-AD7 K
ALE[-

8086 —Jouto

' ACS

Address I
Decoder

- |Decoder
IOW

[ToR

’ Fig. 7.44 Interfacing f.he 8253 timer O in interrupt driven mode

Let us assume that BL register is used for storing the BCD data sent to the display

and is not used by the main program for other purposes.

Main program: _

START: MOV AL, 86H ; Load the control word for the 8255.

OUT 46H, AL ; Send it to control register of 8255.

MOV AL, ©©H ; Load the initial BCD number to be sent to

displays in AL.

OUT 40H, AL ; Send it to the port A of 8255.

MOV BL, AL ; Store the BCD number currently displayed in

BL.

MOV AL, 34H ; Load the control word for the timer IC 8253.

OUT 36H, AL Send it to the control register of the 8253. e

Features and Interfacing of Programmable Devices for 8086-based Systems 307

MOV AL, OE8H ; Load the lower-order count value in AL.

OUT 30H, AL ; Send it to counter @ of the 8253.

MOV AL, ©3H ; Load the higher-order count value in AL.

OUT 30H, AL ; Send it to the Counter @ of the 8253.

5 Main program continues

NMI interrupt service routine:

NMI_ISR: INC BL 5 Increment BL.

MOV AL, BL ; Move BL content to AL.

DAA ; Convert the result to BCD form.

OUT 40H, AL ; Send the same to port A of the 8255.

IRET ; Return from the interrupt service routine.

7.11 INTRODUCTION TO SERIAL COMMUNICATION

Serial communication is sending and receiving information bit by bit. For

short range communication, parallel data transfer is preferred as it is the fastest

means. While transferring data over long distances, parallel communication

requires numerous wires and complex error handling/data recovery mechanisms.

Moreover, for parallel data transmission of eight bits at a time, both the receiver

and the transmitter side equipments need eight differential amplifiers and related

hardware. This results in complex circuitry and becomes costlier for long

distance transmission. Thus, serial communication is preferred for long range

communication and it can be easily implemented using a single wire or a pair of

wires.

As the microcomputer uses parallel data, it is converted into serial form and

then transmitted. On receiving the serial data, it is converted into parallel form and

then transferred to the microcomputer.

The terms mainly used in serial data systems are simplex, half-duplex, and

full-duplex. In simplex data transmission, data can be transferred only in one

direction. Examples for this type of systems are radio, television, etc. In half~duplex

transmission, the communication can take place in either direction between two

systems but only in one direction at a time. An example of half-duplex transmission

is a two way radio system, where one user always listens while the other talks. This

is possible by turning off the receiver circuitry during transmission. In full-duplex

communication, both the receiver and the transmitter can send and receive data

at the same time. A normal telephone conversation is an example of a full-duplex

system.

Serial data can be sent either in synchronous or asynchronous modes. For

synchronous transmission, data is sent in blocks at a constant rate. The constant

rate means the frequency of transmission and reception are the same and both

transmission and reception take place simultaneously. The start and end of a

block are identified with specific bytes or bit patterns. In general, the synchronous

transmission is used for high transmission speeds of more than 20 kb/second. For

asynchronous transmission, each data character has a bit to identify its start and

one or two bits to identify its end. So, the characters can be sent at any time

308 Microprocessors and Interfacing

randomly without checking the receiver. The reception and transmission are not

synchronized.

The bit format used for transmitting asynchronous serial data is shown in Fig,

7.45. This format is also called frame.

/) % / '

0
D3 D5 | D6 Parity: Stop ; Stop D2 tart | DO | DI

3
)

e
y:

3

Fig.7.45 Asynchronous serial data transfer format

When no data is being sent, the signal line is in a constant high level. The

starting data character is indicated by the line going low for one bit duration and

is usually called start bit. The data bits are then sent out on the line one followed

by the other. Here, the LSB is sent out first. The data bit is followed by a parity bit,

which is used to check for errors in received data but it is optional. After the data

bits and the parity bit, the signal bit is made high for at least one bit duration to

identify the end of character and is referred to as stop bit. Some systems may also
use two stop bits.

Baud rate is the rate at which serial data is being transferred and in general,

it is measured in bits/second. Baud rate = 1/(Time between signal transitions). If

the signal is changing every 1.67 ms, then baud rate is 1/(1.67 x 1073), or 600 Bd.

Common baud rates are 300, 600, 1,200, 2,400, 4,800, 9,600, and 19,200.

RS-232C is a standard that describes the function of the signal and handshake

pins for serial data transfer. A major problem with RS-232C is that it can only

transmit data reliably for about 50 ft (16.4 m) at its maximum rate of 20,000 Bd.

If longer lines are used, the transmission rate has to be drastically reduced. This

limitation is caused by the open signal lines with a single common ground that are

used in RS-232C.

The Electronics Industries Association (EIA) has a standard named RS-4234

which is an improvement over RS-232C. This standard specifies a low-impedance

single-ended signal, which can be sent over a 50 Q coaxial cable. Logic high in

this standard is represented by the signal line being between 4V and 6V negative

with respect to ground and logic low is represented by the signal line being to 4V

to 6V positive with respect to ground. The RS-423 standard allows a maximum

data range of 100,000 Bd over a 40 ft line or a maximum baud rate of 1,000 Bd on

a 4,000 ft line.

RS-4224 is a newer standard for serial data transfer which specifies that each

signal will be sent differentially over two adjacent wires in a ribbon cable or a

twisted pair of wires. The term differential used in this standard means that the

signal voltage is developed between the two signal lines rather than between the

signal line and ground as in RS-232C and RS-423A. In RS-422A, a logic high

is transmitted by making the ‘b’ line more positive than the ‘a’ line. A logic low

is transmitted by making the ‘a’ line more positive than the ‘b’ line. The voltage

difference between the two lines must be greater than 0.4V but less than 12V.

Features and Interfacing of Programmable Devices for 8086-based Systems 309

Modem 1s amodulator and demodulator that sends digital 1s and Os over standard

phone lines as modulated tones. A modem is essential in communication whenever
the signal has to be transmitted over long distances. In the United States, modem

standards are handled by the Telecommunications Industry Association (TIA),

which works closely with the Comite Consultatif International Telegraphique et

Telephonique (CCITT), which is part of the International Telecommunications

Union (ITU). The CCITT standards, which relate to modems start with a ‘V’.

Examples are the V.22bis, which is a 2,400 bit/s modem standard, and the

V.29bis, which is a 9,600 bit/s modem standard. The major modulation techniques

used in modems are amplitude modulation, frequency shift keying, phase shift

keying, and multiple carrier modulation. Modems can be directly connected to

the microcomputer buses for establishing serial communication between two

systems.

The serial port transmission has a lot of technical terms and protocols involved.

This section focusses on the basic serial port IC Intel 8251 that can be interfaced

with any processor for data transmission and reception in a serial manner.

7.11.1 Features and Details of 8251 USART

The 8251 is a universal synchronous asynchronous receiver transmitter (USART)

used for serial data communication. As a peripheral device of a microcomputer

system, the 8251 receives parallel data from the CPU and transmits the same in a

serial form. This device also receives serial data from outside, converts them into

parallel data, and sends them to the CPU. The 8251 can support both synchronous

and asynchronous transmission formats and is programmable. It supports full-

duplex serial transmission and reception and variable baud rates.

The internal block diagram of the 8251 is shown in Fig. 7.46. Basically, it

consists of a parallel-to-serial shift register for transmitting over transmit data
(TXD) line from a buffer and a serial-to-parallel converter for data received on

the receive data (RXD) line. A separate control unit is available to determine the

operation of the IC according to the control word written into it. A modem control

unit is present for interfacing the modem with the 8251. In addition to these units,

IC 8251 has an input and output port that can be used for interfacing with any

processor along with its read and write control logic. The 8251 requires clock

and reset signals for working in a synchronized manner with the processor. It has

a 16-bit control register and can be programmed using this control register. The

status of operation of the 8251 can be read from the status register. These two

registers can be accessed by the processor by making the C/D pin of the 8251 logic

1. Another register called the data register can be accessed by making the lC/I—)_

logic 0. The read operation is used to read the serial data received and the write

operation is used to write the data to be transmitted. These basic operations of the

8251 are shown in the Table 7.33. The address line A1 from the 8086 is connected

to the C/D signal, when the data bus is connected to the D7-DO0 bus of the 8086.

Hence, two successive even addresses are allotted to the 8251, one for control/

status register, which is selected when AO = 1 and another for data register, which

is selected when AQ = 0.

310 Microprocessors and Interfacing

Data bus
- buffer

D7-D0 < fi i |

\ : ‘ » Tfansmit
<__——:> “buffer —>» TXD

© i RESET —>
e L CLK

ehe
Read/
Write
control
logic

e

4

Y

Transmit TXRDY
» control —> TXE

S5 CS —»

- DSR —>4
DTR <—4

" CTS —>»<

Modem
control — burt

‘RTS <—

P TXEC

Receive

1 buffer [<—RXD In
te
rn
al

bu
s

li
ne

A

Y

—>> RXRDY
Receive SR

—> control pe— RXC

Fig.7.46 Block diagram of the 8251 USART

| <—>SYNDETBD |

Table 7.33 Basic operations of 8251 and related control signals

0 X 1

0 1 0

0 1 1

0 0 0

0 0 1

~ Function

S
=

O
=

e
X
;
I

Chip not selected; data bus in hxgh unpedance state

Data bus in high impedance state

Status word read by CPU from status register

Control word written into control register by CPU

Data read by CPU from data register

Data written into data register by CPU

The 8251 has 28 pins. The details and functions of these pins are listed as

follows:

(i) Data bus (D0-D7): A group of bi-directional lines that are used for data and

control word transfer between the CPU and the 8251.

(i) Reset: An active high signal applied on this pin brings the 8251 into reset

state. The device after reset waits for the writing of the mode instruction.

The time duration required for the reset signal is six clock pulses.

(1ii) CLK: A clock signal is used to generate internal device timing. It is

independent of receive clock (RXC) or transmit clock (TXC). In general, the

CLK frequency must be much higher than the RXC and TXC frequencies.

(iv)
N
 (v

(vi)

(vii)

(viii)

(ix)

(xi)

(xii)
(xiii)

(xiv)

(xv)

Features and Interfacing of Programmable Devices for 8086-based Systems 31 |

Write data/command (WR): It is an active low input signal for writing data

and control words from the CPU into the 8251.

Read data (RD): It is an active low input signal for reading data and status

words from the 8251.

Control/data (C/D): It is an input signal for selecting data or command/

status words when the 8251 is accessed by the CPU. If the C/D =0, data are

accessed. If the C/D = 1, command word or status word are accessed.

Chip select (CS): It is an active low input signal, which selects the 8251 for

CPU accesses.

Transmit data line (TXD): It is an output signal for transmitting converted

serial data from the 8251. The device is in mark status (high-level) after

resetting or during a status, when transmit is disabled.

Transmitter ready (TXRDY): It is an output signal, which indicates that

the 8251 is ready to accept a data character for transmission. However, the

terminal is always at a low level if clear to send (CTS) = 1 or the device is

set in transmitter disable status by a command.

Transmitter empty (TXEMPTY): It is an output signal that indicates that

the 8251 has transmitted all the characters and had no data character for

transmission.

Transmitter clock (TXC): This is a clock input signal that determines the
transfer speed of the transmitted data or in other words, the baud rate for

transmission. In synchronous mode, the baud rate will be the same as the

frequency of the TXC. In asynchronous mode, it is possible to select the

baud rate factor by mode instruction. It can be 1, 1/16, or 1/64 of the TXC.

Receive data (RXD): A signal line that receives serial data.

Receiver ready (RXRDY): It is a signal that indicates that the 8251 contains

a character that is ready to be read and the CPU can read the data. If the

CPU reads a data character, the RXRDY will be reset by the leading edge

of the RD signal. Unless the CPU reads a data character before the next one

is received completely, the preceding data will be lost. In such a case, an

overrun error flag status word will be set.

Receiver clock (RXC): This is a clock input signal that determines the transfer

speed of received data or the baud rate of reception. In synchronous mode,

the baud rate is the same as the frequency of the RXC. In asynchronous

mode, it is possible to select the baud rate factor by mode instruction. It can

be 1, 1/16, 1/64 of the RXC.

Sync detect/break detect (SYNDET/BD): It is an active high output signal.

In asynchronous mode, it is used to indicate a data break. In synchronous

mode, it is used to indicate the correct receipt of synchronous characters

and the next data is to be received.

The following signals are used with a modem for handshaking and establishing

connection.

) Data set ready (DSR): This is an input signal to the 8251 from the modem

interface. The input status of the signal can be recognized by the CPU by

reading status words. DSR indicates that the modem is powered up.

312 Microprocessors and Interfacing

(i) Data terminal ready (DTR): This is an output signal from the 8251 for the

modem interface. It is possible to set the status of the DTR by a command.

DTR indicates that the 8251 is powered up.

(iii) Clear to send data (CTS): This is an input signal to the 8251 from the

modem interface, which is used for controlling the transmit circuit. The

terminal controls data transmission if the device is set in TX enable status

by a command. Data is transmittable if the terminal is at low level.

(iv) Request to send (RTS): Active low output signal sent to the modem by the

8251, indicating that it is ready to send data.

7.11.2 Control Words

The 8251 operations should be initialized after reset and before using it. To

initialize it, the programmer must send the mode word and then the command

word to the control register address. There are two types of control words—one

is the mode instruction (setting of function) and the other is command (setting of

operation).

7.11.2.1 Mode Command Word

Mode instruction is used for setting the function of the 8251. The writing of a

control word after resetting will be recognized as a mode instruction. The functions

set by mode instruction are as follows:

(i) Selecting synchronous or asynchronous modes

(ii) Stop bit length (asynchronous mode)

(iii) Character length

(iv) Parity bit

(v) Baud rate factor (asynchronous mode)

(vi) Internal/external synchronization (synchronous mode)

(vii) Number of synchronous characters (synchronous mode)

The bit configuration of the asynchronous mode instruction is given in Table

7.34 and that of the synchronous mode instruction is given in Table 7.35. In the

case of synchronous mode, it is necessary to write 1- or 2-byte sync characters.

The writing of sync characters constitutes part of mode instruction. The mode

command word given in Fig. 7.34 is applicable if D1 and DO are not 0. For D1 and

DO being 0, the mode command format in Table 7.35 is used.

Table 7.34 Mode instruction (asynchronous) bit configuration

Frame control Parity check Character Baud rate select bits
stop bit length X0—Disable length 00—SYN mode
00—Inhibit 01—Odd parity 00—S5 bits 01—1X clock
01—1 stop bit 11—Even 01—6 bits 10—16X clock
10—1.5 stop bits- parity 10—7 bits 11—64X clock
11—2 bits 11—8 bits

Features and Interfacing of Programmable Devices for 8086-based Systems 313

Table 7.35 Mode instruction (synchronous) bit configuration

Number Synchronous Parity check Character length

of sync mode X0—Disable 00—S5 bits

characters 0—Internal 01—0dd parity 01—6 bits

0—2 ' synchronization = 11—Even parity 10—7 bits

characters 1—External ; 11—38 bits
1—1 character synchronization

7.11.2.2 Serial Command Word

Serial port command is used for setting the operation of the 8251. It is possible to

write a command, whenever necessary after writing a mode mstructlon and sync

characters. The functions set by command are as follows:

(i) Transmit enable/disable

(i) Receive enable/disable

(iii) Data terminal ready (DTR), ready to send (RTS) output of data.

(iv) Resetting of error flag

(v) Sending break characters

Fig.7.47 Command word bio"gdi'

314 Microprocessors and Interfacing

(vi) Internal resetting

(vii) Hunt mode (synchronous mode)

The various bit configurations for the command word written into the 8251 is

shown in Fig. 7.47.

7.11.2.3 Status Word

It is possible to see the internal status of the 8251 by reading a status word. The bit

configuration of the status word is given in Table 7.36. The programmer can read

the status information such as parity error, overrun error, framing error, and the

signal on the selected pins.

Table 7.36 Status word bit configuration

SYNDET/BD Soame TXEMPTY RXRDY TXRDY

Data set Same asin 1— 1—Overrun 1—— Parlty Same as Same Same
ready I/O pin Framing error error in /O asin asin

0—DSR =1 error pin /O I/O pin
1—DSR =0 pin

7.11.3 Interfacing 8251 with 8086

The basic interfacing diagram for interfacing the serial port IC 8251 with the
processor 8086 is shown in Fig. 7.48.

i Decoder
>
> g

>

Fig.7.48 Interfacing the 8251 with the 8086

The data bus lines DO-D7 are connected to the data lines of the 8251. The

higher address lines are used for address decoding and selection. The chip selection

signal CS is generated using a proper address decoder. The A0 line is connected

to the C/D line of the 8251 to select either a control word or a data word. The read

and write control signals are connected to the corresponding signals of the 8251.

The reset and clock output signals from the 8284 are connected to the reset and

Features and Interfacing of Programmable Devices for 8086-based Systems 315

clock inputs of the 8251. In addition, the 8251 needs separate clock signals for

transmission and reception. These RXC and TXC clock signals can be obtained by

dividing the clock output from the 8284 or 8253. This is not shown in Fig. 7.48.

Normally, two computer systems can be interconnected using the serial port. In

such communication, the TXD signal of one system is connected to the RXD line

of another system and vice versa. Care must be taken to ensure that the transmit

clock of the transmitting computer is the same as the receive clock of the receiving

computer.

The software part of programming the 8251 consists of initializing the 8251 and

then using it for data transmission and reception. Initialization of the 8251 consists

of writing proper mode command word immediately after reset. The mode control

word for synchronous operation must be followed by the corresponding sync

characters. Then the command word for setting the parameters of the serial port is

written into the control register. Once the initialization is over, the 8251 is ready for

transmission and reception of data if proper clock signals are applied to it.

The serial data received is stored in the serial data buffer and the reception of

data is informed to the processor by using the RXRDY signal. This signal may be

connected to an interrupt request in the 8086 and the corresponding ISR can read

the received data from the 8251. The programmer can also use the status word

read from the 8251 IC for checking whether a data has been received or not.

The serial transmission is started by writing the data to be transmitted into

the data register of the 8251. The serial shifting of data into the TXD line starts

immediately. Once the transmission of data is over, the 8251 asserts the TXRDY

signal informing the processor that the 8251 is ready for transmission of next data.

The programmer can also read the status word for checking whether the next data
can be written in the data register for transmission.

Example 7.17

Write an 8086 program to initialize the 8251 to transmit a message from an

8086-based single board microcomputer to a CRT terminal which is interfaced by

RS-232 standard. The message ‘HELLO!’ has to be displayed in the CRT terminal.

The baud rate should be 9,600 and the number of stop bits, parity bit, and character

bits should be 2, no parity, and 7 respectively. The frequency of the transmitter

clock is 153.6 KHz. Assume that the addresses of the control/status register and

data register are 82H and 80H, respectively.

The flowchart for the program is shown in Fig. 7.49.

The mode word format, command word format, and status word format for this

example problem are given in Tables 7.37, 7.38, and 7.39 respectively.

The baud rate factor is calculated by dividing the transmitter clock frequency
by baud rate which is equal to 16 (= 153.6 x 10"3/9,600).

The mode word and command word for the initialization of the 8251 as per the
requirement and to check the status of the 8251 are as follows:

Let us assume that the ASCII codes of the message ‘HELLO!’ is stored in

memory from address 2000H:1001H and the number of characters to be transmitted

are stored in address 2000H:1000H.

316 Microprocessors and Interfacing

© Readstatus

1 IRCAY SN e 0o 1 e
Two stop bits Noparity - 7-bit character =~ Baud rate = TXC/16

Table 7.38 Command word format (Example 7.17)

Error reset Receive disable Transmit enable

Features and Interfacing of Programmable Devices for 8086-based Systems 3|7

Table 7.39 Status word format (Example 7.17)

i D4 D3 D25 DY DO

X X X X X X X 1 =01H

Transmitter ready

Program:

MOV AX, 2000H ; Load segment address 2000H in AX.

MOV DS, AX ; Move the same to DS.

MOV BX, 1000H ; Move offset address 1000H in BX.

MOV CX, [BX] ; Set up CX as character counter.

MOV AL, @0H ; Move dummy mode word (= ©@H) in AL.

OUT 82H, AL ; Write dummy mode word in control register.

OUT 82H, AL

OUT 82H, AL

MOV AL, 40H ; Move internal reset (IR) command word.

;(D6 = 1 and other bits = @) to AL.

OUT 82H, AL ; Send it to control register to reset the 8251.

MOV AL, CAH ; Initialize the 8251 by sending mode word.

OUT 82H, AL

MOV AL, 11H ; Send command word to the 8251.

OUT 82H, AL

STATUS: IN AL, 82H ; Get Status from the 8251.

AND AL, 91H ; Check TX Ready.

JZ STATUS If TX RDY = 0, wait.

INC BX ; Point to next character.

MOV AL, [BX] ; Get Character in AL.

OUT 80H, AL ; Send character to transmitter.

LOOP STATUS ; Repeat the procedure CX times.

e

HLT ; Terminate program execution.

; MESSAGE—HELLO! is stored in memory as follows:

5 Memory Address Data Comment

2000H: 1000H DB 08 5 No of characters

2000H: 1001H DB 48 ; Letter ‘H’

2000H: 1002H DB 45 ; Letter ‘E’

2000H: 1003H DB 4C ; Letter ‘L’

2000H: 1004H DB 4C ; Letter ‘L’

2000H: 1005H DB 4F 5 Letter ‘0O’

2000H: 1006H DB 21 ; Letter €¢I?

2000H: 1007H DB eD 5 Carriage return

2000H: 1008H ~ DB 0A ; Line feed

7.12 8259 PROGRAMMABLE INTERRUPT CONTROLLER

Interrupts are used in a system to handle routines such as reading ASCI]

318 Microprocessors and Interfacing

characters from a keyboard, detecting and performing an emergency operations

such as sounding a fire alarm, and so on. For this, the processor’s maskable or

non-maskable interrupts are used. However, the processor has limited number of

hardware interrupts. For applications that use interrupts from multiple sources, the

processor can use external device called programmable interrupt controller (PIC)

or priority interrupt controller.

The Intel 8259 is a PIC designed and developed for use with the Intel 8086 and

the 8085 microprocessors. The family originally consisted of the 8259, 8259A, and

8259B PICs, though a number of manufacturers make a wide range of compatible

chips.

7.12.1 Features and Architecture of 8259

The basic operation of the interrupt mechanism lies in calling a subroutine,

whenever a hardware interrupt signal is activated. When more number of interrupt

sources is present, the process of calling an ISR involves priority resolving and

checking mask for interrupts. The main purpose of using the 8259 interrupt

controller is also to do the same task of calling the ISR based on the interrupt

priority and masks. The 8259 acts as a multiplexer, combining multiple interrupt

input sources into a single interrupt request to the processor. The main features of

the 8259 are the following:

(i) It supports eight interrupt inputs from the peripherals and issues a single

interrupt signal to the processor.

(i) It supports cascading of eight 8259As and multiplexes 64 interrupt sources

into one.

(iii) It can set priorities for the interrupts, mask the interrupt sources, and provide

different interrupt vector addresses.

The interrupts in the controller are individually maskable. The modes and masks

can be changed dynamically. It accepts interrupt requests from external devices,

determines priority, and checks whether the incoming priority is greater than the

current level being serviced and issues the interrupt signal and the corresponding

vector address to the processor. In the 8085-based systems, it is provided by a

three-byte CALL instruction. In the 8086-based systems, it is provided by an 8-bit

interrupt vector number. It can be operated in polled and vectored modes. The

starting address of the ISR or the vector number is programmable. No clock is

required for the IC.

Using the read/write logic, the 8259 is interfaced with the processor. The data

bus lines DO-D7 of the 8259 are connected to the data lines of the processor.

The 8259 chip is selected using the CS line. Address line A0 is used to select the

control word or the data word. If A0 is low, then the controller selects writing a

command word/reading a status. If AQ is high, then the controller selects another

register for writing the initialization words.

The 8259 control logic has the INT and INTA signals. The INT output pin of
the 8259 is used to interrupt the CPU. The 8259 receives the interrupt acknowledge

pulse from the CPU through its INTA input. The 8259 can receive interrupt signals

from eight different sources on the lines IRO-IR7. When these lines go high, the

Features and Interfacing of Programmable Devices for 8086-based Systems 319

requests are stored in the interrupt request register (IRR). The interrupt service

register (ISR) stores all the interrupt levels that are currently being serviced. The

interrupt mask register (IMR) stores the masking bits of the interrupt lines to be

masked. The priority resolver examines the interrupt registers and determines

whether the INT should be sent to the microprocessor or not when an interrupt

is received. The cascade buffer or comparator is used to expand the number of

interrupt levels by cascading two or more 8259s. The internal block diagram of
PIC 8259 is shown in Fig. 7.50.

INTA INT

. e
iD7—D0<:> D;r&g;ls <:> | Control logic [

- i B T WR —3q Write 2
: logic |~ o <« IRO A0 —

: g [In-service Priority I:_ltexrugt_. <—IRI |
i 2 register <}:> resolver C regll' slteasr :
CS = (ISR) (IRR) =B

: [<IR7 |

. CAS2<—[comparator L Interrupt mask register (MR) |

Fig.7.50 The 8259 internal block diagram

The 8259 can be used in cascaded mode. Up to eight slave 8259s may be

cascaded to a master 8259 to provide up to 64 IRQs (interrupt requests). The

8259s are cascaded by connecting the INT line of one slave 8259 to one IRQ line

of the master 8259.

The three registers of the 8259 are as follows:

(i) Interrupt mask register (IMR)

(ii) Interrupt request register (IRR)

(iii) In-service register (ISR)

The IRR maintains a list of the current interrupts that are pending

acknowledgement, the JSR maintains a list of the interrupts that are pending to

be sent an end of interrupt (EOI), and the /MR maintains a mask of interrupts to

enable or disable specified interrupts.

The EOI operations support specific EOI, non-specific EOI, and auto-EOL A

specific EOI specifies the IRQ level to be reset in the ISR. A non-specific EOI

resets the IRQ level that is currently being serviced in the ISR. Auto-EOI resets

the IRQ level in the ISR immediately after the interrupt is acknowledged. Edge

and level interrupt trigger modes are supported. Fixed priority and rotating priority

modes are supported. The 8259 may be configured to work with an 8086 or an
8085.

320 Microprocessors and Interfacing

7.12.2 Pin Diagram and Details of 8259

The pin details of the 8259 are shown in Fig. 7.51.

The main signals on an 8259 are as follows:

(i) Eight interrupt input request lines named IRQO-IRQ7

(ii) An interrupt request output line named INT

(iii) Interrupt acknowledgment line named INTA

(iv) Bi-directional data

bus lines DO-D7

for communicating

the interrupt level

or vector offset,

that are connected

to data bus directly

or through buffers.

(v) Active low read

control signal, RD.

(vi) Active low write

control signal, WR.

(vii) Address input line

A0, used to select

the control register.

(viii) Active low chip

select line, CS.

(ix) Bi-directional, ‘

3-bit cascade lines, L A ——
CASO—CAS?2. In Fig.7.51 8259 pin diagram

master mode,

the PIC places the slave ID number on these lines. In slave mode, the PIC

reads the slave ID number from the master on these lines. It may be regarded

as slave-select.

(x) Slave program/enable SP/EN: In non-buffered mode, it is an input line,

used to distinguish between the master or slave PIC. In buffered mode, it 18

an output line used to enable buffers.

(xi) Interrupt line, INT, connected to INTR of microprocessor.

(xii) Interrupt acknowledgement, INTA, active low signal received from

MiCroprocessor.

(xiii) Asynchronous IRQ input lines, IRO-IR7, generated by peripherals.

7.12.3 Initialization of 8259

To service the interrupt requests, the interrupt controller should be initialized

by writing control words in the control register. It requires two types of control

words—initialization command words (ICWs) and operational command words

(OCWs). The ICWs are used to set up initial conditions and specify the restart
vector location. The OCWs are used for masking interrupts, setting up status

read operations, etc. The 8259 can be initialized with four ICWs of which the

Features and Interfacing of Programmable Devices for 8086-based Systems 321

first two are essential and other two are optional, based on the modes being used.

These words must be issued in a given sequence. Once initialized the interrupt

controller can be set up to operate in various modes using three different OCWs.

The sequence by which the IC8259 must be initialized is shown in Fig. 7.52.

Operation command words can be written into the 8259 at any time to perform the

specific functions.

In cascade

mode?

Is ICW4
needed?

T | ¥

l Ready to accept interrupts |

e s e g

Fig.7.52 Sequence for 8259 initialization

7.12.3.1 Format of Initialization Command Word | (ICW1)

ICW1 must be written first into the 8259 with A0 = 0. This should be followed by

ICW?2. The 8-bit data has the format as given in Table 7.40. The bit definitions are

self explanatory. The D2 bit (ADI) is used to set the address interval in the interrupt

vector table. It is used only in the 8085, and not in the 8086. If it is 1, then ISR

addresses are 4 bytes apart (0200, 0204, etc.) or if it is 0, then the ISR addresses

are 8 bytes apart (0200, 0208, etc.). The D3 bit (LTIM) is used to indicate the

details about the hardware signal used in IRQ lines. It is used to select whether the

signal is level-triggered or edge-triggered. D4-D7 bits are used specify the higher-

order bits of the lower byte of the ISR vector address. The higher-order bits are

A7,A6,AS5if ADI =1, and A7, A6 only if ADI = 0. The remaining bits A4—A0 (or

A5-A0) are set by the 8259. This is applicable only for the 8085.

322 Microprocessors and Interfacing

Table 7.40 Format of ICWI

D7 D6 D5 D4 D3 D2 D1 DO

A7 A6 A5 1 LTIM ADI SNGL ICW4

Address li Requirement

A5 :;S t{nes Level-triggered Address interval 1—Single for ICW4

; t_ f . interrupt mode 1—4 bytes apart PIC 0—No ICW4
lrzlgrrrUp YeELO 1—Level-triggered 0—8 bytes apart 0—Cascaded required

s 0—Edge-triggered (For 8085 only) PIC 1—ICW4
(For 8085 only) required

7.12.3.2 Format of Initialization Command Word 2 (ICW2)

ICW?2 is used to set the higher-order 8 bits of the interrupt vector addresses in the

case of the 8085. For the 8086, it defines the 8-bit interrupt vector. To assign the

interrupt vector number 20H (00100000 in binary) to IR0 interrupt of the 8259,

the data 20H is used as ICW-2. Once this is sent to the 8259, the interrupt vector

number assigned to IR1 is 21H and for IR2 is 22H and so on. In any ICW-2 that

we send to the 8259, the lowest three bits must always be zero because the 8259

automatically supplies these bits to corresponding number of the IR input. Hence,

the interrupt vector number assigned to IR0 must always end with three binary

zeros. This initialization word is written into the 8259 with A0 = 1. The format of

ICW?2 is given in Table 7.41.

Table 7.41 Format of ICW?2

A0 D7 D6 D5 D4 D3 - Lop2i DI DO

1 AIST7 Al4T6 AI13T5 Al2T4 AIUT3 Al0 A9 A8

7.12.3.3 Format of Initialization Command Word 3 (ICW3)

ICW3 given in Table 7.42 is required only when the PIC 8259 is connected

in cascaded mode, that is, more than one 8259 is connected in a system. This

initialization word is written into the 8259 with A0 = 1.There are two different

formats of ICW3—one for the master and the other for the slave.

Table 7.42 Format of ICW3

il A TR B i L T
Master S7 86 S5 sS4 S3 S2 SIS0
Slave 0 0 0 0 0 ID2 IDI IDO

(i) For the master 8259, the ICW3 is used to indicate whether a slave 8259 is

connected in the interrupt request line IRQ or not. If a bit is 1, it indicates

that a slave is present on that interrupt request line. A 0 indicates that it is a

direct interrupt request from an external device.

(ii) For the slave 8259, ICW3 assigns the slave with a specific ID number. So

Features and Interfacing of Programmable Devices for 8086-based Systems 323

the least significant 3 bits are used for that purpose. ID2-IDO is the slave ID

number. For example, slave 4 has ICW3 = 04H (0000 0100).

7.12.3.4 Format of Initialization Command Word 4 (ICW4)

ICW4 is necessary only when it is clearly specified in the ICW-1. It is used to

indicate whether the 8085 or the 8086 is used in the system. It specifies the end of

interrupt mode, buffered or non-buffered mode, and the special fully nested mode.

The format of ICW4 is given in Table 7.43. This initialization word is written into

8259 with A0 = 1.

Table 7.43 Format of ICW4

D7 D6 D5 D4 D3 : D2 D1 Do
SFNM AEOI
1—Special fully BUF M/S 1—Auto end Mode

0 0 O nested mode 0—Non-buffered 1—Master of interrupt 0—8085

0—Not special ~ 1—Buffered 0—Slave 0—Normal 1—8086
fully nested mode ' EOI

1.12.3.5 Format of Operational Command Word | (OCWI)

OCW1, which is given in Table 7.44 is written into the 8259 with A0 = 1. This word

specifies the masking of interrupt requests IRO—IR7. The eight bits of the OCW 1

are used to mask the eight interrupts with LSB (D0) masking IR0 and MSB (D7)

masking IR7. A particular interrupt IR#» is masked by setting the corresponding bit

Mn to 1; and the mask is cleared by setting M#n to 0 (n = 0-7).

Table 7.44 Format of OCWI

D7 D6 D5 D4 | D3 D2 D1 DO

M7 M6 M5 M4 M3 M2 Ml MO

7.12.3.6 Format of Operational Command Word 2 (OCW2)

OCW?2 is written with the A0 = 0 into the 8259. This word is used to specify the

priorities of interrupts and issue of end of interrupt commands. It is usually written

to reset a bit in the in-service register. Normally, a bit is set in the ISR whenever

the corresponding interrupt is serviced. This is generally written at the end of the

interrupt service routine. OCW2 can be programmed for non-specific end of interrupt

mode with the data (0010 0000) to automatically reset the ISR bit. The programmer

can also use OCW?2 to reset a specific ISR bit. OCW?2 can also be used to rotate the

priorities of the interrupts. The bit format of the OCW?2 is given in Table 7.45.

Table 7.45 Format of OCW2

e T Y R e
R SL EOI 0 0 L3 L2 i

IR level to be acted upon

000-IRO, 001-IR1, ..., 111-IR7
(Contd)

324 Microprocessors and Interfacing

Table 7.45 Format of OCW?2 (Contd)

D7-D5 R SL EOI Action

EOI 0 0 1 Non-specific EOI (L3L2L1 = 000); reset all

bits of the in-service register

0 1 1 Specific EOl command—Clear the bits
encoded by L3, L2, and L1 in the in-service

register

Auto rotation of 1 0 1 Rotate priorities on non-specific EOI command

priorities 0 0 Set—Rotate priorities in auto EOI mode set
(L3L2L1 = 000)

0 0 Clear—Rotate priorities in auto EOI mode

Specific rotation of 1 1 1 Rotate priority on specific EOl command (reset

priorities (lowest current ISR bit)

i AR B Y 1 1 0 Setpriority (does not reset current ISR bit)

0 1 0 Nooperation

7.12.3.7 Format of Operational Command Word 3 (OCW3)

OCWS3 is used to specify special masking of interrupts. More information on this

command can be obtained from the Intel datasheet. The format of OCW?3 is given

in Table 7.46.

Table 7.46 Format of OCW3

D7 D6 D5 D4 D3 D2 : D1 DO

0 ESMM SMM 01 P RR RIS

0X—No effect

0X—No effect " 10—Read IR register

10—Reset special mask O holing on next read
1—No Polling

11—Set special mask 11—Read IS register

on next read

7.12.4 Operation of 8259

The following steps show how interrupt handling is done when an external device

places an interrupt request on the IR lines of the 8259. It is assumed that the

system has a single 8259 chip.

(1) One or more of the IR lines in the 8259 may go high.

(i1) Corresponding IRR bit/bits is/are set in the 8259.

(iii) The 8259 evaluates the interrupt request based on masking and priority.

(iv) If no higher priority interrupt other than the currently received interrupt/

interrupts is currently processed then the 8259 sends out interrupt request

(INT) signal to the 8086.

(v) The 8086 microprocessor sends out two INTA pulses in response to the INT

signal from the 8259.

(vi) The bit corresponding to the highest priority interrupt among the currently

(vii)

(viii)

(ix)

Features and Interfacing of Programmable Devices for 8086-based Systems 325

received interrupts in the ISR is set and its corresponding bit in IRR is reset

in the 8259.

After receiving the first INTA pulse from the 8086, the 8259 does the above

internal operation and after receiving the second INTA pulse from the 8086,

the 8259 sends the desired interrupt type or interrupt vector number of the

interrupt currently to be processed by the 8086 through the data bus D7-D0

of the 8259.

The interrupt service routine (ISR) is executed in the 8086 processor with

the following steps:

(a) The flags are pushed onto the stack.

(b) The interrupt and trap flags of the processor are cleared.

(c) The return address is pushed onto the stack.

(d) The starting address of the interrupt service routine obtained from the

interrupt vector table corresponding to the currently received interrupt

type or vector number in the program counter and instruction pointer is

loaded.

(e) The ISR is executed.

At the end of the ISR, instructions are written for sending a command word

to reset the bit corresponding to the currently processed interrupt in the ISR

of the 8259 so that lower priority interrupts can be processed.

7.12.5 Interfacing of 8259 to 8086

The connection diagram for interfacing the 8259 with the 8-bit processor 8086 is

shown in Fig. 7.53.

D0-D7 Feic |

ADO-AD7 Latch D7-D0 SP/EN A
AQ-A7 IRO — 5>|ALE Aliso 8259 1R1[— i 8086 INTR |« : INT IR2 —

INTA »INTA IR3|—
¥ A7-A2 R4 — ’

e e il IR5 —

RDWR 10 ReL=

_______IRT+—
Address CS V:’E{ RD 3

Decoder: |- e O

Decoder|__ =
o IOW f
- IOR i

o USRS

Fig.7.53 Interfacing of 8259 to 8086

The PIC 8259 requires two addresses with AQ being 0 and 1. The A1 line from

the address bus is connected to the A0 line in the 8259. The higher-order address

bus is used to select the particular chip through a proper address decoder. Read

and write control signals of the 8086 are connected to the corresponding signals of

the 8259. The data lines of IC 8259 are connected to the lower-order address and

326 Microprocessors and Interfacing

data bus of the 8086. The multipurpose SP/EN pin is tied to logic high because
only one 8259 is used in the system. The interrupt request line, INT of the 8259 ig

connected to the 8086’s interrupt line INTR. The INTA of the 8086 is connected
to the INTA of the 8259. When only one 8259 is used in a system, the cascade

lines (CASO, CAS1, CAS2) can be left open. The eight IR inputs of the 8259 cap

be connected to the interrupt sources from different external devices such as A/D
converter, keyboard, and printer. Unused IR inputs must be tied to ground in order
to avoid noise being recognized as interrupt signal.

The software part of the 8259 initializing involves writing initialization
command words in proper sequence as shown in Fig. 7.52. After initialization, the
proper operation command words can be written as and when required.

7.13 8237 DMA CONTROLLER

The programmed data transfers move data from memory into the accumulator,
and then from the accumulator into the output ports. A program has to be written
to transfer data from a device to the memory in programmed data transfers. Thus,
the programmed data transfer is a slow process. This causes a problem only while
transferring large amounts of data.

DMA stands for direct memory access. It is one of the ways to accomplish
high-speed data transfers, directly between memory and peripheral devices. The
DMA is a method of data transfer between memory and I/O devices without the
intervention of microprocessor. This method is often used when large block of
data is to be transferred.

DMA data transfer is controlled by using a separate DMA controller. The
microprocessor must be disabled during the DMA data transfer process. To start the
DMA process, the microprocessor loads an external register in the DMA controller
with the data file’s starting address and secondly the terminal count register with
the total number of bytes to be transferred. The microprocessor disables the
address and data buses, and gives memory system control to the DMA controller.
The DMA controller places sequential addresses on the MICroprocessor’s memory
bus and issues the read-write pulses. As each byte is transferred, the terminal count
register is decremented. When the terminal count register is decremented to 0, it
tells the external device that the data transfer is complete.

As this is a limited application, a special purpose hardware controller can do
it very quickly. DMA transfers take place with speeds close to the memory cycle
time. Once the DMA controller has finished transferring data into or out of the
memory, the DMA controller gives the control back to the microprocessor. The
microprocessor cannot accomplish any other function during a DMA transfer is
taking place. This is caused due to two reasons. First, the microprocessor’s memory
is being used for a data transfer. It is not available to supply program instructions

or receive the results of computations. Secondly, the typical DMA process requires

that the microprocessor place its memory address bus and data bus in a high

impedance condition. This high impedance condition allows the DMA controller

and the memory system to control the bus but prevents the microprocessor from

providing any bus control.

Features and Interfacing of Programmable Devices for 8086-based Systems 327

Thus, a dedicated hardware device called direct memory access controller

or DMA controller manages the data transfer. The DMA controller temporarily
borrows the address bus, data bus, and control bus from the microprocessor and

transfers the data bytes directly from the external peripheral devices to a series of

memory locations. Because the data transfer is handled totally in hardware, it is

much faster than it would be if done by program instructions.

7.13.1 Features, Pin Details, and Architecture of 8237

The DMA controller 8237 is designed to improve the data transfer rate in systems

that transfer data from an I/O device to memory, or move a block of memory to an

I/O device. It also performs memory-to-memory block moves, or fills a block of

memory with data from a single location. Operating modes are provided to handle

single byte transfers as well as discontinuous data streams. The DMA controller

permits data to be transferred directly from an I/O device to memory or vice

versa without the need for a temporary register. This increases the data transfer

rate for sequential operations, compared with processor moves or repeated string

instructions. The main features of the 8237 are as follows:

(i) Four independent DMA channels

(ii) Enable and disable control of individual requests

(i) Possibility for memory-to-memory transfer

(iv) Address increment or decrement

(v) Cascading and expandable to any number of DMA channels

The block diagram of the 8237 is shown in Fig. 7.54. The pin details of the

8237 are shown in Fig. 7.55.

The main components are the data bus buffer, timing and control block, DMA

channels, corresponding priority block, read/write control logic, and internal

RE? €) Decrementer Inc/Decrementer | T vo butrer K5 5 B

EE_;:T_>° , Temp. word _Temp. address sl &fl, e b

READY- 3| _ count register (16) register (16) | gleededs §

5| Timing [16-bitbus | . S , i |

CLK_—_> and
- 1 l

: i E

rig s X control [16-bit bus | 1 ol ;

Ll e el Read buffer Read/Write buffer S
MEMB 7S HAGH #Base” | o Current |* Current er

ase word

{ I*(>d : |~ address count (16) address | word count

e R 19 | @6
Bl e ¥
s B g <

Write Read ‘{<° 23
buffer buffer DO0-D1

% Priority | { Ti
}g..ll{)%__> enc?)d?r Internal data bus

and rotating|

ESTRINY ,
Status Temporary

‘23225 Ifegister (8)' ’:gister ®) I ~

—— Y P et om0

Fig. 7.54 Block diagram of the 8237

328 Microprocessors and Interfacing

ORI N/ 4 A7 Ve
jow []2 39 1 A6

MEMR (3 38[] A5 A0-A3 |

‘MEMW []4 371 A4 A4-AT
NC L5 36[] EOP DB0-DB7 DMA

READY L[]6 35[1 A3 handshake
] ADSTB signals ‘ HLDA []7 34[). A2 2 o

E 3al] Al Comtioli) AEN &% ADSTB []8 signalg == DRQ3
ARN L9 | o 32 [1 A0 from MEMR DMA requests
HRQ []10 311 V., andto { MEMW| gy37 [|forthefour
cs Ou 30[] ppo mMemory “ channels

] Control 4—1-0—“;0 DACKO(- |
CLK [}12 29 DBL Coals { o DACK3 |

RESET []13 285 DB frome e DMA
DACK2 []14 271 DB3 andto READY acknowledge

DACK3 []15 26[] pp4 Peripheralsorce> —>HR0
DREQ3 []16 25[] DACKO —*CLK < HLDA
DREQ2 []17 24[] DACKI1 e p<—>EOP
DREQ1 []18 23|] DB5 l

DREQO [}19 22[] DB6 N
GND Vg []20 211 DB? CS

Fig.7.55 Pin details of the 8237

registers. The data bus consists of 8-bit tri-state pins DBO-DB?7. These pins are

connected to the system data bus. The programming of the 8237 is done through

this data bus. AO-A3 pins are used to select one of the internal registers when the

8237 is acting in the slave mode under the control of the processor. A4—A7 lines

along with AO-A3 lines are used to send the higher-order 8-bit addresses when

the 8237 is acting as master and doing DMA data transfer. The timing and control

block derives internal timing from clock input, and generates external control

signals. The 8237 has four separate DMA channels and each channel includes two

16-bit registers, a DMA register, and a count register. DRQO-DRQ3 are the four

DMA request signals, input to the 8237 by external peripheral devices. These four

requests can be prioritized. The priority encoder block resolves priority contention

between DMA channels requesting service simultaneously. The details of the 8237

pins are as follows:

(i) DBO-DB7 (I/O data bus): The data bus lines are bidirectional three-state

signals connected to the system data bus that carries data.

(i) CLK (Clock input): The clock input is used to generate the timing signals,

which control 82C37A operations. This input may be driven from DC to

12.5 MHz for the 82C37A-12, from DC to 8 MHz for the 82C37A, or from

DC to 5 MHz for the 82C37A-5. The clock may be stopped in either 0 or 1

states for standby operation.

(iii)

(iv)

V)

(vi)

(vit)

(viii)

(ix)

(x

N
’

(xi)

(xii)

(xiii)

(xiv)

Features and Interfacing of Programmable Devices for 8086-based Systems 329

CS (Chip select): Chip select is an active low. input used to enable the

controller.

Reset: This is an active high input, which clears the command, status,

request, and temporary registers, the first/last flip-flop, and the mode register

counter. The mask register is set to ignore requests. Following a reset, the

controller is in an idle cycle.

Ready: This signal can be used to extend the memory read and write pulses

from the 82C37 to accommodate slow memories or I/O devices.

HLDA (Hold acknowledge): The active high hold acknowledge, from the

CPU indicates that it has hand over control of the system busses.

DREQO-DREQ3 (DMA request): The DMA request (DREQ) lines are

individual asynchronous channel request inputs used by peripheral circuits

to obtain DMA service. In fixed priority mode, DREQO has the highest

priority and DREQ3 has the lowest priority. A request can be generated by

activating the DREQ line of a channel. Polarity of DREQ is programmable.

RESET initializes these lines to an active high. DREQ must be maintained

until the corresponding DACK goes active. DREQ will not be recognized

while the clock is stopped.

IOR (/O read): It is a bidirectional active low three-state line. In the idle or

slave mode, it is an input control signal used by the CPU to read the control

registers. In the active or master mode, it is an output control signal used by

the 82C37 to access data from the peripheral during a DMA write transfer.

IOW (I/O write): It is a bidirectional active low three-state line. In the idle
cycle, it is an input control signal used by the CPU to load information into

the 82C37A. In the active cycle, it is an output control signal used by the

82C37A to load data to the peripheral during a DMA read transfer.

EOP (End of process): The EOP is an active low bidirectional signal.

Information concerning the completion of DMA services is available at the

bidirectional EOP pin. A pulse is generated by the 82C37A when terminal

count (TC) for any channel is reached, except for channel 0 in memory-to-

memory mode.

A0-A3 (I/O address): The four least significant address lines are bidirectional

three-state signals. In the idle cycle, they are inputs and are used by the

82C37A to address the control register to be loaded or read. In the active

cycle, they are outputs and provide the lower 4 bits of the output address.

A4-A7 (Address): The four most significant address lines are three-state

outputs and provide 4 bits of address. These lines are enabled only during

the DMA service:.

HRQ (Hold request): The HRQ output is used to request control of the

system bus. When a DREQ occurs and the corresponding mask bit is clear,

or a software DMA request is made, the 82C37A issues HRQ. The HLDA

signal then informs the controller when access to the system busses is

permitted.

DACKO0-DACK3 (DMA acknowledge): The DMA acknowledge is used to

notify the individual peripherals when one has been granted a DMA cycle.

330 Microprocessors and Interfacing

DACK acknowledges the recognition of a DREQ signal.

(xv) AEN (Address enable): Address enable signal is an active high signal used

to indicate the availability of higher-order 8-bit address and can be used

by the latch to store the same. The AEN can also be used to disable other

system bus drivers during DMA transfers.

(xvi) ADSTB (Address strobe): This is an active high signal used to control

latching of the upper address byte.

(xvil) MEMR (Memory read): The memory read signal is an active low three-

state output used to access data from the selected memory location during a

DMA read or a memory-to-memory transfer.

(xviil) MEMW (Memory write): The memory write signal is an active low three-

state output used to write data to the selected memory location during a

DMA write or a memory-to-memory transfer.

7.13.1.1 Register Description

The name and size of the internal registers are listed in Table 7.47. The details of

these registers are explained in this section.

Current address register Each channel has a 16-bit current address register.

This register holds the value Table 7.47

of the address used during
DMA transfers. The address is Name ~ Size

Internal registers in the 8237

automatically incremented or Base address registers 16 bits

decremented by one after each Base word count registers 16 bits
transfer and the values of the Current address registers 16 bits

agiess i St‘ored LU th.e current Current word count registers 16 bits
:r efss Tr;:'glster_ dmg : the Temporary address register 16 bits
ansfer. Thi : -

. ref%‘Ster = wrlttt?n Temporary word count register 16 bits
or read by the microprocessor in S . -

: : tatus register 8 bits
successive 8-bit bytes. : :

Command register 8 bits

Current word count register Temporary register 8 bits
Each channel has a 16-bit Mode registers 6 bits
current word count register. This Mask register 4 bits
register determines the number Request register 4 bits

of transfers to be performed. The

actual number of transfers will be one more than the number programmed in the

current word count register (i.e., programming a count of 50 will result in 51

transfers). The word count is decremented after each transfer. When the value

in the register goes from zero to FFFFH, a TC will be generated. This register

is loaded or read in successive 8-bit bytes by the microprocessor in the program

condition.

Base address and base word count registers Each channel has a pair of base

address and base word count registers. These 16-bit registers store the original

value of their associated current registers. These registers cannot be read by the

MiCroprocessor.

Features and Interfacing of Programmable Devices for 8086-based Systems 331

Command register This 8-bit register controls the operation of the 8237. It is

programmed by the microprocessor and is cleared by RESET or a master clear

instruction. The function of the command register bits is shown in Fig. 7.56.

el fol i o
Bit number ,

T 0—Memory-to-memory disable
; 1—Memory-to-memory enable

0—Channel 0 address hold disable
L———3]-—Channel 0 address hold enable

X—Ifbit0=0

. 0—Controller enable
1—Controller disable

0—Normal timing
I—Compressed timing

- XIfbit0=1

o 0—Fixed priority
~ 1—Rotating priority

Y
(0—Late write section

1—Extended write section

X—Ifbit3=1

» 0—DREQ sense active high
1—DREQ sense active low

0—DACK sense active low
1—DACK sense active high

Y
Y

Fig. 1.56 Command régi»ste'rl

Mode register Each channel has a mode register associated with it. When the

register is being written into by the microprocessor in the program condition, least

significant bits 0 and 1 determine, which channel is chosen. The details of the

mode register bits are shown in Fig. 7.57.

. {EAERENERENENES T 6 3 '
——;__J,.J ~— — Bit number

00—Select channel 0
01—Select channel 1
10—Select channel 2
11—Select channel 3
XX—Readback:

00— Verify transfer
01—Write transfer

» 10—Read transfer
11—Illegal :
XX—Ifbits6and 7=11

» 0—Auto initialization disable
1—Auto initialization enable

» 0—Address increment select
1—Address decrement select

00—Demand mode select
___5 01—Single mode select ~ §

10—Block mode select R SLEE g
11—Cascade mode select

Fig.7.57 Mode register

332 Microprocessors and Interfacing

Request register The 8237 can respond to requests for DMA service, which

are initiated by software or by DREQ input. Each channel has a request bit

associated with it in the 4-bit request register. These are non-maskable and subject

to prioritization by the priority encoder network. Each register bit is set or reset

separately under software control. The entire register is cleared by a reset or master

clear instruction. Request register format and its address coding are shown in Fig,

7.58. A software request for DMA operation can be made in block or single modes.

While reading the request register, bits 4-7 will always read as ones, and bits 0-3

will display the request bits of channels 0—3 respectively.

m_6_|i| 4 l 3 l 2 @ Bit number

Do_n’t care, when 00—Select channel 0

written into; All 1s, 01—Select channel 1
when read 10—Select channel 2

11—Select channel 3

[s i 0-—Reset request bit
\ 1—Set request bit

A TR I

Fig. 7.58 Request register

Mask register Each channel has a mask bit associated with it that can be st

to disable an incoming DREQ. Each mask bit is set when its associated channel

produces an EOP if the channel is not programmed to auto initialize. Each bit of

the 4-bit mask register may also be set or cleared separately or simultaneously

under software control. The entire register is also set by a reset or master clear.

This disables all hardware DMA requests until a clear mask register instruction

allows them to occur. The mask register formats are shown in Figs 7.59 and.7.60.

l7l615|4l312|1!o| s o]
e Bit number i

Don’ .
s , 00— Select channel 0 mask bit

01—Select channel 1 mask bit
10—Select channel 2 mask bit
11—Select channel 3 mask bit

0—Clear mask bit
1—Set mask bit

et Tl AP ; G Gt -.mxt{fifi(%’?xfiwfln

Fig. 7.59 Mask register fol_mat. | e ae

frde sl al 32T
Don’t care—wrrite; Bit number -
All 1s—read 0 s chammel0 mask bit

1—Set channel 0 mask b
it

?\Clear channel 1 masll)(itb :
L ~Set channel 1 masK

it
?\Clear channel 2 mfist],(itb

s ~Set channel 2 0% .
: bi

R e . T I TR T u"»."‘“-?fi;%w O\CIe ar Challnel 3 m;stfit e e

Flg- 7.60 Mask I"egiste'~ f?fiwflfm\set channel 3 : as fiwfim» '

th’\‘ %‘i"é“.flwwrw-«‘wfi?!m
e

Features and Interfacing of Programmable Devices for 8086-based Systems 333

While reading the mask register, bits 47 will always read as logical ones, and

bits 0—3 will display the mask bits of channels 0-3, respectively. The four bits of

the mask register can be cleared simultaneously by using the clear mask register

command and they can also be written with a single command.

Status register The status register contains information about the status of the

devices at any time to be read by the processor. The format of the status register

is shown in Fig. 7.61. This information includes which channels have reached a

terminal count and which channels have pending DMA requests. Bits 03 are set

every time a TC is reached by that channel or an external EOP is applied. These

bits are cleared upon RESET, master clear, and on each status read. Bits 4-7 are set

when their corresponding channel is requesting service irrespective of the mask

bit state. If the mask bits are set, software can poll the status register to determine,

which channels have DREQs, and selectively clear a mask bit, thus allowing user

defined service priority. Status bits 4-7 are updated while the clock is high. Status

bits 47 are cleared upon RESET or master clear.

e sisf sl o
L> Bit number

1—Channel 0 has reached TC

—>]—Channel 1 has reached TC

—— >]—Channel 2 has reached TC

Y 1—Channel 3 has reached TC

A 1—Channel 0 request

1—Channel 1 request Y

» 1—Channel 2 request f :

> |—Channel 3 request -

| "Fig’.'/7.6l4 Status regiétet: e

Temporary register The temporary register is used to hold data during

memory-to-memory transfers. The temporary register always contains the last

byte transferred in the previous memory to memory operation, if not cleared by a

reset or master clear.

1.13.2 DMA Initialization and Operation

Initializing the 8237 requires a large number of bytes to be written into the

registers as discussed in Section 7.13.1.1. The 8237 is connected as an I/O port

with the processor. In the idle cycle or idle mode, the 8237 A3—A0 lines are used

to program the internal registers and operation of the DMA controller 8237. As

discussed earlier, the 8237 has four channels of DMA request. So, it has separate

registers to hold the base memory address, current memory address, and the count

register in each channel. In general A1 and A2 are used to select one of the four

DMA channel registers and A0 is used to select the memory address or count

334 Microprocessors and Interfacing

register. The DMA channel registers are accessed when A3 = 0. If A3 = 1, then the

other control registers are accessed according to Table 7.48.

Table 7.48 Selection of control registers using control signals

~ Operation o A o A A0 IOR G IOWIG

‘Read status revgistevr' S 150077 0 0 0 1

Write command register 1 0 0 0 1 0

Read request register : 1 0 0 1 0 1

Write request register 1 0 0 1 1 0

Read command register 1 0 1 0 0 1

Write single mask bit 1 0 1 0 1 0

Read mode register 1 0 1 1 0 1

Write mode register 1 0 1 1 1 0

Set first/last F/F 1 1 0 0 0 1

Clear first/last F/F 1 1 0 0 1 0

Read temporary register 1 1 0 1 0 1

Clear mode register counter 1 1 1 0 0 1

Clear mask register 1 1 1 0 1 0

Read all mask bits 1 1 1 1 0 1

Write all mask bits 1 1 1 1 1 0

The DMA controller operates in two major cycles—active and idle. After being

programmed, the controller is normally idle until a DMA request occurs on an

unmasked channel, or a software request is given. The 8237 will then request

control of the system busses and enter the active cycle. The active cycle is

composed of several internal states, depending on what options have been selected

and what type of operation has been requested.

7.13.2.1 Idle Cycle

When no channel is requesting service, the 8237 enters the idle cycle. In this

cycle, the 8237 samples the DREQ lines on the falling edge of every clock cycle

to determine if any channel is requesting a DMA service.

7.13.2.2 Active Cycle

When the 8237 is in the idle cycle, and a software request or an unmasked channel

requests a DMA service, the device issues a HRQ to the microprocessor and enters

the active cycle. It is in this cycle that the DMA service takes place in one of the

following four modes:

Single transfer mode In single transfer mode, the device is programmed to make

one transfer only. The word count is decremented and the address is decremented

or incremented following each transfer. When the word count rolls over from zero

Features and Interfacing of Programmable Devices for 8086-based Systems 335

to FFFFH, a terminal count bit in the status register is set, and an EOP pulse is

generated. DREQ must be held active until DACK becomes active. If DREQ is

held active throughout the single transfer, HRQ will go inactive and releases the

bus to the system. It becomes active again and upon receipt of a new HLDA,

another single transfer is performed. The exception for this occurs when a higher

priority channel takes over.

Block transfer mode In block transfer mode, the device is activated by DREQ

or software request continues making transfers until a TC, caused by word count

going to FFFFH, or an external End of Process (EOP) is encountered. The DREQ

need only be held active until the DACK becomes active.

Demand transfer mode In demand transfer mode the device continues making

transfers until a TC or external EOP is encountered, or until DREQ goes inactive.

The data transfer continues until the I/O device has exhausted its data capacity.

Higher priority channels may intervene in the demand process, once DREQ has

gone inactive. The EOP is generated either by TC or by an external signal.

Cascade mode This mode is used to cascade more than one 8237 for simple

system expansion. The HRQ and the HLDA signals from the additional 8237

are connected to the DREQ and DACK signals respectively of a channel for the

initial 8237.This allows the DMA requests of the additional device to propagate

through the priority network circuitry of the preceding device. Two additional

devices cascaded with an initial device using two of the initial device’s channels

are shown in Fig. 7.62. This forms a two-level DMA system. More 8237s could

be added at the second level by using the remaining channels of the first level.

Additional devices can also be added by cascading into the channels of the second

level devices, forming a third level.

~ Second level

L L ROCREBRE S Sl i S Bilevel v iera b RREITAR S e

el Mietpsees o HRQ ~ DREQI=———+ifngu aish 16

i:f f’?‘;;'f:n , RaRACY i 82C37A e el LG AT
g ahes ' DREQ |« HRQ ¢ FelEgan dpas;

Initial device : F AR

~ Additional devices |

Fig.7.62 Cascaded 8237s

7.13.3 Operation of 8237 with 8086

The block diagram in Fig. 7.63 shows, how a DMA transfer takes place between

a memory and an I/O device with the help of a DMA controller. Here, the

microprocessor and the DMA controller timeshare the use of address, data, and

control buses. The 8237 address, control outputs, and data bus pins are connected

336 Microprocessors and Interfacing

in parallel with the system busses. An external latch is required for the upper

address byte. While inactive, the controller’s outputs are in a high impedance

state. When activated by a DMA request and bus control is surrendered by the

host, the 8237 drives the buses and generates the control signals to perform the

data transfer.

 ldiveydatches
Address bus

Data bus Memory

Data bus 2]

Control bus %

HLDA HOLD
T ’ _ Data bus

HEQ DMA Control bus e

2 controller 3

i Peripheral
A DREQ device

DACKO i

Fig.7.63 Interfacing DMA controller with the processor

When the system is first turned on, the buses are connected to the microprocessor

to system memory and peripherals. Then all the programmable devices in the

system are initialized and then the normal routine program is executed until it is

needed for data transfer.

The operation performed by activating one of the four DMA request inputs has to

be programmed first into the controller via the command, mode, address, and word

count registers.

The sequence of operation in the DMA is explained with the flowchart shown

in Fig. 7.64.

The following sequence explains the DMA method of data transfer to transfer

data from a peripheral such as disk controller into memory (memory write

operation) in detail.

(1) The starting memory address, where the data is stored is loaded into the

8237 address registers for a particular channel, and the length of the block

is loaded into the channel’s word count register.

(i) The corresponding mode register is programmed for /O to memory

operation (write transfer), and various options are selected by the command

register and the other mode register bits.

Features and Interfacing of Programmable Devices for 8086-based Systems 337

I DMA request T

| DMA acknowledge l

T
v‘

l Address memory

l Transfer data [Increment address

A

Transfer
complete?

I Terminate data transfer —’ : {

(iii)

(iv)

(V)

(vi)

(vii)

(vii)

(ix

N

(x

N
’

(xi)

(xii)

(xiii)

Flg764 Sequfiehce ofoperl'.at‘i'on“ilr’l DMA

The channel’s mask bit is cleared to enable recognition of a DMA request

(DREQ). The DREQ can either be a hardware signal or a software

command. ' .
When the peripheral device has the first byte of data ready, it sends a DREQ

signal to the DMA controller.

If the input (channel) of the DMA controller is unmasked, the DMA

controller sends a hold request (HRQ) signal to the microprocessor HOLD
input.

The microprocessor responds to this input by floating its buses and sends a

hold-acknowledge (HLDA) signal, to the DMA controller.

When the DMA controller receives the HLDA signal, it sends out address

enable control signal (AEN) which disconnects the processor from the

buses and connects the DMA controller to the buses.

When the DMA controller gets control of the buses, it sends out the memory

address, where the first byte of data from the peripheral device is to be

written.

Then the DMA controller sends a DMA acknowledge (DACK) signal to the

peripheral device to tell it to get ready to output the byte.

Finally, the DMA controller asserts both the MEMW and the IOR lines on

the control bus.

Asserting the MEMW signal enables the addressed memory to accept data

written into it.

Asserting the IOR signal enables the disk controller to output the byte of

data from the disk on the data bus.

Then the byte of data is transferred directly from the peripheral device to the

memory location without passing through the CPU or the DMA controller.

The DMA transfers may be done a byte at a time or in blocks.

338 Microprocessors and Interfacing

(xiv) When the data transfer is complete, the DMA controller releases its HRQ

signal to the processor and releases the buses. This lets the processor take

over the buses again until another DMA transfer is needed.

(xv) The processor continues executing from where it left off in the program,

POINTS TO REMEMBER

* The Intel processor IC 8086 needs additional slave chips such as programmable

peripheral interfaces, keyboard/display interfaces, serial ports, timers, interrupt
controllers, and DMA controllers to interface different peripherals and to perform
various functions.

Intel IC 8255 is a general purpose PPI and can be used to interface other devices

such as seven-segment displays, switches, ADCs, DACs, and so on.
Multiplexed displays and matrix keyboards reduce hardware complexity and can be

easily interfaced with the 8086 using the slave IC Intel 8279.
The serial data transmission can be easily done by the processor with the interfacing
of the IC USART 8251.

The timing of various events can be controlled by the programmer by interfacing

the timer IC such as 8253 to the processor and connecting a clock to it.
There is a need of programmable interrupt controller if the number of peripherals
interfaced using the interrupt driven I/O method is higher than the interrupt
capability of the processor. Intel provides the programmable interrupt controller IC
8259 for such applications.
The high speed data transfer between /O devices and the processor can be achieved
by using a technique called direct memory access. The DMA controller IC 8237 can
be interfaced with the processor to achieve the process of direct memory access of
memory by I/O devices.

KEY TERMS

Active cycle This is the cycle during which DMA service takes place.
Analog-to-digital converter The ADC converts the input analog voltage levels into
corresponding discrete digital signals.
Asynchronous transmission This is the method of serial data transfer without a
common clock but at a common baud rate and it is character oriented.
Baud rate This is the rate at which serial data is being transferred.
Bit set-reset mode The BSR mode is applicable to port C of the 8255 for setting and
resetting individual port C bits.

Block transfer mode It is the mode in which the device that is activated by DREQ
or software request continues making transfers during the service until a TC caused
by word count going to FFFFH, or an external end of process (EOP) is encountered
in DMA.

Cascade mode In this mode, the system is constructed using more than one 8237s
cascaded for simple system expansion.

Cascading It is the method of connecting more than one 8259s in a microcomputer
system in order to increase the number of interrupt sources.

Command instruction It is used for setting the operation features of the 8251.

Features and Interfacing of Programmable Devices for 8086-based Systems 339

Control word It contains information such as mode, bit set, bit reset, and so on that

initializes the functional configuration of the 8255.
Control words These are commands that must be sent out by the programmer to

initialize each counter of the 8253. They program the MODE, loading sequence, and
Counting This is an operation of counting pulses applied at a random period and

time.
Demand transfer mode In this mode, the device continues making transfers until a

TC or external EOP is encountered, or until DREQ goes inactive in DMA.
Digital-to-analog converter The DAC is used to get a proportional analog voltage

or current for the digital data given out by the microprocessor.
Display RAM This refers to the sequence of RAM locations in the 8279 to store the
character data to be used for display.
DMA It is a method of data transfer between memory and I/O devices without the
intervention of microprocessor.
DMA acknowledge This signal is used to notify the individual peripherals when
one has been granted a DMA cycle.
DMA request (DREQ) lines These are individual asynchronous channel request

inputs used by peripheral circuits to obtain DMA service.
FIFO RAM It is the sequence of RAM locations in the 8279 to store the key code
pressed in a matrix keyboard interfaced.

Idle cycle This is the state of the system when no DMA channel is requesting service.
Initialization command words These are used to set up proper conditions and
specify restart vector location in the 8259.
Input/output mode The I/O mode is applicable to ports A, B, and C of the 8255 for

programming the data transfer and direction of data transfer.
Interrupt mask register This register stores the masking bits of the interrupt lines
to be masked in the 8259.

Interrupt service register This register stores all the levels that are currently being
serviced in the 8259.

Key board debouncing It is a process of removing switch transient voltages and
detecting an actual key press. '

Matrix keyboard It is an arrangement of switches in matrix wiring so that it can be

interfaced with the processor with minimum hardware and scanning technique.
.Mode instruction It is used for setting the function of the 8251.

Modem It is a modulator or demodulator, which send digital 1s and 0s over standard
phone lines as modulated tones.

Multiplexed display This is a method of interfacing many display devices to a

processor and using scanning method to display digits with one digit being displayed

at a time.
Operational command words These are used for masking interrupts, setting up
status read operations, etc. in the 8259.

Priority resolver It examines the interrupt registers and determines whether the

INT should be sent to the microprocessor or not in the 8259.
Programmable timer A device in which the initial count value can be loaded using

the data from the data bus, and counting can be started and stopped using software

instructions written to the control register.
the type of counter as binary or BCD counting.
Rate generator The frequency output of this mode will be equal to the input

frequency divided by N.

340 Microprocessors and Interfacing

Serial communication This refers to sending and receiving information bit by bit.

Single transfer mode It is the mode in which the device is programmed to make one
transfer only in DMA. i

Synchronous transfer This is the method of serial transfer by which the transmission

and reception of data is done with a common clock and simultaneously.

Timing This is an operation of counting, using a precise clock pulse at fixed

frequency.

A
W

A
W

REVIEW QUESTIONS

. Name the registers available in the 8255.

. Give the control word format for I/O mode operation in the 8255.

. Write a brief note on the different I/O modes in the 8255.
. Write the BSR mode control word format in the 8255.
. List the components needed to interface seven-segment displays to the 8086.
. Find the data direction and the modes of operation of ports of the 8255 if the

control word written into is 80H.

. Specify the handshaking signals and their functions if port A of the 8255 is setup
as input port in mode 1.

- Describe the function of EOC and SC signals in ADC interface to the 8086.

How can the frequency of the waveform generated using DAC be changed?
. Why do you need a driver circuit for interfacing a LED to port pin?
- With encoded scan keyboard mode, the total number of keys that can be connected

to the 8279 is 128. Justify this statement.
. Describe the block diagram of the 8279 keyboard/displace interface.
. What are the functions performed by the 82792
. Describe the different modes of operation of the keyboard interface to the 8279.
. What are the different formats of display possible with the 82792
. What are the different control words of the 82792 Explain the function of each
command.

. Name the applications of the 8253.

. What is the difference between the 8253 and the 82549

. Explain how to configure a timer/counter through software.

. List the various operating modes of the 8253.

. How will you determine the output frequency of the 8253 in rate generator
mode?

. What is the difference between hardware-triggered strobe and software-triggered
strobe?

. Compare serial and parallel communication.

. Compare simplex and duplex transmission.

. What is the difference between synchronous and asynchronous serial data
transfer?

. What is a modem?

. Compare RS 232, RS 422, and RS 432 standards.
. Drawtheblock diagramand explain the operations of the 8251 serial communication

interface.

. Write and explain the mode word, command word, and status word formats of the

8251.

[S
—

Features and Interfacing of Programmable Devices for 8086-based Systems 341

. List the features modified by the mode instruction of the 8251.
. Name the features modified by the command instruction of the 8251.

. Synchronous mode of the 8251 is used for very high rate of data transfer. Is this
statement true or false? Justify your answer.

. The order of instructions used to initialize the 8279 is important. Is this statement
true or false? Justify your answer.

. Explain how data can be transferred using the 8251 USART at different baud
rates.

. What is the need for an interrupt controller?
. Compare maskable and non-maskable interrupts.
. What is a priority resolver?

. List the internal registers in the 8259.

. What is EOI in the 8259?
. Explain the initialization process of the 8259.
. Explain how the 8259 communicates with the 8086. Explain the different functions

available in the priority interrupt controller.
. Draw the block diagram of the 8259 and explain how it can be used for increasing

the interrupting capabilities of the 8086.
. How is DMA better than programmed data transfer?
. Give examples of I/O devices that can be interfaced with DMA.
. Give the sequence of operation carried out in DMA.
. List the internal registers in the 8237.
. Explain how data is transferred between the RAM and an I/O device using
DMA.

. Discuss the different modes of operation in the 8237.
. Write a note on the cascaded mode of operation of the 8237.
. Describe in detail how the 8237 can be interfaced with the 8086 processor.

NUMERICAL/DESIGN-BASED EXERCISES

. Find the BSR control words for setting PC4 pin and resetting PC2 pin in the

8255.
. Configure the ports of the 8255 (PPI) as follows: port A as output, port B as input,

port C higher as output, port C lower as input. (Assume that the control register of
the 8255 PPI is located at the address 26H.)

. Design an interface using the 8279 for interfacing six seven-segment displays and
a matrix hexadecimal keypad to work with the 8086 processor and explain the
software needed to find the key pressed in the keyboard and display the same in

the display.
. Write an 8086 program to set up the 8253 as a square wave generator with a 10

millisecond period (Assume input clock frequency to the 8253 is 1 MHz).
. Write an 8086 program using the 8253 to generate a PWM signal whose

frequency and pulse width can be changed. (Hint: You can use two timers—one
in programmable one-shot mode to generate variable pulse width and the other in
rate generator mode to trigger the one-shot mode counter at desired frequency.)

. Write an 8086 assembly language program (ALP) to initialize the 8251 USART

342 Microprocessors and Interfacing

[S
—Y

[\

w

and receive 10 bytes of data on polled basis and store them in memory from
address 3000H: 1000H with the following parameters: baud rate factor = 64,

character length = 8 bits, no parity check, and 1 stop bit. Assume port address

50H for data and 52H for control/status.

PROGRAMMING EXERCISES

. Draw and explain a typical stepper motor interface. Further, write an 8086 ALP to

rotate the shaft of a 4-phase stepper motor five times in clockwise direction.
. Write an 8086 ALP to a generate square wave of 1 KHz using the 8255, which is

interfaced with the 8086. The clock frequency of the 8086 is 5 MHz.
. Show how you would interface a 3 x 3 matrix keyboard having keys 1-9 with an

8086 processor using the 8255. Write an 8086 ALP to find the ASCII code of key

pressed and store it in DL register.
. Interface a set of eight simple switches and eight simple LEDS with the 8086

using an 8255 PPI chip. The 8255 should be selected for the following memory

addresses: port A= 1740H, port B = 1742H, port C = 1744H, and CWR = 1746H.

Write an 8086 ALP to indicate the status of the switches on the LEDs.
. Assume that a key matrix with the keys 0-9 and with *, —, /, + keys and an eight

digit display unit are interfaced with the 8279. Develop an 8086 ALP for using the

display and the keyboard as a calculator.

Multiprocessor Configuration

LEARNING OUTCOMES
After studying this chapter, you will be able to understand the following:

« Necessity and advantages of a multiprocessor system
« Difference between closely-coupled and loosely-coupled multiprocessor systems

« Interconnection topologies between processors and memories in a multiprocessor

system
+ Physical interconnections between processors in a multiprocessor system

-« Multiprocessor system containing 8086 and 8087 (numeric coprocessor)

"« Multiprocessor system containing 8086 and 8089 (I/O processor)

8.1 INTRODUCTION

The speed of any microprocessor-based system depends upon the clock frequency

at which it is operating, amongst other factors such as the presence of a pipeline

execution unit and the microprocessor’s on-chip cache. For example, when

bulk /O data transfer is done under the control of the microprocessor alone, the

processor has to spend most of its time idle due to the slow operating speed of

the peripherals. A single processor system has an upper limit on its processing

capability. For further enhancement of the speed of operation, an appropriate

system involving several connected processors using a certain topology may

provide the solution. Such a system is called multiprocessor system. If a system

having a single processor takes a particular duration to complete a task, a system

having more than one processor may require lesser time.

The simplest type of multiprocessor system consists of a CPU (such as the

8086) and a numeric data processor (NDP) (also called numeric coprocessor)

or an input/output processor (IOP). The NDP is an independent processing unit

that is capable of performing complicated numeric calculations in comparatively

lesser time than the microprocessor. The NDP works in coherence with the

microprocessor. The I/O operations in a microprocessor-based system are slow

due to the low operating speed of the I/O devices. An IOP takes care of the I/O

activities of the 8086-based system and thus saves the time of the main processor

(the 8086). The NDP and IOP work in synchronism with the main processor to

complete specific tasks and are called coprocessors. Coprocessors do not work

independently, as they cannot fetch code from the memory. They work under the

control of the main processor. Additional hardware circuits such as bus arbiter

and bus controller may be needed to coordinate the activities of all the processors

working at a time in the system.

344 Microprocessors and Interfacing

8.2 MULTIPROCESSOR SYSTEM—NEED
AND ADVANTAGES

By using a DMA controller with a CPU (such as the 8086), the system throughput can

be improved by concurrently performing I/O data transfer while the CPU continues

its processing. This is possible because the CPU does not utilize all bus cycles.

Depending on the application, the 8086 typically uses only 50% to 80% of the

available bus time. A DMA controller can steal bus cycles to transfer data between

the memory and the I/O devices, while affecting the CPU processing minimally. It

releases the CPU from performing the relatively slow I/O data transfer operations.

Such a system, having more than one processor such as the 8086 and the DMA

controller (8257 or 8237), with both of them operating in parallel to improve the

system performance, is an example of a multiprocessor system.

In general, if a system includes two or more processors that can execute

instructions simultaneously, it is called a multiprocessor system. The additional

processors could be general-purpose processors or special-purpose processors

that are specifically designed to perform certain tasks efficiently. For example,

due to the 8086’s limited data bus width (16 bits) and its lack of floating-point

arithmetic instructions, it requires many instructions to perform a single floating-

point operation. For a system requiring several floating-point computations, it is

desirable to perform such computations with a supporting numeric coprocessor

such as the 8087, which is specifically designed to quickly operate on floating-

point numbers and numbers having larger size, such as 32 bits, 64 bits, and

80 bits. Sometimes, it is advantageous to include in a system, an I/O processor

such as the 8089, which has greater capabilities than a DMA controller, since

the 8089 can perform string manipulations, character searching, and bit testing as

well as the normal DMA operations. This permits the 8086 CPU to concentrate on

higher-level functions.

As the ratio of cost to performance of a single-chip microprocessor reduces

day by day, it becomes more cost effective to use multiple processors than to use a

single complex processor. In addition to improving the overall cost to performance

ratio of a system, a multiprocessor configuration offers several desirable features

that are not found in a single complex processor design. Some of these features are
listed here:

() Several processors may be combined to fit the needs of an application, while

avoiding the expense of the unnecessary capabilities of a single complex
processor.

(ii) The modularity of a multiprocessor system provides means for expansion

because it is easy to add more processors as the need arises.

(ii)) Inamultiprocessor system, tasks are divided among the processors. If a failure

occurs, it is easier and cheaper to find and replace the malfunctioning p or

than it is to find and replace the failing part in a complex processor.

Two problems—bus contention and inter-processor communication—must

be considered while designing a multiprocessor system. Since more than one

processor shares the system memory and the I/O devices through a common

Multiprocessor Configuration 345

system bus, extra logic must be included to ensure that only one processor has

access to the system bus at a time. For one processor to send a task or return a

result to another processor, an unambiguous way must be provided for the two

processors to interact. The connections between the processors are dictated by

how the bus contention and processor communication problems are resolved.

8.3 DIFFERENT CONFIGURATIONS OF
MULTIPROCESSOR SYSTEM

The maximum mode operation of the 8086 is specifically designed to implement

multiprocessor systems. Multiprocessing features are provided in the maximum
mode operation of the 8086, to accommodate three basic configurations—the

coprocessor, the closely-coupled, and the loosely-coupled configurations.

8.3.1 Coprocessor and Closely-coupled Configurations

The coprocessor and the closely-coupled configurations are similar, as both the

CPU (i.e., 8086) and the external/supporting processor share not only the entire

memory and the I/O subsystem, but also the same bus control logic and clock

generator, as shown in Fig. 8.1. In both these configurations, the 8086 is the master

or the host, and the supporting processor is the slave. Since the bus access control

is provided by the 8086, the bus request signal from the supporting processor

is connected to the 8086. In the closely-coupled configuration, the supporting

processor may act independent of the CPU, but in the coprocessor design, it is

dependent on the CPU and must interact directly with the CPU. Since the 8086

always acts as the host in the coprocessor and closely-coupled designs, two 8086

processors cannot appear in these configurations. In a coprocessor arrangement,

there are more direct connections between the processing elements.

Helsi L iCoprocessor: Jih et ave i
— Yor independent { ; sl e

/| processor (N

Fig.8.1 Closely-coupled multiprocessor configuration

8.3.2 Loosely-coupled Configuration

The loosely-coupled configuration is used for medium to large size systems. This
configuration is shown in Fig. 8.2. Each module in a loosely-coupled system may act
as the system bus master, and may consist of an 8086 or another processor capable

of being a bus master, a coprocessor, or a closely-coupled configuration. Several
modules may share the system resources and the system bus control logic must
resolve the bus contention problem. Each potential bus master runs independently

346 Microprocessors and Interfacing

and there are no direct connections between them. Inter-processor communication

is made possible through the shared resources. In addition to the shared resources,

each module may include its own memory and I/O devices. The processors in

the separate modules can simultaneously access their private subsystems through

their local buses and perform their local data references and instruction fetches

independently, thus improving the degree of concurrent processing.

Local
I/O Local

devices | |memory

fi Local bus
< > control

logic Local bus

8086 or System

8086 e

Local g
e Local %

devices | |memory

I <:> System

Local bus VO, I
devices | |

control
Local bus logic

N

Closely- System E
coupled bus <:> i?

multiprocessor control
module logic \/ i

Flg 82 V%Loos;al.y’-cbupledy‘ ryhulfitizprcl)ces’s;r&' cor;fiéurat’i'o’nm

8.4 BUS ARBITRATION IN LOOSELY-COUPLED

MULTIPROCESSOR SYSTEM

In a loosely-coupled multiprocessor system, two 8086 processors cannot be tied

directly together. Each CPU has its own bus control logic, and bus arbitration is

resolved by extending this logic and adding external logic that is common to all

the master modules. Therefore, several CPUs can form a very large system and

each CPU may have independent processors and/or a coprocessor attached to it. A

loosely-coupled configuration provides the following advantages:

(i) The system can be expanded in a modular form. Each bus master module is
an independent unit and normally resides on a separate PC board and hence,
a bus master module can be added or removed without affecting the other

modules in the system.

(ii) High system throughput can be achieved by having more than one CPU,

(iii) A failure in one module does not cause a breakdown of the entire system:
the faulty module can be easily detected and replaced.

Multiprocessor Configuration 347

(iv) Each bus master may have a local bus to access dedicated memory or I/O
devices, so that a greater degree of parallel processing can be achieved.

In a loosely-coupled multiprocessor system, more than one bus master

module may have access to the shared system bus. Since each master is running

independently, extra bus control logic must be provided to resolve the bus arbitration

(i.e., allotment of system bus to a particular requesting master) problem. This extra

logic is called bus access logic and its responsibility is to make sure that only one

bus master at a time has control of the bus. Simultaneous bus requests are resolved

on a priority basis. There are three schemes for establishing priority—daisy

chaining, polling, and independent requesting. The three schemes are discussed in

Sections 8.4.1-8.4.3.

8.4.1 Daisy Chaining

Figure 8.3 shows the daisy chaining scheme of establishing priority. The daisy

chain method is characterized by its simplicity and low cost. All the masters use the

same line for making bus requests. To respond to a Bus Request (BR) signal, the

controller sends a Bus Grant (BG) signal if the Bus Busy (BB) signal is inactive.
The grant signal serially propagates through each master, until it encounters the

first one that is requesting access to the bus. This module blocks the propagation of
the Bus Grant signal, activates the Bus Busy line, and gains control of the bus. Any

other requesting module present after the master will not receive the grant signal.

Therefore, the priority is determined by the physical location of the modules. The
requesting module located closest to the controller has the highest priority.

vMaster 1 Maéter 2 Mastcr N :

Bus access Bus access NEELS Bus access
A logic logic . logic

[Bus Grant (BG) l | Tl I 1l |
" Controller ke BUS Regquest (BR)
‘[Lontroller * BusBusy(BB) _ ¥ v Y

Fig. 8.3 Daisy chain method of establishing priority

Compared to the other two methods, the daisy chain scheme requires the least

number of control lines and this number is independent of the number of modules

in the system. However, the arbitration time is slow due to the propagation delay

of the Bus Grant signal through the different masters. This delay is proportional

to the number of modules and therefore, a daisy chain-based system is limited to

multiprocessor systems having only a few modules. Further, the priority of each

module is fixed by its physical location and the failure of even one module in the

system causes the whole system to fail.

8.4.2 Polling

The polling scheme, which is shown in Fig. 8.4, uses a set of lines sufficient to
address each module. In response to a bus request, the controller generates and

sends out a sequence of module addresses to the requesting modules. When a

348 Microprocessors and Interfacing

requesting module recognizes its address, it activates the Busy line and begins to

use the bus. The major advantage of polling is that the priority can be dynamically

changed by altering the polling sequence (i.e., the order in which the module

addresses are sent) stored in the controller.

Master 1 Master 2 Master N

Module address logic logic logic

J TA\ AR TA A

v\
\

Bus Request (BR) \ Y
Bus Busy (BB) Y

‘Controller

Y A

| Fig.u8.4 Polling method of establishing priority

8.4.3 Independent Requesting

The independent requests scheme, which is shown in Fig. 8.5, resolves the

priority in a parallel fashion. Each module has a separate pair of Bus Request

(BR) and Bus Grant (BG) lines, and each pair has a priority assigned to it. The

controller includes a priority decoder, which selects the request with the highest

priority, and activates the corresponding Bus Grant signal. Arbitration is fast and

is independent of the number of modules in the system. Compared to the other

two methods, the independent requests design is the fastest method. However,

it requires more Bus Request and Bus Grant lines (i.e., 2m lines are needed for

m modules).

Master 1 Master 2 Master N ?

Bus access Bus access| | . .. Bus access| | |
logic logic logic

\ : \
Bus Grant 1 (BGI)T :

SIS us Request 1 (BR1)

| Controller] 5s Grant 2 (BG2)
A | Bus Request 2 (BR2)

| | BusGrantN (BGN)
sy | Bus Request N (BRN)

| BusBusy(BB) \ \ \

Fig.8.5 Independent requests method of establishing priority

A module’s host 8086 lacks the capability of requesting bus access and

recognizing bus grants. Therefore, it is necessary for each module containing a bus

master to have extra logic for sending and receiving the bus access signals. The

Intel bus arbiter (8289) is specifically designed to provide the necessary bus access

handshaking. The 8289 operates in conjunction with the bus controller (8288) and

Multiprocessor Configuration 349

controls the access of its associated master to the bus by using either the daisy

chain or the independent requests scheme.

8.5 INTERCONNECTIONTOPOLOGIES INA
MULTIPROCESSOR SYSTEM

A microprocessor with its external bus connections needs memory to form a

minimum workable processing system. In a multiprocessor system, a number of

microprocessors are connected with each other using a single bus. The bus is also
used to address a multi-port memory or a shared single I/O port. In both the cases,

the memory serves the following purposes:

(1) It stores the local (individual) instructions and data for all the processors.

(i1) It stores the common (global) instructions and/or data for all the processors.

(iif) It acts as a temporary storage for the instructions, data, and other parameters

that are transferred between the processors.

Based on the method of communication among the microprocessors in a

multiprocessor system, we have some interconnection topologies discussed in

Sections 8.5.1-8.5.4.

8.5.1 Shared Bus Architecture

The shared bus architecture uses a common memory, % &

which may be partitioned into local memory banks Pro"ess‘fl = B

for different processors. This is shown in Fig. 8.6. Ata

time, only one processor performs a bus cycle to fetch I fi

instructions or data from the memory. Once the bus

cycle is complete, the processor may internally start
the execution, allowing the other processors to use the

bus. Additional hardware is required for controlling

the access of the bus by different processors. All the

processors in Fig. 8.6 share a common memory, but
they can also have a local memory individually to

store the local instructions or data.

Processor

Fig.8.6 Shared bus
architecture

8.5.2 Multi-port Memory

In the multi-port memory configuration e :

showninFig. 8.7, the processors P1 and P2 L IlMUI “_‘P‘?jt;‘-’-‘em°’?’i ']

address a multi-port memory that can be S e :

accessed at a time by both the processors.

They also have local memories, which

are used by them to store individual

instructions and data. Each processor uses

its local memory for the execution of its ’(M1 J I M2]
individual tasks. The multi-p'ort memory | Local:mémofil,dcai by - |

may be used for storing the instructions, e T —————
data, and the results to be shared by more Fig. 8.7 Multi-port memory

configuration
than one processor.

350 Microprocessors and Interfacing

8.5.3 Linked Input/
Output

The linked input/output :

interconnection utilizes —
S Processor

the I/O capabilities of a
microprocessor-based

system to communicate

with other systems,

as shown in Fig. 8.8.

Parallel or serial I/O

may be used to establish

communication with other

processors. The direct access of common instructions and data that are available in

a local system memory is not possible in this method.

Fig. 8.8 Linked input/output interconnection

8.5.4 Crossbar Switching

The crossbar switching interconnection is shown in Fig. 8.9. It uses an extension

of the concept of shared memory for a number of processors. In this method,

more than one processor can have simultaneous access to the different memory

modules to be shared individually, as long as there is no conflict. The memory is

divided into modules. While one processor is accessing a memory module, the

other processor is denied access to the same module till it is relinquished by the

former processor. The crossbar switch provides the interconnection paths between

the memory modules and the processors. In the crossbar switch interconnection,

several parallel data paths are possible. Each node of the crossbar represents a

bus switch. These nodes may be controlled by one of these processors or by

a separate one.

s SE—
g S 1 J [‘L NS

, Ml | ‘Sfi —) Tl

u’z and P3—Processors Pl‘l E’Z \ ’ Ps.—‘l,] |
2,_ and M3—Memories : : i d R R A B

o e 1o

Flg 8.9 Crossbar swutchlng mterconnectlon

Multiprocessor Configuration 351

8.6 PHYSICAL INTERCONNECTIONS BETWEEN
PROCESSORS IN A MULTIPROCESSOR SYSTEM

The interconnections discussed in the previous sections are based on the

communication methods between the microprocessors in a multiprocessor system.
Besides those interconnections, we have star configuration, loop configuration,

complete interconnection, regular topologies, and irregular topologies. These are

based on the physical interconnections between the processors in a multiprocessor

system.

8.6.1 Star Configuration

In this configuration, all the processors are

connected to a central switching element

via dedicated paths, as shown in Fig. 8.10.

The central switching element may be
an independent processor. The switching
element controls the interconnections

between the processing elements.

Communication hub

Pl P2 and P3——Processors

8.6.2 Ring or Loop Configuration F'g 810 Sar C°"fg”"at'°"
The ring or loop configuration is shown in Fig. 8.11. The processors are arranged
in a loop and each processor can communicate with the rest through intermediate
processors in the path. The number of intermediate processors depends upon the

position of the sender and the receiver in the loop. The direction of the data transfer

along the loop may be unidirectional or bidirectional.

RS-

S5 T

Sl

P1

P4

S2
‘ s3 .

PN | P3

4, and P5—Processors
g b s S

4 and S5—Switches o5 AR e

g o o et il g - . R W NP Ty A P s v L e

U
)
"
U

Fig.8.11 Ring or loop configuration

352 Microprocessors and Interfacing

8.6.3 Completely-connected Configuration

In the complete interconnection scheme,
every processing element can directly

communicate with another processor,

one at a time, as shown in Fig. 8.12. The

main drawback of this configuration is

that the required number of dedicated

interconnection paths, which is given by

Eq. 8.1, is very high when compared to

those in other configurations.

Let the required number of dedicated

interconnection paths be IP.
P1, P2, P3, and P4—Processors

P &) Y et
where N is the total number of processors.

8.6.4 Regular Topology

In this configuration, the processors are a:trranged in a regular fashion. The
processors can be arranged in any of the regular structures such as linear array,
square, hexagonal, or cubical configurations. Each processor (node) has a local
memory to be accessed only by that processor. Each processor can communicate
with a fixed number of neighbours in the specific regular structure. One of the
regular topologies is shown in Fig. 8.13.

P1, P2, P3, and P4—Processors
81, 82, §3, and S4—Switches

5 i Fi£ 8.13 Régdlaf* topoiogyJ -

8.6.5 Irregular Topology

The processors in this scheme do not follow any uniform or regular connection
pattern. The number of neighbouring processors with which a processor can

communicate is not fixed and may even be programmable.

Multiprocessor Configuration 353

8.7 OPERATING SYSTEM USED IN A
MULTIPROCESSOR SYSTEM

All interconnection topologies are implemented using the microprocessor as a

node. The microprocessors used as nodes may also work as standalone processors

or sub-processing units under the control of other microprocessors. Once the
microprocessors are arranged in a particular topology, an appropriate operating

system and system software are required, that will be able to work in coordination

with the new system resources.
An operating system is a program that resides in the computer memory and

acts as an interface between the user or application program and the computer

resources. It provides a means of hardware and software resource management,

including memory and I/O management in a computer. It also enables the user

to communicate with the hardware using simple commands. The success of a

multiprocessor system relies on the operating system. The operating system used

for a single processor cannot be used for a multiprocessor system. The operating

system and the system software needed for the multiprocessor system should have

the flexibility and the ability to work with or run under the control of more than

one processor at a time. Distributed operating systems and the related system

software are the solution to this.

Distributed operating systems are designed to run parallel processes. Hence it is

essential that a proper environment exists for concurrent processes to communicate

and cooperate, to complete the allotted task. The features expected from a

distributed operating system used in a multiprocessor system are as follows:

(1) A distributed operating system should provide a mechanism for inter-

process and inter-processor communication.

(i1) A distributed operating system must be capable of handling the structural

or architectural changes in the system, which occur due to expected or

unexpected reasons such as faults or modifications in the configuration.

(iii) A distributed operating system should also take care of unauthorized data

access and data protection, as the data sets in these systems are referred to

by more than one processor.

(iv) A distributed operating system must have a mechanism to split the given

tasks into concurrent subtasks, which can be executed in parallel on different

processors, and to collect the results of the subtasks and further process
these to obtain the final result.

8.8 TYPICAL MULTIPROCESSOR SYSTEM HAVING
8086 AND 8087

Let us see the details of a typical multiprocessor system consisting of the 8086 and

the 8087 (numeric coprocessor). The 8087 is a coprocessor that has been designed

to work under the control of the 8086 and gives additional numeric processing

capabilities to the 8086. The 8087 is a 40 pin IC and is available in 5, 8, and

10 MHz versions, compatible with different versions of the 8086. ’

When the 8086 is interfaced with the 8087, the instructions of the 8087 can be

354 Microprocessors and Interfacing

included in the program to be executed by the 8086. The 8086 performs the opcode

fetch cycles and identifies the instructions for the 8087. Once the instructions

for the 8087 are identified by the 8086, they are assigned to the 8087 for further
execution. After the 8087 executes that instruction, the results may be sent to the

8086 or stored in the memory. The 8087 adds 68 new instructions to the instruction

set of the 8086.

8.8.1 Architecture of 8087

The simplified block diagram of the 8087 is shown in Fig. 8.14. The 8087 has two

internal sections—the control unit (CU) and the numeric extension unit (NEU).

The NEU executes all the numeric processor instructions, while the CU receives

and decodes the instructions, and reads or writes memory operands. The control

unit is also responsible for establishing communication between the CPU (8086)

and the memory, and also for coordinating the internal coprocessor execution. The

internal data bus in the 8087 is 84 bits wide, including the 68-bit fraction, 15-bit

exponent, and sign bit. The microcode control unit in the 8087 generates the control

signals required for the execution of the 8087 instructions. The 8087 contains a

programmable shifter, which is responsible for shifting the operands during the

execution of instructions such as FMUL and FDIV. The data bus interface in the

8087 connects its internal data bus with the system data bus of the 8086.

Control unit (CU) i Numeric execution unit (NEU)

Control register|

Status register | i | Exponent Shifter
' module

E Tastruction Arithmetic

: decoder module
Data_ :

: I Operand | Temporary
| queue l i registers ’

Br | T_ (7 . — ¢
Address—{ Bxceptions | = 4)

i : e 3)
i s (2
g é] 1

g Ed g ©
5 80-bit wide stack .
|

Fig.8.14 Simplified block diagram of 8087

8.8.2 Pin Details of 8087

The different signals of the 8087 are discussed in detail in this section.

Figure 8.15 shows the pin diagram of the 8087.

(1)

(ii)

(iii)

(iv)

)

(vi)

(vii)

(viii)

(ix)

)

(xi)

(xii)

Multiprocessor Configuration 355

ADO-AD15: These are the multiplexed address/data lines. These lines carry

addresses during the T1 state and data during the T2, T3, TW, and T4 states,

as in the 8086. These lines act as the input lines for the 8086-driven bus

cycles and become the input/output lines for the NDP-initiated bus cycles.

A19/S6-A16/S3: These lines are time multiplexed address/status lines and
are the same as in the 8086. S3, S4, and S6 are permanently high, while S5
is permanently low.

BHE/S7: During T1, the BHE/S7 pin is used to enable the data on the
higher-order byte of the 8086 data bus. During the T2-T4 clock cycles, it
acts as the status line S7.

QS1 and QSO0: The queue status input signals QS1 and QSO enable the
8087 to keep track of the instruction queue status of the 8086, to maintain
synchronism with it. Their function is same as that of the QS1 and QSO
pins in the 8086. These lines are connected to the corresponding lines of the
8086.
INT: The interrupt output is used by the 8087 to indicate that unmasked
exceptions, such as invalid operation, divide-by-0, overflow, etc., have been
received during the execution of the instruction.

BUSY: This output signal indicates to the 8086 that the 8087 is busy with
the execution of an allotted instruction. This is usually connected to the
TEST input of the 8086.
READY: This input signal may be used to inform the 8087 that the addressed
device such as the memory or the I/O device will complete the data transfer
from its side. Usually this signal is synchronized by the clock generator
(8284).
RESET: This input signal is

used to discard the internal

activities of the coprocessor

and prepare it for further

execution, whenever needed

by the 8086.
CLK: The CLK input

provides the basic timings

for the 8087. Its frequency is

the same as that of the 8086.

Vot A +5 'V supply is

connected to this pin.

GND: This is used as the
return line for the V.

supply.

S2, ST, and S0: These pins

can act either as output

pins driven by the 8087 or

as input pins driven by the

8086. If these are driven by

S L
]
.

<

8

O
O
0

0
0
O
0
O
0

D
O
O
0

o
D

356 Microprocessors and Interfacing

(xii)

(xiv)

the 8087, they can be decoded as shown in Table 8.1. These are used by the

bus controllers to derive the Read and Write signals. These signals act as

input signals if the CPU is executing a task.

RIGTO:, e hlal Fieons of 51 €T and 501 80g7
request/grant pin is a

bidirectional pin used by § e S0 Queue status
the 8087 to gain control |
of the bus from the host 0 X X Unused
8086 for operand or | 0 0 Unused
data transfers. It must be 1 0 1 Memory read
connected to one of the ,
request/grant pins of the : I g smpngwte
8086. The request/grant 1 1 1 Passive
sequence is as follows:

An activate low pulse of one clock duration is generated by the 8087 for the
host 8086 to inform it that it wants to gain control of the local bus, either for
itself or for a coprocessor such as the 8089 (I/0 processor) connected to the
RQ/GTT pin of the 8087. The 8087 waits for the grant pulse from the 8086,
and when it is received, the 8087 either initiates a bus cycle if the request is
for itself or passes the grant pulse to RQ/GTT if the request is for the other
coprocessor. The 8087 releases the bus by sending one more pulse on the
RQ/GTO line to the host 8086, either after completion of the last bus cycle
initiated by it, or as a response to a release pulse on the RQ/GTT line issued
by a coprocessor.

RQ/GTT: This bidirectional pin is used by the other bus masters to convey
their need for local bus access to the 8087. At the time of request, if the
8087 does not have control of the bus, the request is passed on to the host
CPU using the RQ/GTO pin. If the 8087 has control over the bus, when it
receives a valid request on the RQ/GTT pin, it sends a grant pulse during
the following T1 or T4 clock cycle to the requesting bus master, indicating
that it has floated the bus. The requesting bus master then gains control of
the bus until there is a need. At the end, the requesting bus master issues an
active low, one clock-state-wide pulse for the 8087, to indicate that the task
is over, and the 8087 regains the control of the bus. The request/grant pins
may be used by other bus masters such as DMA controllers.

8.8.3 Interconnection of 8087 with 8086

The physical interconnection of the 8087 with the 8086 is shown in Fig. 8.16. The
8087 can be connected with the 8086 only when the 8086 is operating in maximum
mode. In the maximum mode, all control signals are derived using a separate chip
called Bus Controller (8288). The BUSY pin of the 8087 is connected with the
TEST pin of the 8086. The QSO0 and QS1 lines in the 8087 are directly connected
to the corresponding pins in the 8086-based system. The RQ/GTO pin of the 8087
may be connected to the RQ/GTO pin of the 8086. The clock pin of the 8087 may
be connected to the 8086 clock input. The interrupt output of the 8087 is sent

Multiprocessor Configuration 357

| GIE s 288 :> Control bus

S2 ST SO
\ A

8259 B2 ke o
INT > INTR MN/MX —1

ADO-ADI15,
A19/S6-A16/S3

: ¥ BHE/S7

8284 TS ’ , RQ/GTo 8086
READY > READY TEST ke

RESET »RESET

Bus
CLK - interface £

t) circuitry <——|J>
CLK Qsq pl Multimaster ;

' l system bus -

CLK QS0 QS1

»>|RESET BUSY}— .

8087 From READY >
pin of 8284 2 aDY

> RQ/GT0 :

Multimaster
local bus

INT

Fig.8.16 Interconnection of 8087 with 8086

to the 8086 through a chip called programmable interrupt controller (8259). The
pins AD15-ADO0, A19/S6-A16/S3, BHE/S7, RESET, and READY of the 8087 are
connected to the corresponding pins of the 8086.

While fetching the instructions from the memory, the 8086 monitors the data
bus to check for the 8087 instructions. The control unit of the 8087 internally
maintains a parallel queue, identical to the instruction queue of the 8086. The
8087 uses the QSO and QS1 pins to obtain and identify the instructions fetched
by the 8086. The 8086 identifies the coprocessor instructions using the escape
code bits embedded in them. The first five bits of the escape code are 11011. Once
the 8086 recognizes the escape code, it initiates the execution of the coprocessor
instructions in the 8087. Each coprocessor instruction also has the opcode of the

358 Microprocessors and Interfacing

WAIT instruction of the 8086 as its first byte. So the 8086 waits in a loop, checking

its TEST pin, to go low. The TEST pin of the 8086 is connected to the BUSY
pin of the 8087, which remains high until the 8087 finishes the execution of the

recently received instruction from the 8086. Once the 8087 finishes the execution,

it makes its BUSY pin low and the 8086 starts its normal operation.

During the execution of a coprocessor instruction in the 8087, the escape code

identifies the coprocessor instruction that requires a memory operand and also

the one that does not require any memory operands. If the instruction requires a

memory operand to be fetched from the memory, the physical memory address

of the operand is calculated by the 8086 and a dummy read cycle is initiated.

However, the 8086 does not read the operand. The 8087 reads it and proceeds for

execution. If the coprocessor instruction does not require any memory operand,

it is directly executed by the 8087. When the 8087 is ready with the execution

results, the control unit of the 8087 gets the control of the bus from the 8086

and executes a write cycle to write the results in the memory at the pre-specified

address. The numeric extension unit of the 8087 executes all the instructions

including arithmetic, logical, transcendental, and data transfer instructions.

8.8.4 Data Types of 8087

The 8087 can operate on memory operands of seven different data types—word

integer, short integer, long integer, packed BCD, short real, long real, and temporary

real. The number of bytes, format, and approximate range for each of these data

types are as follows:

(1) Word integer data type

Number of bytes = 2

Approximate range = (—32768) — (+32767)

S—Sign bit

Bit 15 Bits 14-0

S Magnitude

(ii) Short integer data type

Number of bytes = 4

Approximate range = (-2 x 10%) — (+2 x 10°)

S—Sign bit

Bit 31 Bits 30-0

S Magnitude

(iii) Long integer data type

Number of bytes = 8

Approximate range = (—9 x10!8) — (+9 x 10'®)

S—Sign bit

Bit 63 Bits 62-0

S Magnitude

(iv) Short real data type

Number of bytes = 4

Approximate range = (+1 x 1038y~ (£3:x 1038)

Multiprocessor Configuration

S—Sign bit

Bits 30-23 Bits 22-0

S Biased exponent | Fraction

(v) Long real data type

Number of bytes = 8
Approximate range = (+10-398) — (+10308)
S—Sign bit

Bit 63 Bits 62-52 Bits 51-0

S Biased exponent Fraction

(vi) Temporary real data type

~ Number of bytes = 10

Approximate range = (+104932) — (+104932)
S—Sign bit

Bit 79 Bits 78-64 Bits 63-0

S Biased exponent | Fraction

359

The term biased exponent in all the real data types is obtained by adding
a bias to the exponent of the real number. The value of the bias is 127,
1023, and 16,383 for short, long, and temporary real data, respectively. The
general form of representation of the real number in the all the three cases
1S

RS x 2 E-bia) 5| F
where S is the sign bit, E is the biased exponent, and F is the fraction part.

(vii) Packed BCD

Number of bytes = 10

Approximate range = (—10'8 + 1) — (1018 - 1)
S—Sign bit

Bit 79 |Bits 78-72 (Bits 71-68 |Bits 67-64 |... |Bits 8-5 |Bits 7-4 | Bits 3-0

S 0 D17 D16 .. | D2 D1 DO

D0, D1, D2... D16, and D17 represent the BCD code of each digit in
the packed BCD number. Further details of the 8087 can be obtained by
referring to the data sheet of the 8087.

8.9 TYPICAL MULTIPROCESSOR SYSTEM HAVING
8086 AND 8089

While accessing I/O devices by non-DMA data transfer using the serial and
parallel ports in the personal computer, the CPU (such as the 8086) is required to
set up the interfacing chips used to access the I/O devices and perform the actual
data transfer. For high speed devices, data are transferred using DMA, but the
CPU has to set up the device controller, initiate the DMA operation, and check

360 Microprocessors and Interfacing

the post-transfer status after the completion of each DMA operation. The 8089 I/0

processor is designed to handle the tasks involved in I/O processing. An IOP can

fetch and execute its own instructions, unlike a DMA controller.

The instruction set of the 8089 is specifically designed for I/O operations,

but in addition to data transfer, it can perform arithmetic and logic operations,

branching, searching, and translation. The CPU communicates with the 8089

through memory-based control blocks. The CPU prepares control blocks that

describe the task to be performed, and then sends the task to the 8089 through

an interrupt-like signal. The 8089 reads the control blocks to locate a program

called a channel program, which is written using the 8089 instruction set. Then the

8089 performs the assigned task by fetching and executing instructions from the

channel program. When the 8089 has finished the task, it informs the CPU either

through an interrupt or by updating a status location in the memory.

8.9.1 Pin Details of 8089

The pin diagram of the 8089 is = "V T~~~ a0 v
shown in Fig. 8.17. A14/D14 112 391 A15/D15

The details of various pins are as Al13/D13 [13 381 A16/S3

follos: o g
(1) AO-ALSDO-D15 (multi- \EHEEET 3507 A19/S6

plexed address/data bus): = Agpg Cl7 3401 BHE

The function of these lines ”’/VAS/DS 8 330 EXTI

is defined by the state of = A7/D7 []9 o 32[1 EXT2
the E, fi, and S2 lines. A,61‘/D6’ 1o 31J DRQI1

The pins are floated aftc?r :Zgi E g ;gg %2

reset and when the bus is A3D3 013 ’ 281 3

not acquired. The signals = A2/p2 14 2700 3T ‘

in A8-Al15 remain the Al/D1 15 26[1 SO

same on transfer to a ~ AODO Ojl6 251 RQ/GT
physical 8-bit data bus gmmTT;'; E}; b igg SEL

; . - : CA

proceor a1t hus sa [N 20 ReADY : | VSs 20 2171 RESET |
8-bit data bus and 20- = e s
bit address bus) and are Flg 8 I7 P|n dlagram of the 8089

multiplexed with data D8—
Di% ot transfers to a 16 bt Table 8.2 Status bits and their significance

physical bus (used with the "6 85 S84 S3 Significance
8086 processor). s . ey

CHI
(i) A19-A16/S6-S3 (address cycle on

1 DMA cycle on CH2 and status bus): The ok

address lines are active 1 1 0 Non-DMA cycle on CHI

only ~when addressing | 1 Non-DMA cycle on CH2
memory. Otherwise, the

status lines are active and
are encoded as shown in Table 8.2. The pins are floated after reset and when

the bus is not acquired.

_

e

D

O

(iif)

(iv)

(v)

(vi)

(vii)

(viii)

(ix

g —

(x)

(xi)

Multiprocessor Configuration 361

BHE (Bus High Table 8.3 Status bits for defining IOP activity

} EOTR Y P .

Egable) . The Bus S2.. St S0 Significance

High Enable signal ‘ '

is usedito ‘edable:: 0 0 Instruction fetch (I/O space)

data operations on 0 0 1 Data fetch (I/0 space)

the most significant 1 0 Data store (I/O space)

half of the data bus
(D8-D15) The 0 1 1 Not used

0 Instruction fetch (System memory) signal is active low 1 0

when a byte is to 0 1 Data fetch (System memory)

be transferred on

the upper half of

the data bus. The 1 1 1 Passive

pin is floated after

reset and when the bus is not acquired. BHE does not have to be latched.

S2, S1, and SO (status pins): These are status pins, which define the IOP

activity during any given cycle. They are encoded as shown in Table 8.3.

1 1 0 Data store (System memory)

The status lines are utilized by the bus controller and the bus arbiter to

generate all the memory and I/O control signals. The signals change during

T4 if a new cycle is to be entered, while the return to passive state in T3 or

TW indicates the end of the cycle. The pins are floated after system reset

and when the bus is not acquired.

READY: The Ready signal received from the addressed dev1ce indicates

that the device is ready for data transfer. The signal is active high and is

synchronized by the 8284 clock generator.

LOCK: The Lock output signal indicates to the bus controller that the bus is
needed for more than one contiguous cycle. It is set via the channel control

register and during the TSL instruction. The pin floats after reset and when

the bus is not acquired. The output is active low.

RESET: The receipt of a Reset signal causes the IOP to suspend all its

activities and enter idle state until a Channel Attention signal is received.

The signal must be active for at least four clock cycles.

CLK (clock): The clock provides all the timing needed for internal IOP

operation.
CA (Channel Attention): This signal gets the attention of the IOP. When the

falling edge of this signal is encountered, the SEL input pin is examined to

determine master/slave or CH1/CH2 information. This input is active high.

SEL (Select): The first CA received after system reset informs the IOP

via the SEL line, whether it is a master or a slave (0 and/1, ‘respectively),

and starts the initialization sequence. During any other CA, the SEL line

signifies the selection of CH1 and CH2 (0 and 1, respectively).

DRQ1 and DRQ2 (Data Request): The DMA requests inputs, which signal

to the IOP that a peripheral is ready to transfer and receive data using

CHI and CH2, respectively. The signals must be held active high until the

appropriate fetch/stroke is initiated.

362 Microprocessors and Interfacing

(xii) RQ/GT (Request Grant): The Request Grant signal implements the
communication dialogue required to arbitrate the use of the system bus

(between IOP and CPU in local mode) or I/O bus when two IOPs share the

same bus (remote mode). The RQ/GT signal is active low. An internal pull-
up permits RQ/GT to be left floating, if not used.

(xiii) SINTR-1 and SINTR-2 (Signal Interrupt): The Signal Interrupt signal

outputs from CHI1 and CH2, respectively. The interrupts may be sent

directly to the CPU or through the 8295A interrupt controller. They are

used to indicate to the system the occurrence of user-defined events.

(xiv) EXT1 and EXT2 (External Terminate): The External Terminate signal inputs

from CHI and CH2, respectively. The EXT signal causes the termination

of the current DMA transfer operation, if the channel is so programmed by

the channel control register. The signal must be held active high until the

termination is complete.

V..: Supply voltage (+5 V) V. Ground

8.9.2 Local and Remote Operation of 8089

The 8089 assumes all the work involved in an I/O transfer, including device setup,

DMA operation, and programmed I/O, thereby relieving the CPU from the burden

of I/O processing. This allows the CPU to concentrate on higher-level tasks, while

the 8089 takes care of I/O processing. This greatly simplifies system software and

hardware efforts, and improves system performance and flexibility, by the distributed

processing approach. The 8089 may be operated in a local (closely-coupled)

1/0 devices

e B
1/0 space

I/0 bus ' i I ;

‘ 4} ” Bus arbitration ”

Optional | 8086 | | 8089
53 T R S et Sk 3T A ey IOP

‘ : ii System bus TL

' ;D‘/71/0 devices:

Memor y et /| - PSS ENRRG h

System space

" Fig.8.18 8089 IOP in local configuration

Multiprocessor Configuration 363

8086 8289 T
CPU Bus arbiter

I/0 devices

]
Local I/0 space

Multi-master

System bus

A
vViICIN01

Memory-
mapped

I/O devices

System space

I/O devices
Vi

D/
Local bus 8289

G ,.___arbitration Bus arbiter

E Optional
/O space Local E 8089 IOP E

HO.bus . - Frrorreadn.

Fig.8.19 8089 IOP in remote configuration

configuration or a remote (loosely-coupled) configuration. In a local configuration,
which is shown in Fig. 8.18, the 8089 shares the bus interface with the host (8086)
by using its RQ/GT pins. All resources are accessed through the system bus.

In a remote configuration, which is shown in Fig. 8.19, the 8089 may have its
own local I/O bus and requires a bus arbiter and controller, address latches, and
data transceivers for accessing the shared system bus. The RQ/GT pin on the 8089
can be used to interact with another 8089, which acts as the slave and shares the
buses with the host 8089. The 8089 accesses I/O devices dedicated to it through
the local bus, while it communicates with the CPU through the system memory. A high speed controller may request a transfer through one of the two DRQ pins (DRQI and DRQ2) in the 8089, and terminate a DMA operation through one of
two EXT pins (EXT1 and EXT2) in the 8089. To reduce the system bus loading and
enhance concurrent processing, local memory can be included to store the channel
programs or to provide storage areas. However, the local memory must respond
to I/O bus commands instead of memory read and memory write commands (Le.,
it must act as the I/O-mapped memory). Unlike the 8086, the 8089 I/O bus need
not have the same data width as the memory bus. This allows the 8089 to transfer
data from an 8-bit source to a 16-bit destination and vice versa. Since the I/Q
bus has only 16 address lines, the capacity of the local space (I/O space) is only
64 KB. On the other hand, the system space (i.e., memory space), which is
addressed by the system bus, has a capacity of 1 MB. The 8089 instructions access
I/O ports using the same addressing modes as are used for the memory operands.
Whether an address is in the I/O space or in the system space is determined by the
tag bit of the pointer register used.

364 Microprocessors and Interfacing

8.9.3 8089 Architecture

CPU

1/0 channel 1 ! . |
3 Main | !

request | —»| | Channel E 5 Bus control
DA 5 control : ; and i

terminate 1 E : arbitration :

Register % ! : Address |
file : ; J/Obus K=>data |

T/O channel 2 U

DMA ;
request2 —»| | Channel Assembly |
DA 25 control A disassembly [V

St i Instruction
Regizter fetch unit

Fig.8.20 Internal structure of the 8089

Figure 8.20 shows the internal structure of the 8089. Figure 8.21 shows the

registers in the 8089 IOP. Each of the two channels can be programmed and operated

independently while sharing the common control logic and ALU. The channel

control pointer (CCP) cannot be manipulated by the user. It stores the address of the

control block (CB) for channel 1 during

the initialization sequence. For channel 2,

its CB starts at the address that is indicated

by adding 8 to the contents of the CCP. To

dispatch a task to either channel, the CPU

(8086) sends out a Channel Attention

Uséf—progiamfimblé

Tag 19
- G.P. address A (GA)

- G.P. address B (GB)

~ G.P address C (GC)

(CA) signal along with the Select (SEL) Ly - Teskpointer “I[/"P) o)
signal, which selects channel 1 (if SEL ff;{?"m,‘f;;,‘,’,fi;tyh‘;;mg LT
= 0) or channel 2 (if SEL = 1). Since the =~ _ | '
channels occupy two consecutive I/O port Tndex (IX) S

addresses, the A0 address line of the 8086 SRR .
is connected to the SEL pin, so that when | Mask ‘|'Compare MO)|

A0 = 0, one channel is selected and when | Channel control (CC) o0

A0 = 1, another channel is selected.

Each channel has an identical set of

registers, each set being divided into two

groups according to size. The pointer

group consists of those registers having

20 bits and the register group consists

of those registers having 16 bits. Each

pointer, with the exception of parameter

Non-userprogrammable
i ‘(alwgy,s points to system memory)

| Parameterpointer (PP)

: I . Channel control pointer (CP) J

Fig.8.21 Registers in 8089 IOP

Multiprocessor Configuration 365

pointer (PP), has an associated tag bit. When used to access a memory operand,

the tag bit indicates whether the contents of that pointer represent a 20-bit system

(i.e., memory) space address (if tag = 0) or a 16-bit local (i.e., I/O) space address

(if tag = 1). In accessing the local space, only the lower-order 16 bits of the pointer

are used as the address. Register PP always points to an address in the system

space.

The registers GA, GB, GC, IX, BC, and MC can be used as general-purpose

registers for arithmetic and logical operations in a channel program. In addition, they

perform special functions when addressing memory operands and executing DMA

operations. A memory operand can only be addressed by using one of the pointers

GA, GB, GC, or PP as a base register. During a DMA operation, GA and GB are

used as the source and destination pointers. If GA points to the source, GB points

to the destination, and vice versa. When a translation operation is performed along

with the DMA transfer, the contents of GC are used as the base address of a 256-byte

translation table. Register BC is used as the byte counter during a DMA transfer, and

is decremented by 1 after every byte transfer and by 2 after every word transfer.

For a masked compare operation, register MC contains the bit pattern to be

compared against in bits 7-0 and a mask in bits 15-8. A masked compare operation

is done according to the following expression:

((OPERAND BYTE) ® (MC),) * (MC),, ¢

The results of the masked compare operation can be used as a DMA termination

condition or to determine whether or not a branch is to be made by a masked

compare branch instruction. The register IX is used as an index register. In two of

the memory operand addressing modes, its contents are added to those of a base

register to form the operand address. The task pointer (TP) stores the address of

the next instruction to be executed and is equivalent to the PC in a CPU. It also

has a tag bit for indicating whether the next instruction to be executed is stored in

the system or I/O space. The parameter pointer (PP) is not programmable by the

user, but is automatically filled by the 8089 while initializing a task. PP points to

the address of the parameter block.

Each channel also has an 8-bit status register (PSW), which contains the

current channel status. This status indicates status descriptors such as the source

and destination address widths, channel activity, interrupt control and servicing,

bus load limit, and priority. The PSW cannot be manipulated by the user, but can

be modified by a channel command. It is saved with TP and the four tag bits in

the first two words of the parameter block, when a channel program is suspended.

This allows the channel to resume the suspended channel program upon receipt of

a resume command.

The 8089 has the capability to perform DMA transfers using different options.

The transfer direction can be specified as I/O to I/O, memory to memory, or

memory to/from I/O. For each transfer, the 8089 fetches a byte or word, stores

the data in the destination and updates GA, GB, and BC accordingly. If data are

transferred from an 8-bit source to a 16-bit destination, the 8089 can fetch two

bytes and store them as one word. Conversely, if the transfer is from a 16-bit

source to an 8-bit destination, a word can be split into two bytes, before the data

366 Microprocessors and Interfacing

are sent to the destination. Between the fetch and the store cycles of the DM4,
the data byte can be compared or translated. Further, a DMA operation can be

terminated by an external request, a zero byte count, or a match/mismatch detected
by a masked compare. These options are specified by the contents of the channel

control register (CC) whose format is as follows:

Termination control bits 6-0 These bits specify how the DMA is to be terminated

and where to fetch the next instruction from, upon completion of the DMA operation.

A DMA transfer can be terminated after the current transfer cycle, based on the
comparison (bits 2,1, and 0) shown in Table 8.4 (a), the byte count (bits 4 and 3)

shown in Table 8.4 (b), and the external control (bits 5 and 6) shown in Table 8.4 (¢),

or a combination of the three. If external control is selected, the channel terminates
the DMA when the channel’s EXT (external termination) input is activated. If the

byte count is specified, a 0 in the channel’s BC register causes the DMA to terminate.

Whether or not a comparison is to result in a termination and whether a match or

mismatch is to cause the termination is determined by bits 2 to 0.

Table 8.4 (a) Function of termination control bits 2—0

Bit2 Bit1 Bit0 Termination condition and offset
0 0 0 No termination by masked comparison

0 0 1 Terminates when comparison matches; offset is set t0 0

0 1 0 Terminates when comparison matches; offset is set t0 4

0 1 1 Terminates when comparison matches; offset is set t 8

1 0 0 No effect

1 0 1 Terminates when there is no match; offset is set to 0

1 1 0 Terminates when there is no match; offset is set tO 4

1 1 1 Terminates when there is no match; offset is set t0 8

Table 8.4 (b) Function of termination control bits 4 and 3

Bit 4 Bit 3 Termination condition and offset
0 0 No termination by byte counter
0 1 Terminates when BC = 0; offset is set to 0
1 0 Terminates when BC = 0; offset is set to 4
1 1 Terminates when BC = 0; offset is set to 8

T ; able 8.4 (¢) Function of termination control bits 6 and 5

‘Bité . Bit5 Termination condition and offset
0 0 : : No externa] termination

|) TerminateS when EXT = 1; offset is set to 0

1 1 Terminates when EXT = 1; offset is set to 4

Terminates when EXT = 1; offset is set t0 8

Multiprocessor Configuration 367

The channel executes the instruction whose address is the contents of TP, plus

an offset upon the termination of a DMA operation. Therefore, when more than

one termination condition is specified, it is possible to use the offset in conjunction

with the branch instruction to enter different DMA completion routines, depending

on the actual cause of the DMA termination. If more than one of the selected

conditions occurs at the same time, the largest offset that corresponds to a satisfied

condition is used. To initiate a DMA transfer, the channel program should contain

instructions for setting up the source and destination pointers CC, BC and, if

necessary, GC, MC, and the I/O bus width.

Single transfer mode (bit 7) This bit is used to terminate the DMA after a single

transfer if it is set to 1 and then execute the next instruction pointed to by TP.

Chaining control (bit 8) This bit gives the other channel (i.e., channel 2, when

channel 1 is programmed and vice versa) the highest pI‘lOI‘lty This bit is not used

for DMA operation.

Lock control (bit 9) This bit activates the LOCK output of the 8089 during the

DMA transfer cycle, if it is set to 1.

Source/destination indicator (bit 10) This bit specifies whether the register GA

is used as the source pointer (i.e., the bit is 0) or the destination pointer (i.e., the bit

is 1). In either case, GB is used as the other pointer.

Synchronization control (bits 12 and 11) These bits specify how the data

transfer is to be synchronized. An unsynchronized transfer (if the bits are 00) begins

the next transfer cycle whenever a bus cycle is available. A source-synchronized

transfer (if the bits are 01) starts the read operation of the next transfer cycle upon

receiving the DRQ signal. A destination-synchronized transfer (if the bits are 10)

starts the write operation of the next transfer cycle when the DRQ is received.

Translation mode (bit 13) This bit indicates that the data bytes are to be

translated through a 256-byte look-up table during DMA (if the bit is 1). The base

address of the translation table should be stored in register GC.

Function control (bits 15 and 14) These bits specify one of four data transfer

modes—memory to memory (if the bits are 11), I/O port to memory (if the bits are

10), memory to I/O port (if the bits are 01), and I/O port to I/O port (if the bits are

00). During a memory to memory data transfer, both the destination and source

pointers are auto-incremented, but during and after an I/O to I/O data transfer,

both pointers remain unchanged. These two modes are not supported by most

conventional DMA controllers. They are useful in moving a block of code or data

from one memory area to another and in direct device communications.

8.9.4 Communication between CPU (8086) and IOP (8089)

Inter-processor communication, including the 8089 IOP initialization and task

dispatch, is memory-based and is accomplished by means of a linked list of control

blocks. The first control block in the linked list is stored beginning at the fixed

location FFFF6H in the memory. The others may reside in user-defined areas,

368 Microprocessors and Interfacing

each of which is pointed to by the previous control block. The IOP communicatigp

areas are shown in Fig. 8.22. The system configuration pointer block (SCPB)

contains three words starting at location FFFF6H in the system memory. The least

significant byte (SYSBUS) specifies the width of the system bus, which is eight

bits if SYSBUS = 0 and 16 bits if SYSBUS = 1. The succeeding two words store

the offset and segment address of the location of the system configuration block

(SCB). The SCB does not need to be stored at a fixed location. However, it must

reside in the system space. The least significant byte of the SCB is the system

operation command (SOC). Bits 0 and 1 of the system operation command define

the width of the I/O bus and the RQ/GT mode as follows:

Bit 1 = 0 indicates the standard RQ/GT mode.
Bit 1 = 1 indicates the modified RQ/GT mode for use with multiple 8089s.
Bit 0 = 0 indicates an 8-bit I/O bus.

Bit 0 = 1 indicates a 16-bit I/O bus.

The last two words in the SCB contain the offset and segment address of the

beginning of two consecutive channel control blocks (CBs) in the system space.

There is one control block for each channel and the first byte of each control block

is called the channel command word (CCW), which indicates the action to be taken

by the channel. The next byte (BUSY) indicates the busy status of the channel (00

for not busy and FF for busy) and the last two words contain the address of a

parameter block. A parameter block is used for providing the beginning address of

the channel program and passing information to and from this program.

Memory

: BUSY CCW |« 2
Channel 1 ;
aram:ter { | PBloffsetand _| Control block

block (PB1) segment address for channel 1
REod Reserved

12 BUSY CCW
Channel 2
parameter |~ PB2offsetand _ Control block ~ block (PB2) segment address for channel 2
e Reserved ‘

S0C | | ,
User-defined | CBoffsetand | System configuration

: : . block (SCB)
area segment address i

.+ FFFF6 SYSBUS e
) s System configuration . FFFF8 | gSCBoffsetand | | | pointer block (SCPB)

- FFFFA segment address o1

Fig. 8.22 IOP communication structure

Multiprocessor Configuration 369

The format of a CCW is shown in Fig. 8.23. It includes a 3-bit command field,

a 2-bit interrupt control field, a bus load limit bit, and a priority bit.

Bit 7 Bit 6 Bit 5 Bits 5 and 4 Bits 2, 1, and 0

P 0 B ICF CF

Flg 8.23 Channel corfimand wot"d—C‘.CW“

The command field specifies one of the six possible commands shown in

Table 8.5.

Table 8.5 Function of CF field in channel command word (CCW)

CF Command field

000 Update PSW—causes PSW to be updated

001 Start channel program (I/O space)—initiates the execution of a channel

program that is stored in the I/O space

010 Reserved

011 Start channel program (system space)—initiates the execution of a channel

program that is stored in the system space

100 Reserved

101 Resume suspended channel operation—causes a suspended operation to be
continued from the point at which it was stopped

110 Suspend channel operation—suspends the operation currently being
performed by the channel until a resume command is given

111 Halt channel operation—aborts the current channel operation

The interrupt control field (ICF) is used for enabling (ICF = 10) and disabling

(ICF = 11) interrupt requests and for removing previous interrupt requests

(ICF = 01). When an IOP sends out an interrupt request, it sets a service bit in its

PSW. While the interrupt is being serviced, this bit must be cleared by sending the

IOP a command with 01 in the interrupt control field. Otherwise, a request would

block other requests. If ICF = 00, it has no effect on interrupts.
When the bus load limit (B) bit is 0, there is no bus load limit and when it

is 1, there exists a bus load limit, during which the IOP can execute only one

instruction every 128 clock cycles. This prevents the IOP from monopolizing the

bus in situations in which there is no need for it to be the dominant processor.
The priority bit in the PSW is set or cleared according to the priority bit (P) in the

CCW. Further details about the 8089 can be obtained from the data sheet of the

8089.

POINTSTO REMEMBER '

¢ In a multiprocessor system, more than one processor works cooperatively to solve

a common task.

370 Microprocessors and Interfacing

o There are different configurations of multiprocessor systems, such as coprocessor,
closely-coupled and loosely-coupled multiprocessor system.

There exist different interconnection topologies between processors and memories
in a multiprocessor system.

o The physical interconnections between processors in a multiprocessor system can
be different.

A distributed operating system is commonly used in a multiprocessor system.

The numeric coprocessor (8087) is used to perform floating-point operations
efficiently.

The I/O processor (8089) is used to perform various I/O operations, relieving the
CPU to perform higher-level functions.

KEY TERMS

Bus arbitration This is the method by which allotment of a system bus to a particular
requesting master is done amongst the many requesting masters at a time. There are
three methods of bus arbitration—daisy chain, polling, and independent requests.

Closely-coupled system A closely-coupled multiprocessor system is one in which
the external processor or coprocessor shares not only the entire memory and 1/0
subsystem in the system, but also the same bus control logic and clock generator of
the main processor.

Distributed operating system This is an operating system used in a multiprocessor
system to efficiently run a task in the system and to protect the program and data of
different modules in the system from unauthorized accesses.

Interconnection topology This is the way in which communication among the
microprocessors is performed in a multiprocessor system. There are different methods

of interconnection between processors—shared bus architecture, multi-port memory,
linked input/output, and crossbar switch.

I/0 processor (IOP) An I/O processor is a processor that is mainly used to perform
I/O-related operations, to relieve the microprocessor from the relatively slow 1/0
operations. IOP is alsc a coprocessor.

'Loosely-coupled system Each module in a loosely-coupled system may act as the

system bus master and may consist of an 8086 or another processor, capable of being
“a'bus master, a coprocessor, or a closely-coupled configuration. Several modules may
share the system resources and the system bus control logic must resolve the bus
‘contention problem:: ! -

“Multiprocessor system' ' A multiprocessor system is one that contains more than one
“processor for improving the performance of the system.

‘Nummeric coprocessor or numerie' data: processor A numeric coprocessor is a
“processor that' works in 'conjunctlon with: a.mlcroprocessor to perform floating-point
soperations:quickly. i1 rrio i ho y 9d 182 808 st Ty

Q.

REVIEW QUESTIONS
AAAMAMIA OT 27848

1. What is meant by a multlprocessor system?

. 2. What ate-the adyarntages of a multiprocessor system?: .-
3. What are the different schemes of bus arbitration?

G o il

ALB) gommon 8

—

N
T

Multiprocessor Configuration 371

. What is the advantage and disadvantage of the daisy chain method of establishing
priority among modules in a multiprocessor system?

. What is meant by the polling method of establishing priority among the modules
in a multiprocessor system?

. How is interconnection between processors done in multi-port memory?
. Draw the diagram showing the linked input/output scheme of interconnection
between processors.

. How is the interconnection between processors done in the crossbar switch
scheme?

. How are the physical interconnections between processors classified?
. What is the drawback of the completely connected configuration method of

physical interconnection among processors?

. What is meant by the regular topology scheme of physical interconnection among
processors?

. What is an operating system?

. What are the features of a distributed operating system?

. What are the two main parts in the 8087 and their function?

. What is the function of the BUSY and READY pins in the 80877

. What is the function of the QS0 and QS1 pins in the 8087?

. What is the function of the 80897

. Explain closely-coupled and loosely-coupled multiprocessor systems, with
necessary diagrams.

. Describe the different bus arbitration schemes used in a loosely-coupled
multiprocessor system, with necessary diagrams.

. With neat diagrams, explain the different interconnection topologies used for
communication among the processors in a multiprocessor system.

. Describe the different physical interconnections between processors in a
multiprocessor system, with neat diagrams.

. Draw and explain the block diagram of the 8087 and the main signals in the
8087.

. Draw the diagram showing the interconnection of the 8086 with the 8087 and
explain the communication between these two processors in detail.

. Draw and explain the block diagram of the 8089 and the main signals in the
8089.

. Draw the diagram showing the interconnection of the 8086 with the 8089 and

explain the communication between these two processors in detail.

. THINKAND ANSWER

. How is the priority among modules in a multiprocessor system resolved in

independent requests scheme?

How does the 8086 identify an 8087 instruction when it fetches an instruction from
the memory?

How is priority among several masters established in daisy chain method?
Why is biased exponent used to represent floating point numbers?

Why is the capacity of the local /O space 64 KB in 8089?

8086-based Systems

LEARNING OUTCOMES

After studying this chapter, you will be able to understand the following:

+ Minimum and maximum mode operation of an 8086-based system

* « Function of the clock generator (8284A) and the bus controller (8288)

» Bus timings, interrupt acknowledgement, and bus request and grant in the 8086

9.1 INTRODUCTION

To adapt to different situations, the 8086 processors can be operated either in the

minimum or the maximum mode. The minimum mode is used for a small system

with a single processor (8086) and in any system in which the 8086 generates all

the necessary bus control signals directly, thereby minimizing the required bus

control logic. The maximum mode is for medium to large size systems, which

often include two or more processors. In the maximum mode, the 8086 encodes

the basic bus control signals into three status bits (S2, ST, and S0) and uses the
remaining control pins to provide the additional information that is needed to

support the multiprocessor configuration.

9.2 8086 IN MINIMUM MODE CONFIGURATION

The 8086 is configured in minimum mode when its MN/MX pin is connected to

+5V. A typical minimum mode configuration of the 8086 is shown in Fig. 9.1. The

figure illustrates the 8284 IC generating the clock, Ready and Reset signals for the

8086. The decoder is used to generate the four control signals MEMR, MEMW,

IOR, and IOW using the M/IO, RD, and WR signals of the 8086. The chip select

(CS) logic is used to generate the Chip Select signals for the odd and even memory

banks of the RAM and ROM chips and the I/O devices using BHE, A0, and a few
higher-order address lines of the 8086. The CSE and the CSO signals represent the
Chip Select signal for the even bank and odd bank of the memory, respectively.

CSIO represents the Chip Select signal for the input/output (I/O) devices.

The address from the 8086 and the BHE signals are latched externally using

three 74LS373 (octal latch) ICs, since they are available only during the first part

of the bus cycle. The ALE signal of the 8086 is used to indicate that the bus

contains a valid address and is connected to the clock (G or CLK) input of the

74LS373 as shown in Fig. 9.2.

9.2.1 Formation of Separate Address Bus and Data Bus in 8086

If the 8086-based system includes several interfaces, transceivers (driver and

receiver) are required for the data lines. This may not be a requirement for small,

VCC

8086-based Systems

Reset eset goga [Tl

Reset Clk RDY 1

Reset Clk RD ED/‘[_WR_% T
MN/MX M/IO > — 5

RD »| Decoder [HORD S
o . IOWR el s

8086 = A0Q ESORA ' BHE >(CS logic CSO RAM
E CSE ROM

Gsi0. CSO ROM
S ALE > CLK A0-A19 B,

ATSIS3ALS <7 (15" totoka =5 — latches % Q : CSI0

DT/R DEN CSO CSE CSO SE IOWR

X, VAo pigds
Transceivers Cs CS} |:CS Gl
G 74245 RaMm XM %

> DIR Yn —R—D W_R m‘j

MRD

DO-D15

373

Fig. 9.1 Minimum mode operation of an 8086-based system

S7/BHE |— > aLs373 > BHE
A19/56 i> A19-A16

Al6/S3[74 G -
r 0C

. T ,
e >D15—D8

8086 g

AD15 ; 74LS373 ;
: A15-A8

ADS 8]

S oc
T

/

7 >D7—D0
/ gl

AD7 ; 7418373
: oy _7—7L____’>A7—AO

ADO 8 8

ALE B
' T

| Fig; 9.2 v For;mation of séparafe address bus (Ai9—Ad)rand |
data bus (D 15-DO0) in the 8086

374 Microprocessors and Interfacing

single-board 8086-based systems. The 74L.S245 IC can be used as a transceiver

(driver/receiver) for the data lines. Since the 8086 has 16 data lines, two 7418245

ICs are required (the 74245 being an 8-bit transceiver).

9.2.2 Formation of Buffered Address Bus and Data Bus in 8086

Figure 9.3 shows the connection of two 741.S245s with the 8086. The EN (enable)

pin determines whether or not data are allowed to pass through the 74L.S245 and the

DIR (direction) pin controls the direction of the data flow. When EN = 1, data are not

transmitted through the 74245 in either direction. IfEN is 0, DIR = 0 causes the data to

flow towards the 8086 and DIR = 1 results in data being outputted from the 8086. In an

8086-based system, the EN pin of the 74245 is connected to the DEN pin, since DEN

of the 8086 is made active low (i.e., logic 0) whenever the processor is performing an

I/O or memory read/write operation. The AD7-ADO pins of the 8086 are connected

to the inputs of one 74245 and the AD8-AD15 pins are connected to the inputs of

another 74245. The DIR pin of the 74245 is tied to the processor’s DT/R pin. The

processor floats (tri-states) the DEN and the DT/R pins, in response to a bus request

on the HOLD pin. Similarly, three 74244 1Cs (buffer/driver) are used to generate the

buffered address bus (BAO-BA19), as shown in Fig. 9.3. The Intel 8282 and 8286 ICs

can be used instead of the 74L.S373 and the 74245, respectively.

BHE, 22 —
7 >41.5244 ——> Buffered BHE

Alé' 4 ¥

Ha
l

Y8

7415244

A8 '8 8
1G 2G

8086 i 7415244
¢> i>BA7—BA0

8 3

A0 '8 1636 Buffered address :
§ iG bus (BA19-BAO)

D15

i : 741.S245

BD15-BD8
DT/R DIR

L
I
V

IR 8 DEN > EN

D7 ,|}| :

; 7418245

Do 8 i>BD7—BDO
DIR | /g .
N d data b

| De-multiplexed EN (BBuggi%Dde)v sl
address/data

Ladde s

Fig.9.3 Formation of buffered address bus and data bus in 8086

8086-based Systems 375

9.2.3 Connection of 8284A with 8086

Figure 9.4 (a) shows the clock generator IC (8284A), which supplies a train of pulses

at a constant frequency to the 8086. The connection of the 8284A with the 8086 is

shown in Fig. 9.4 (b). It synchronizes the Ready (RDY) signal (which indicates that

an 1/O device or memory interface is ready to complete a data transfer) received

from an I/O or memory interface, by activating the READY input of the 8086 at the

right time in a bus cycle. Similarly, when the Reset (RES) signal of the 8284A is

activated, it activates the RESET input of the 8086 at the right time in a bus cycle,

which initializes the 8086 system. The clock pulse source applied to the 8284A may

be from a pulse generator that is connected to the EFI pin or an oscillator that is

connected across X1 and X2. If the input to F/C is 1, the EFI input determines the

frequency. Otherwise, the oscillator input determines the frequency. In either case, the

8284 clock output (CLK) is one-third of the input frequency. All the devices, 74373,

74245, and 8284A, require only +5V supply voltage. Their inputs and outputs are

TTL-compatible and therefore the devices are compatible with each other and with

the 8086. CSYNC is used in systems with multiple processors.

csYNC [|1 18] Ve

PCLK [|2 17[] x1

AENT [|3 6] X2

RDY1 []4 8284A 15|] ASYNC

READY [|5 14[] EFI

rRDY2 [|6 13[] FC

AENZ [|7 12|] osc

cik 78 11 | RES

GND []9 wE RESET

(a)

o f-,-_E‘L{
A e] T '

CSYNCH, 17Xl Grystal0SC
g3 - 16Pep T A5MHz 45V -

04 8284A ISCJX‘ ’

|| 8086 R 13 JFC SR

_____C_ILE; 321 'szitch

09 100 pEsET _qupo—l

"okl ¢ |RESET j—l

(b)
- e 3 AT AT

DSy R

Fig.9.4 8284A (a) Pin details (b) Typical connection with the 8086

376 Microprocessors and Interfacing

In the minimum mode system, the control lines (RD, WR, and M/IO) need not be
passed through transceivers, but can be used directly. The RD, WR, and M/IO lines
indicate the type of data transfer, as shown in Table 9.1.

Since the content of CS and IP are

FFFFH and 0000H after reset, the first Table 9.1 Function of the 8086 control
instruction for execution is fetched signals in minimum mode operation

from the memory address FFFFOH MiO RD WR Operation

(= CSX10H +1IP) by the 8086. Hence,

the system start-up program must be ~ © 0 1 /0 ref{d

stored from the address FFFFOH in (1) (1) (1) i//lo write :
th : 1 : emory rea ¢ memory. Normally, this address] : 5 Mt ke

is assigned to a ROM type memory

chip, so that the system start-up

program is available permanently. The interrupt vector table is stored from the

address 00000H in the memory, whenever the interrupt(s) is (are) to be used in the

8086-based system. In addition, depending upon the system requirement, specific

interfacing ICs can be used along with the 8086.

(1) For interfacing the keyboard and the seven-segment display with the 8086,
the 8279 IC can be used.

(i) To increase the number of hardware interrupts that can be handled by the

8086, the 8259 IC can be used.

(iii) To interface I/O devices such as DIP switches, ADCs, DACs, LEDs, relays,

and stepper motors with the 8086, the 8255 IC is used.

(iv) For performing serial communication, the 8251 IC is used with the 8086.

4

9.3 8086 IN MAXIMUM MODE CONFIGURATION

The 8086 operates in the maximum mode when its MN/MX pin is grounded.

A typical maximum mode configuration is shown in Fig. 9.5. The main difference

between the minimum and the maximum mode configuration is the need for

additional circuitry to interpret the control signals of the 8086. This additional

circuitry accepts the status signals S0, ST, and S2 from the 8086 and generates
the I/O- and memory-related control signals. It also generates the signals for

controlling the external latches (74373) and transceivers (74245).

It is normally implemented with an Intel 8288 bus controller IC. In addition, a

programmable interrupt controller (8259) is included in the system. However, its

presence is optional.

The S0, ST, and S2 status bits specify the type of transfer that is to be carried out

by the 8086 and when used with an 8288 bus controller, they are used to generate

the memory-, I/0-, and interrupt-related control signals. From the status bits S0,

ST, and S2, the 8288 is able to generate the Address Latch Enable (ALE) signal for
the 74L.S373s, the enable and direction signals for the 74245 transceivers, and the

Interrupt Acknowledge signal (INTA) for the interrupt controller 8259. The QS0
and QS1 pins of the 8086 allow a system external to the 8086 processor such as the

8087 (coprocessor) to know the status of the processor instruction queue, so that it

8086-based Systems 377

can determine which instruction is currently executed by the 8086. The LOCK pin

indicates that an instruction with a LOCK prefix is being executed and that the bus

is not to be used by another master. These pins are needed only in multiprocessor

systems.

i
Reset — 8284 [SOIIBB R b s 5
RDY % Bus L—>MRDC

Reset Clk RDY gcontroller:—> MWTC

CLK > [ORC

Reset CIkRDY BE 3%1}::1 HONE €S¢E B) % DT{R

St CSE RAM
8086 52 A0 —>165 Jogic[> CSO RAM

[—>CSIO 5 e
ADOADIS, j» STB74373 AO0-A19 >

A16/S3-A19/ _/——‘ DL hios
S6 FQI 2o0r3

MN/MX

= G Data CSIO
X1 buffers G PATas P S AAr RS

74245 CSO0 SE CS0 SE IORC

DIR Y1 ¢ bk ¢ 1 i)
1 RD|

RAM ROM /0

T_DTW_R OE WR

MRDC MWTC MRDC IOWC

D0-D15

Fig.9.5 Maximum mode operation of an 8086-based system

The HOLD and HLDA pins become the bus request and the bus grant (RQ/GT0
and RQ/GTT1) pins in the maximum mode. Both bus requests and bus grants can be
given through these pins. Both the pins function in exactly the same way, except

that if requests are seen on both the pins at the same time, the one on RQ/GTO is
given higher priority. A request consists of an active low pulse arriving before the

start of the current bus cycle. The grant is an active low pulse that is issued at the

beginning of the current bus cycle provided that

(i) The previous bus transfer in the 8086 was not the lower-order byte of a

word to or from an odd address.

(i) The first low pulse of an interrupt acknowledgement (INTA) did not occur
during the previous bus cycle.

(iii) An instruction with a LOCK prefix is not being executed.

378 Microprocessors and Interfacing

If condition (i) or (ii) is not met, the grant is not given until the next bus cycle; if

condition (iii) is not met, the grant waits until the locked instruction is completed,

In response to the grant, the tri-state pins of the 8086 (i.e., address, data, and

control pins) are placed in their high impedance state and the next bus cycle is

given to the requesting master. The processor is effectively disconnected from

the system bus until the master sends a second pulse to the processor through the

RQ/GT pin.
The ALE, DT/R, DEN, and INTA pins provide the same outputs that are sent by

the 8086 processor when it is in minimum mode (except that DEN is inverted). The

CLK input permits the bus controller activity to be synchronized with that of the

8086 processor. The remaining pins given in Fig. 9.5 have the following functions:

(1) MRDC (memory read command)—This signal instructs the memory to

place the contents of the addressed location on the data bus.

(i) MWTC (memory write command)—This signal instructs the memory to

accept the data on the data bus and place the data in the addressed memory

location.

(iif) IORC (VO read command)—This signal instructs an I/O interface to place

the data contained in the addressed port on the data bus.

(iv) IOWC (VO write command)—This signal instructs an I/O interface to

accept the data on the data bus and place the data in the addressed port.

(v) INTA (Interrupt Acknowledge)—This signal is used to send two interrupt
acknowledgement pulses to an interrupt controller such as the 8259 or an

interrupting device, when SO =ST =52 =0.

These five signals are active low and are outputted during the middle portion of

a bus cycle. Only one of them is issued during a bus cycle. There are two more

signals—AIOWC (advanced I/O write command) and AMWC (advanced memory

write command). They do the same function as the IOWC and MWTC pins.

However, they are activated one clock pulse earlier. This gives slow interfaces an

extra clock cycle to prepare for accepting the input data. The 8288 requires +5V

power supply and has TTL-compatible inputs and outputs.

9.4 8086 SYSTEM BUSTIMINGS

This section discusses the timing diagram of the 8086 bus cycles—general

bus operation, memory and I/O read cycle, and memory and I/O write cycle in

minimum mode operation, and memory and I/O read cycle and memory and I/O

write cycle in maximum mode operation. It also discusses the timing diagram for

interrupt acknowledgement (INTA) and the bus request and bus grant timing in

minimum and maximum mode operation.

9.4.1 Timing Diagrams for General Bus Operation in

Minimum Mode

The 8086 bus cycles are depicted with their T-states in Fig. 9.6. The length of a

bus cycle in an 8086 system is four clock cycles, denoted by T1-T4, plus any

number of wait state clock cycles, denoted by TW. If the bus is to be inactive or

idle after the completion of a bus cycle, the gap between successive bus cycles

8086-based Systems 379

is filled with idle state clock cycles denoted by TI. During data transfer, the wait

states are inserted between T3 and T4, when a memory or I/O interface is not able

to respond quickly.

Tlenl T2 e T TV L T T OTW | T4 Ll) | |
'

‘_/__/—_/___/__/fi_/—_/—_/—_/v_/_\r

t

|4 ‘

<——Normal bus cycle ——><——Bus cycle with one wait state —> (a) ‘

i b 7Rl N T R OB SH wAchiey v E Bay B Bl b |

<— Bus cycle with two wait states ————— > (b)

[e e o e R R O ety o Sl R 06 il v 20 e T Bt o e v

‘_l» One idle state between bus cycles ~ (€) ¢

i ¥ b 1S e i o Y A R Il o Rt w Gl e R e L e

A A CRVAVASAVEVE'T ©
‘_‘:;wo idle states between bus cycles (d) 3

Fig. 9.6 8086 bus cycles (a) Normal bus cycle and bus cycle with one wait state
(b) Bus cycle with two wait states (c) Bus cycle with one idle state, and

(d) Bus cycle with two idle states

The timing diagram for general bus operation of the 8086 in minimum mode

is shown in Fig. 9.7. If the Ready signal is still in low state at the beginning of T3,

one or more wait states (TW) will be inserted between T3 and T4, until a Ready

has been received (i.e., Ready is made 1). The bus activity during TW is the same

as the activity during T3. A signal applied to an RDY input of the 8284A causes a

Ready output to the 8086 at the falling edge of the current clock cycle.

The simplified timing diagram for the memory or I/O read cycle, which requires

one wait state in the minimum mode is shown in Fig. 9.8.

The simplified timing diagram for the memory or I/O write cycle, which

requires one wait state in the minimum mode is shown in Fig. 9.9.

When the processor is ready to initiate a bus cycle, it places the address in the

lines AD15-ADO0 and A19/S6-A16/S3, and the status of BHE in the line BHE/S7,

and applies a pulse to the ALE pin during T1. Before the falling edge of the ALE

signal, the signals in the address lines DEN, DT/R, M/IO, and BHE are made

380 Microprocessors and Interfacing

l«—— Memory read cycle ——>}«—— Memory write cycle —>|

o 8 i o i o vl ' i w8 s o di R e W 6 o v 6 0 L

CLK

Address/ A19-A16 S3-87 A19-A16 S3-S7
Status (AddressX Status XAddressX Status

Address/ BHE BHE

AO0-A15 D15-D0 AO0-A1lS5
RD/INTA:

READY—— Ready: < Ready

o Wait i DTR a1 / Wait

DEN %\\ /____

WR <— Memory access time —3» |
I
n
—
—
—

Ll i v ol R T D e

e

Fig.9.7 Timing diagram for general bus operation of the 8086 in minimum mode

: ook BHE, ‘
.'Agg:;” TUUA19-A16 S7-S3 i j<:

Bus reserved : Brsched X pisDo) Data

f

|

o b

Fig. 9.8 Memory or I/O read cycle in minimum mode operation of the 8086 -

8086-based Systems 381

Address/ . . YREF Al 9% $7-$3 K
Status

Address/ ; %
Data Al15-A0 Valid data D15-D0 *><

WR /

DT/R —/ \

2 S

Fig. 9.9 Memory or I/O write cycle in minimum mode operation of the 8086

stable (i.e., the appropriate value, 1 or 0, is placed on the address lines), with DT/
R = 0 for the read operation, and DT/R = 1 for the write operation. At the falling
edge of the ALE signal, the 74L.S373s latches the address in the lines AD15-ADO0
and A19/S6-A16/S3, and the status of BHE in the line BHE/S7. During T2, the
address in these lines is removed and the status signals S3-S7 are outputted on the
A16/83-A19/S6 and BHE/S7 pins. DEN is made logic 0 to enable the 7418245
transceivers. The logic value in the line M/TO (which is not shown in Figs 9.7, 9.8,
and 9.9) is 1 for memory-related operation and 0 for I/O-related operations.

If an input operation (i.e., read operation) is to be performed, RD is active
low during T2, and the AD15-ADO0 pins should enter a high impedance state in
preparation for the receiving of input data. If the memory or I/O interface is ready
to transfer data immediately, there are no wait states and the data are put on the bus
during T3. After the input data are accepted by the 8086, RD is raised to 1 at the
beginning of T4 and the memory or I/O interface removes its data upon detecting
this transition.

For an output operation (i.e., write operation), the 8086 makes the signal
WR = 0 and places the output data in the pins AD15-ADO during T2. During T4,
WR is made logic 1 and the data are removed.

For both input and output operation, DEN is made logic 1 during T4, to disable
the transceivers. The M/IO signal is set according to the next data transfer at this
time.

The bus timing of the 8086 has been designed such that the memory or /O
interface involved in a data transfer can control when data are to be placed on or
taken from the bus by the interface. This is done by having the interface send a

382 Microprocessors and Interfacing

Ready signal to the 8086 (via the 8284), when it has placed data on the data bus or

has accepted data from the data bus.

9.4.2 Timing Diagrams for General Bus Operation in
Maximum Mode

The timing diagram for the memory or I/O read cycle without any wait state, ina

maximum mode 8086 system, is shown in Fig. 9.10.

<—— Onebuscycle —>

i /

$2-S0 Active > Inactive : < Active

Aélgrtisss/ M’ A19-A16 >< S7-S3 >

AddressData D15-D0 >
AD15-AD0

(ol\r/;]}ODgC \ /

oY

DEN / \—

IS I TRERE
BT

Flg 9.10 Memory or I/O read cycle in maximum mode operation of the 8086

The timing diagram for the memory write cycle without any wait state, in a

maximum mode 8086 system, is shown in Fig. 9.11. The status bits S0, S1, and

S2 are set just prior to the beginning of the bus cycle. Upon detecting a change

from the passive state (S0 = ST = S2 = 1), the 8288 outputs a pulse on its DT/R
pin during T1. In T2, the 8288 sets DEN = 1, thus enabling the transceivers. For

memory read operation, it activates MRDC, which is maintained until the end of

the clock period T4. For a memory write operation, AMWC is activated from T2

to T4 and MWTC is activated from T3 to T4. The status bits S0, ST, and S2 remain
active until the end of T3 and become passive (all 1s) during T3 and T4. As with

the minimum mode, if the Ready input of the 8086 is not activated before the

beginning of T3, the wait states are inserted between T3 and T4.

Similar to the memory read cycle, while performing the I/O read cycle, the

control signal TORC is activated instead of MRDC. Similar to the memory write

8086-based Systems 383

cycle, while performing the I/O write cycle, the control signals ATOWC and TOWC
are activated instead of AMWC and MWTC, respectively.

S2-S0 Active > Inactive < Active

Address/ :><:>< — >< $7_53 > ________________ float
Status)

Address/Data A15-A0 >< Dataout D15-D0 >—
ADI15-AD0

AMWC or

AIOWC

MWTC or

IOWC ______/——i :

7 - high
DT/R e

Flg 9 | I Memory or I/O write cycle in maximum mode operatlon of the 8086

9.4.3 Interrupt Acknowledgement (INTA) Timing

When an interrupt is received through the INTR pin of the 8086 in the minimum

and maximum modes, the 8086 generates the interrupt acknowledgement (INTA)
signal, which we shall now discuss in detail.

(i) When the 8086 is operating in minimum mode:

The timing diagram for the Interrupt Acknowledgement (INTA) signals of

the INTR interrupt is shown in Fig. 9.12. If an INTR interrupt request has

been recognized during the previous bus cycle and an instruction has just been

completely executed by the 8086, a negative pulse is applied to the INTA during

the current and the next bus cycles. Each of these pulses extends from T2 to

T4. Upon receiving the second INTA pulse, the interface receiving the INTA
signal puts the interrupt type on the lines AD7-ADO, which are floated for the

rest of the time (during the two bus cycles). The interrupt type is available from

T2 to T4.

384 Microprocessors and Interfacing

(il) When 8086 is operating in the maximum mode:

In this mode, the Interrupt Acknowledgement (INTA) signals are the same as

in the minimum mode, but, a logic 0 is applied to the LOCK pin from T2 of the

first bus cycle to T2 of the second bus cycle.

<—dle states—>

Ao o P NN O K o s o P] 86 o B8 B 181 5 ey

LR RYRU RGBS B B |

0 Interrupt AD7-ADO0 { type >——

e o AT

Fig.9.12 Timing diagram for interrupt acknowledgement (INTA)

9.4.4 Bus Request and Bus Grant Timing

In this section, we shall discuss the timing of a bus request and grant, both in the

minimum mode and the maximum mode. -

(1) When 8086 is operating in the minimum mode:

The timing of a bus request and a bus grant in minimum mode system is shown

in Fig. 9.13. The HOLD pin is tested at the rising edge of each clock pulse.

If a Hold signal is received by the 8086 before T4 or during the T1 state,

the 8086 activates HLDA and the succeeding bus cycles are given to the

requesting master until that master drops its request. The lowered request

(i.e., HOLD = 0) is detected at the rising edge of the next clock cycle and the

HLDA signal is made 0 (i.e., deactivated) at the falling edge of that clock cycle.

While HLDA = 1, all the three-state outputs of the 8086 are put in their high

impedance state. The instructions already in the instruction queue continue to

be executed, until one of them requires the use of the bus to access the memory

or the I/O device.

[T4 or T1|

| Fig. 9.13 Bus request and bus grant timing in minimum mode operation
of the 8086

8086-based Systems 385

(i) When 8086 is operating in the maximum mode:

The timing of a bus request and a bus grant in a maximum mode 8086 system

is shown in Fig. 9.14. A request/grant/release is accomplished by a sequence

of three pulses. The RQ/GT pins are checked at the rising edge of each clock

pulse, and if a request is detected from a master such as the coprocessor and

the necessary conditions discussed earlier are met, the 8086 applies a grant

pulse to the RQ/GT immediately following the next T4 or T1 state. When the

requesting master receives this pulse, it takes over the control of the bus. This

master may control the bus for one or several bus cycles. When it is ready to

relinquish the bus, it sends the release pulse to the 8086 over the same line

through which it made the request. RQ/GTO0 and RQ/GTT are the same, except

that RQ/GTO has higher priority.

| T4orTl |

CLK

RG/GT

Master requests ~ CPU grantsbus -~ '~ Master
bus access to coprocessor releases bus

Ll R S C gk e LRt iy bR S A e

Fig.9.14 Bus request and bus grant timing in maximum mode operation
of the 8086

9.5 DESIGN OF MINIMUM MODE 8086-BASED SYSTEM

The design of a minimum mode 8086-based system requires the interfacing of

memory chips and I/O devices such as DIP switches, LEDs, 8255, etc., with the

8086. The interfacing of memory chips and I/O devices with the 8086 has already

been explained in Chapter 7. There must be a ROM/EPROM chip at the address

FFFFOH, which has the monitor program stored in it, as the 8086 fetches the first

instruction from that address for execution after power up and reset. In addition,

there must be a ROM/EPROM or RAM chip at the address 00000H, if the system

uses interrupts, as the interrupt vector table (IVT) is stored starting at that address.

For interfacing the 8255 with the 8086, the concepts used to interface 8-bit I/O
devices with the 8086, and the 8255 with the 8085, can be combined.

- POINTSTO REMEMBER |

The 8086 can be configured to operate either in minimum or maximum mode.

The 8284 IC (clock generator) is used to generate the clock and Ready signals for

the 8086.

The 8288 IC (bus controller) is used in the maximum mode of operation of the 8086
to generate the memory and the I/O control signals using the status signals of the

8086.

386 Microprocessors and Interfacing

e The bus cycles of the 8086 may or may not have wait states and idle states.

There exist different timing diagrams in the 8086, such as the timing diagram for
general bus operation (i.e., the memory or I/O read cycle and the memory or I/
O write cycle) of the 8086, interrupt acknowledgement, and bus request/grant in

minimum and maximum modes.

KEY TERMS

Bus controller (8288) This IC is used to generate the control signals for the memory
and I/O device using the status signals SO, ST, and S2 in the maximum mode operation

of the 8086.

Bus cycle Each bus cycle of the 8086 has four clock periods, T1-T4 plus any number

of wait state clock cycles denoted by T, .

Bus request/grant cycle This cycle is needed to perform the DMA operation and

also when the bus is needed for another processor.

Clock generator (8284) This IC is used to supply a clock pulse with 33% duty cycle

and also to synchronize the Reset and Ready signals given to the 8086.

Idle state If the bus is to be inactive or idle after the completion of a bus cycle, the
gap between successive bus cycles is filled with idle state clock cycles, denoted by

TL

Interrupt acknowledgement (INTA) cycle During this cycle, the 8086 sends two
INTA pulses to an external interface after receiving the INTR interrupt, to get the

interrupt type number for the INTR interrupt.

I/O read cycle During this cycle, the 8086 reads data from the input device.

I/0 write cycle During this cycle, the 8086 writes data into the output device.

Maximum mode In this mode operation, there is more than one processor, and
all the control signals for the memory and the /O device are generated by the bus

controller (8288) chip.

Memory read cycle During this cycle, the 8086 reads data or instructions from the

memory.

Memory write cycle During this cycle, the 8086 writes data into the memory.

Minimum mode In this mode operation, there is only one 8086 processor, and all
the control signals for the memory and the I/O device are generated by the processor

itself.

Wait states These states are inserted between T3 and T4, when a memory or /O
interface is not able to respond quickly enough during a data transfer. This is achieved

with the help of the Ready input in the 8086.

REVIEW QUESTIONS

. What is meant by minimum mode operation of the 8086?

. What is meant by maximum mode operation of the 80867

. What is the function of the MN/MX pin in the 8086?

. How are the control signals MEMR and MEMW generated using the M/IO, RD,
and WR signals in the minimum mode operation of the 8086?

B

W

N

-

p
—

[

Al
E
e
l
 S

o

8086-based Systems 387

. How are the control signals IOR and IOW generated using the M/IO, RD, and WR
signals of the 80867

. What is the function of the chip select logic and what are the inputs given to it?

. Write the function of the clock generator IC (8284).

. What is the role of the bus controller IC (8288)?

. What is meant by memory read and memory write cycles?
. What is meant by I/O read and I/O write cycle?

. Write the function of the signals DEN and DT/R in the 8086.
. What is the function of the signals M/IO and BHE in the 8086?

_ What is the role of the pin F/C in the 8284A7
. Explain the minimum mode configuration of the 8086-based system with the

necessary block diagram.

. Describe the maximum mode configuration of the 8086 with the necessary block
diagram.

. Explain the signals in the 8284A and the 8288 in detail.

. Explain the bus timings for general bus operation in the 8086 under minimum
mode with necessary waveforms.

. Explain the bus timings for general bus operation in the 8086 under maximum
mode with necessary waveforms.

. With necessary waveforms, describe the bus timings for bus request and grant in
minimum and maximum modes.

. How does the 8086 respond to the INTR interrupt in minimum mode operation of
the 80867

NUMERICAL/DESIGN-BASED EXERCISES

Design an 8086-based minimum mode system that contains the following

components:

(i) Two 8K x 8 EPROM chips having the address range FCO00H-FFFFFH
(i) Two 8K x 8 RAM chips having the address range 80000H-83FFFH

(iii)Two seven-segment LEDs with common anode connection, having the
addresses 80H and 81H

(iv) An 8-bit DIP switch having the address FF80H

_Interface an 8255 chip with the 8086 operating in minimum mode so that the
addresses 80H, 82H, 84H, and 86H are assigned to port A, port B, port C, and the

control register of the 8255, respectively.

THINK AND ANSWER

How are wait states introduced in a bus cycle of the 80867
Why and when are the idle states introduced in a bus cycle of the 8086?

How many clock periods are present in a bus cycle of the 8086 without wait states?
What is the difference between the AMWC and MWTC signals?
How does the 8288 generate the control signals for memory and I/O devices?

