Microprocessors
and Interfacing

8086, 8051, 8096, and advanced processors

N. Senthil Kumar

Professor
Department of Electrical and Electronics Engineering
Mepco Schlenk Engineering College
Sivakasi, Tamil Nadu

M. Saravanan
Professor
Department of Electrical and Electronics Engineering
Thiagarajar College of Engineering
Madurai, Tamil Nadu

S. Jeevananthan
Professor
Department of Electrical and Electronics Engineering
Pondicherry Engineering College
Puducherry

S.K. Shah

Professor and Head
Department of Electrical Engineering
MS University of Baroda
Vadodara, Gujarat

OXTFORD

UNIVERSITY PRESS

© Oxford University Press. All rights reserved.

OXTORD

UNIVERSITY PRESS

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of
Oxford University Press in the UK and in certain other countries.

Published in India by
Oxford University Press
YMCA Library Building, 1 Jai Singh Road, New Delhi 110001, India

© Oxford University Press 2012
The moral rights of the author/s have been asserted.
First published in 2012

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the
prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence, or under terms agreed with the appropriate reprographics
rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the
address above.

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.

ISBN-13: 978-0-19-807906-4
ISBN-10: 0-19-807906-0

Typeset in Times New Roman

by Trinity Designers & Typesetters, Chennai
Printed in India by Tara Art Printers (P) Ltd, Noida

© Oxford University Press. All rights reserved.

Brief Contents

Features of the Book

Preface
1. Microprocessors—Evolution and Introduction to 8085
2. Methods of Data Transfer and Serial Transfer Protocols
PART I: INTEL 8086—16-BIT MICROPROCESSORS
3. Intel 8086 Microprocessor Architecture, Features, and Signals
4. Addressing Modes, Instruction Set, and Programming of 8086
5. 8086 Interrupts
6. Memory and I/O Interfacing
7. Features and Interfacing of Programmable Devices for
8086-based Systems
8. Multiprocessor Configuration
9. 8086-based Systems
PART II: INTEL 8051—8-BIT MICROCONTROLLERS
10. Introduction to 8051 Microcontrollers
11. 8051 Instruction Set and Programming
12. Hardware Features of 8051
13. 8051 Interface Examples
PART 11I: INTEL 8096—16-BIT MICROCONTROLLERS
14. Overview of Intel 8096 Microcontrollers
15. 8096 Instruction Set and Programming
16. Hardware Features of 8096
PART IV: ADVANCED TRENDS
17. Microprocessor System Developments and Recent Trends
18. Advanced Microprocessors and Microcontrollers
19. Embedded Systems
20. Hybrid Programming Techniques Using ASM and C/C++

© Oxford University Press. All rights reserved.

vii

47

63
80
175
210

240
343
372

391
402
427
464

517
530
549

591
604
663
736

Xii Brief Contents

Appendix A: 8086 Case Studies 752
Appendix B: 8051 Case Studies 758
Appendix C: 8275 CRT Controller Chip 766
Appendix D: Multiple Choice Questions 777
Appendix E: 8086 Instruction Set 797
Appendix F: 8051 Instruction Set 803
Bibliography 811
Index 812

© Oxford University Press. All rights reserved.

Detailed Contents

Features of the Book

Preface

Brief Contents

Microprocessors—Evolution and Introduction to 8085
1.1 Introduction
1.2 Explanation of Basic Terms
1.3 Microprocessors and Microcontrollers
1.4 Microprocessor-based System
1.5 Origin of Microprocessors
1.5.1 First generation (1971-1973)
1.5.2 Second generation (1974-1978)
1.5.3 Third generation (1978-1980)
1.5.4 Fourth generation (1981-1995)
1.5.5 Fifth generation (1995-till date)
1.5.6 Timeline of microprocessor evolution
1.6 Classification of Microprocessors
1.7 Types of Memory
1.8 Input and Output Devices
1.9 Technology Improvements Adapted to Microprocessors and
Computers
1.10 Introduction to 8085 Processor
1.11 Architecture of 8085
1.11.1 Arithmetic and logic unit
1.11.2 General-purpose registers
1.11.3 Special-purpose registers
1.11.4 Instruction register and decoder
1.11.5 Timing and control unit
1.12 Microprocessor Instructions
1.13 Classification of Instructions
1.13.1 Based on functionality
1.13.2 Based on length
1.13.3 Addressing modes in instructions
1.14 Instruction Set of 8085
1.14.1 Format of assembly language instructions and programs
1.14.2 Data transfer instructions
1.14.3 Arithmetic instructions
1.14.4 Logical instructions
1.14.5 Branching instructions
1.14.6 Machine control instructions
1.15 Sample Programs
1.16 Instruction Execution

© Oxford University Press. All rights reserved.

©

14
14
16
16
17
17
19
19
23
24
24
26
28
30
31
31
34
36
38
39
40
42

Xiv Detailed Contents

2. Methods of Data Transfer and Serial Transfer Protocols

2.1 Data Transfer Mechanisms
2.2 Memory-mapped and I/O-mapped Data Transfer
2.3 Programmed Data Transfer
2.4 Direct Memory Access
2.5 Parallel Data Transfer
2.6 Serial Data Transfer
2.6.1 Introduction to RS-232 standard
2.6.2 Introduction to RS-485 standard
2.6.3 GPIB/IEEE 488 standards
2.7 Interrupt Structure of a Microprocessor
2.8 Types of Interrupts
2.8.1 Vectored and non-vectored interrupts
2.8.2 Maskable and non-maskable interrupts
2.8.3 Software and hardware interrupts
2.9 Interrupt Handling Procedure

PART I: INTEL 8086—16-BIT MICROPROCESSORS

. Intel 8086 Microprocessor Architecture, Features, and Signals
3.1 Introduction
3.2 Architecture of 8086
3.2.1 Execution unit
3.2.2 Bus interface unit
3.2.3 Minimum and maximum mode operations
3.3 Accessing Memory Locations
3.4 Pin Details of 8086
3.4.1 Function of pins common to minimum and maximum modes
3.4.2 Function of pins used in minimum mode
3.4.3 Function of pins used in maximum mode
3.5 Differences Between 8086 and 8088

. Addressing Modes, Instruction Set, and Programming
of 8086
4.1 Addressing Modes in 8086
4.1.1 Register Addressing Mode
4.1.2 Immediate Addressing Mode
4.1.3 Data Memory Addressing Modes
4.1.4 Program Memory Addressing Modes
4.1.5 Stack Memory Addressing Mode
4.2 Segment Override Prefix
4.3 Instruction Format of 8086
4.3.1 One-byte instruction
4.3.2 Register to register
4.3.3 Register to/from memory with no displacement
4.3.4 Register to/from memory with displacement
4.3.5 Immediate operand to register
4.3.6 Immediate operand to memory with 16-bit displacement

© Oxford University Press. All rights reserved.

47
47
47
48
49
50
50
51
54
55
57
57
57
58
58
58

63
63
63
63
66
67
67
70
70
72
73
74

80
80
80
80
81
83
85
86
87
87
87
87
89
89
89

Detailed Contents Xv

4.4 Instruction Set of 8086 91
4.4.1 Data transfer instructions 91
4.4.2 Arithmetic instructions 94
4.4.3 Logical instructions 102
4.4.4 Flag manipulation instructions 103
4.4.5 Control transfer instructions 103
4.4.6 Shift/rotate instructions 106
4.4.7 String instructions 109
4.4.8 Machine or processor control instructions 110

4.5 8086 Assembly Language Programming 110
4.5.1 Writing programs using line assembler 111
4.5.2 Writing time delay programs 127
4.5.3 8086 Assembler directives 129
4.5.4 Writing assembly language programs using MASM 138

4.6 Program Development Process 162

4.7 Modular Programming 164
4.7.1 CALL instruction 165
4.7.2 RET instruction 166
4.7.3 Macro 167
4.7.4 llustrative example 168

. 8086 Interrupts 175

5.1 Introduction 175

5.2 Interrupt Types in 8086 175

5.3 Processing of Interrupts by 8086 176

5.4 Dedicated Interrupt Types in 8086 178
5.4.1 Type O0H or divide-by-zero interrupt 178
5.4.2 Type 01H, single step, or trap interrupt 178
5.4.3 Type 02H or NMI interrupt 178
5.4.4 Type 03H or one-byte INT interrupt 179
5.4.5 Type 04H or overflow interrupt 179

5.5 Software Interrupts—Types 00H-FFH 179

5.6 INTR Interrupts—Types 00H-FFH 180

5.7 Priority Among 8086 Interrupts 182

5.8 Interrupt Service Routines 182

5.9 BIOS Interrupts or Function Calls 189
5.9.1 INT 10H 189
5.9.2 INT 11H 191
5.9.3INT 12H 192
5.9.4 INT 13H 192
5,95 INT 14H 192
5.9.6 INT 15H 192
5.9.7 INT 16H 192
5.9.8 INT 17H 192

5.10 Interrupt Handlers 194

5.11 DOS Services: INT 21H 195

5.12 System Calls—BIOS Services 198
5.12.1 Print screen service: INT 05H 199

© Oxford University Press. All rights reserved.

XVi

6.

Detailed Contents

5.12.2 Video services: INT 10H
5.12.3 Keyboard services: INT 16H
5.12.4 Printer services: INT 17H

Memory and I/O Interfacing
6.1 Physical Memory Organization in 8086
6.2 Formation of System Bus
6.3 Interfacing RAM and EPROM Chips using Only Logic Gates
6.4 Interfacing RAM/EPROM Chips using Decoder IC and
Logic Gates
6.5 1/0 Interfacing
6.5.1 1/O instructions in 8086
6.5.2 1/0-mapped and memory-mapped 1/O
6.6 Interfacing 8-bit Input Device with 8086
6.6.1 Assigning 8-bit address to 8-bit input device using
address decoder having only logic gates
6.6.2 Assigning 8-bit address to 8-bit input device using
address decoder 1C 74LS138
6.6.3 Assigning 16-bit address to 8-bit DIP switch using
address decoder having only logic gates
6.7 Interfacing 8-bit Output Device with 8086
6.8 Interfacing Printer with 8086
6.9 Interfacing 8-bit and 16-bit I/O Devices or Ports with 8086
6.10 Interfacing CRT Terminal with 8086

Features and Interfacing of Programmable Devices for
8086-based Systems
7.1 Intel 8255 Programmable Peripheral Interface
7.1.1 Features of 8255
7.1.2 Block diagram of Intel 8255
7.1.3 Operating modes and control words of 8255
7.1.4 Programming examples
7.2 Interfacing Switches and LEDS
7.2.1 Debouncing of keys
7.3 Interfacing Seven-segment Displays
7.4 Traffic Light Control
7.5 Interfacing Analog-to-digital Converters
7.5.1 ADC chips and interfacing to microprocessor
7.6 Interfacing Digital-to-analog Converters
7.6.1 Square wave generation
7.6.2 Staircase waveform generation
7.6.3 Ramp waveform generation
7.6.4 Waveform generation using stored data
7.7 Interfacing Stepper Motors
7.8 Interfacing Intelligent LCDs
7.9 Keyboard and Display Interface IC 8279
7.9.1 Matrix keyboard
7.9.2 Multiplexed display
7.9.3 Features, block diagram, and pin details of 8279

© Oxford University Press. All rights reserved.

200
202
204

210
210
211
213

217
220
220
220
222

222

222

224
224
225
229
233

240
240
241
241
242
248
249
253
254
256
259
260
263
264
265
266
267
268
273
278
278
283
285

Detailed Contents

7.9.4 Programming of 8279
7.9.5 Display interface using 8279
7.9.6 Keyboard interface using 8279
7.10 Intel Timer I1C 8253
7.10.1 Features of IC 8253
7.10.2 Block diagram of IC 8253 and pin details
7.10.3 Operating modes and control word of 1C 8253
7.10.4 Interfacing of IC 8253 with 8086
7.10.5 Application examples
7.11 Introduction to Serial Communication
7.11.1 Features and details of 8251 USART
7.11.2 Control words
7.11.3 Interfacing 8251 with 8086
7.12 8259 Programmable Interrupt Controller
7.12.1 Features and architecture of 8259
7.12.2 Pin diagram and details of 8259
7.12.3 Initialization of 8259
7.12.4 Operation of 8259
7.12.5 Interfacing of 8259 to 8086
7.13 8237 DMA Controller
7.13.1 Features, pin details, and architecture of 8237
7.13.2 DMA initialization and operation
7.13.3 Operation of 8237 with 8086

. Multiprocessor Configuration
8.1 Introduction
8.2 Multiprocessor System—Need and Advantages
8.3 Diftferent Configurations of Multiprocessor System
8.3.1 Coprocessor and closely-coupled configurations
8.3.2 Loosely-coupled configuration
8.4 Bus Arbitration in Loosely-coupled Multiprocessor System
8.4.1 Daisy chaining
8.4.2 Polling
8.4.3 Independent requesting
8.5 Interconnection Topologies in a Multiprocessor System
8.5.1 Shared bus architecture
8.5.2 Multi-port memory
8.5.3 Linked input/output
8.5.4 Crossbar switching
8.6 Physical Interconnections Between Processors in a
Multiprocessor System
8.6.1 Star configuration
8.6.2 Ring or loop configuration
8.6.3 Completely-connected configuration
8.6.4 Regular topology
8.6.5 Irregular topology
8.7 Operating System used in a Multiprocessor System
8.8 Typical Multiprocessor System having 8086 and 8087
8.8.1 Architecture of 8087

© Oxford University Press. All rights reserved.

xvii

287
292
293
295
295
295
297
302
302
307
309
312
314
317
318
320
320
324
325
326
327
333
335

343
343
344
345
345
345
346
347
347
348
349
349
349
350
350

351
351
351
352
352
352
353
353
354

xviii Detailed Contents

8.8.2 Pin details of 8087 354
8.8.3 Interconnection of 8087 with 8086 356
8.8.4 Data types of 8087 358
8.9 Typical Multiprocessor System having 8086 and 8089 359
8.9.1 Pin details of 8089 360
8.9.2 Local and remote operation of 8089 362
8.9.3 8089 architecture 364
8.9.4 Communication between CPU (8086) and IOP (8089) 367

9. 8086-based Systems 372
9.1 Introduction 372
9.2 8086 in Minimum Mode Configuration 372
9.2.1 Formation of separate address bus and data bus in 8086 372
9.2.2 Formation of buffered address bus and data bus in 8086 374
9.2.3 Connection of 8284A with 8086 375
9.3 8086 in Maximum Mode Configuration 376
9.4 8086 System Bus Timings 378

9.4.1 Timing diagrams for general bus operation in minimum mode 378
9.4.2 Timing diagrams for general bus operation in maximum mode 382

9.4.3 Interrupt acknowledgement (INTA) timing 383
9.4.4 Bus request and bus grant timing 384
9.5 Design of Minimum Mode 8086-based System 385

PART II: INTEL 8051—8-BIT MICROCONTROLLERS

10. Introduction to 8051 Microcontrollers 391
10.1 Introduction 391
10.2 Intel’s MCS-51 Series Microcontrollers 392
10.3 Intel 8051 Architecture 392
10.4 Memory Organization 394
10.5 Internal RAM Structure 395

10.5.1 Special function registers 397
10.5.2 Processor status word 397
10.6 Power Control in 8051 399
10.6.1 Idle mode 399
10.6.2 Power down mode 400
10.7 Stack Operation 400

11. 8051 Instruction Set and Programming 402
11.1 Introduction 402
11.2 Addressing Modes of 8051 402

11.2.1 Immediate addressing 402
11.2.2 Register direct addressing 402
11.2.3 Memory direct addressing 403
11.2.4 Memory indirect addressing 403
11.2.5 Indexed addressing 403
11.3 Instruction Set of 8051 404
11.3.1 Data transfer instructions 404
11.3.2 Arithmetic instructions 405

© Oxford University Press. All rights reserved.

Detailed Contents

11.3.3 Logical instructions
11.3.4 Branching instructions
11.3.5 Bit manipulation instructions
11.4 Some Assembler Directives
11.5 Programming Examples using 8051 Instruction Set

. Hardware Features of 8051

12.1 Introduction

12.2 Parallel Ports in 8051
12.2.1 Structure of port 1
12.2.2 Structure of ports 0 and 2
12.2.3 Structure of port 3

12.3 External Memory Interfacing in 8051
12.3.1 Program memory interfacing
12.3.2 Data memory interfacing

12.3.3 Timing diagram for external program and data memory access

12.4 8051 Timers
12.4.1 Timer SFRs
12.4.2 Timer operating modes
12.4.3 Timer control and operation
12.4.4 Using timers as counters
12.4.5 Programming examples
12.5 8051 Interrupts
12.5.1 Interrupt sources and interrupt vector addresses
12.5.2 Enabling and disabling of interrupts
12.5.3 Interrupt priorities and polling sequence
12.5.4 Timing of interrupts
12.5.5 Programming examples
12.6 8051 Serial Ports
12.6.1 Serial port control SFRs
12.6.2 Operating modes
12.6.3 Programming the serial port

. 8051 Interface Examples

13.1 Interfacing 8255 with 8051
13.2 Interfacing of Push Button Switches and LEDs
13.3 Interfacing of Seven-segment Displays
13.4 Interfacing ADC chip
13.5 Interfacing DAC chip
13.5.1 Square wave generation
13.5.2 Staircase wave generation
13.5.3 Ramp wave generation
13.5.4 Sine wave generation
13.6 Interfacing Matrix Keypad
13.7 Interfacing Stepper Motor with 8051
13.8 Interfacing LCD with 8051
13.9 Interfacing DC Motors/Servomotors
13.9.1 Bidirectional DC motor control
13.10 Microcontroller Application Example—Stopwatch

© Oxford University Press. All rights reserved.

Xix

406
407
408
410
410

427
427
427
428
429
430
432
432
434
435
437
437
439
442
443
443
445
445
446
447
448
450
453
453
455
457

464
464
465
467
469
471
472
472
473
474
475
478
482
487
488
489

XX

Detailed Contents

13.11 Microcontroller Application Example—Traffic Light Control
13.12 Microcontroller Application Example—Thermometer

13.13 RTC Interfacing using I1°C Standard
13.13.1 Details of I2C bus

13.13.2 8051 Subroutines used to implement I12C bus

13.13.3 DS1307—Serial 1°C real-time clock IC

PART III: INTEL 8096—16-BIT MICROCONTROLLERS

. Overview of Intel 8096 Microcontrollers

14.1 Introduction
14.2 Features of Intel 8096 Microcontroller
14.3 Functional Block Diagram
14.3.1 CPU section
14.3.2 8096 CPU buses
14.3.3 Register arithmetic and logical unit
14.3.4 Temporary register
14.3.5 Register file
14.3.6 Program status word
14.3.7 Memory controller
14.3.8 Internal timing
14.3.9 1/O section
14.4 Memory Structure
14.5 Power Down Mode of CPU

. 8096 Instruction Set and Programming

15.1 8096 Operand Types
15.2 Addressing Modes
15.2.1 Register direct addressing
15.2.2 Indirect addressing
15.2.3 Indirect addressing with auto increment
15.2.4 Immediate addressing
15.2.5 Short-indexed addressing
15.2.6 Long-indexed addressing
15.2.7 Zero register addressing
15.2.8 Stack pointer register addressing
15.3 Classification of Instructions
15.3.1 Data transfer instructions
15.3.2 Arithmetic and logical instructions
15.3.3 Shift/rotate instructions
15.3.4 Branching instructions
15.4 Complete 8096 Instruction Set

15.5 Programming Examples using 8096 Instruction Set

. Hardware Features of 8096

16.1 Parallel Ports in 8096 and Their Structure
16.1.1 Port 0
16.1.2 Port 1
16.1.3 Port 2

© Oxford University Press. All rights reserved.

491
495
498
499
503
505

517
517
519
519
519
521
521
521
522
523
523
523
524
525
528

530
530
531
531
531
532
532
532
532
532
533
533
533
533
534
535
536
540

549
549
549
550
550

16.1.4 Ports 3and 4
16.2 Control and Status Registers
16.2.1 Input/output control register 0
16.2.2 Input/output control register 1
16.2.3 Input/output status register O
16.2.4 Input/output status register 1
16.3 Timers
16.3.1 Timer 1
16.3.2 Timer 2
16.4 Interrupts
16.4.1 Interrupt sources
16.4.2 Polling routine
16.4.3 Vectored interrupt
16.4.4 Interrupt control
16.4.5 Interrupt pending register
16.4.6 Interrupt mask register
16.4.7 Global disable
16.4.8 Program status word
16.5 Serial Ports
16.5.1 Operating modes of serial port
16.5.2 Serial port control/status registers
16.5.3 Determining baud rate
16.5.4 Program for serial port data reception
16.6 Analog-to-digital Converter
16.7 Digital-to-analog Converter
16.8 High Speed Input Unit
16.8.1 HSI interrupts
16.8.2 Programming HSI
16.9 High Speed Output Unit
16.9.1 HSO status
16.10 Memory Expansion
16.10.1 Single-chip mode
16.10.2 Expanded mode
16.10.3 Choice of bus width
16.10.4 Bus control
16.10.5 ROM/EPROM lock

PART IV: ADVANCED TRENDS

17.1 Introduction

17.2 Microcontroller Features and Developments

17.3 Microprocessor Development Systems
17.3.1 In-system programming
17.3.2 Debugger
17.3.3 Emulator

17.4 Cross Compiler for 8051

17.5 Programming 8051 in C Language

Detailed Contents

. Microprocessor System Developments and Recent Trends

© Oxford University Press. All rights reserved.

xxi

551
551
551
552
552
553
553
553
554
556
556
557
557
559
560
561
561
561
562
563
564
564
565
566
569
570
573
573
575
578
578
579
579
580
581
583

591
591
591
593
594
594
594
595
596

xxii Detailed Contents

18. Advanced Microprocessors and Microcontrollers 604
18.1 Introduction 604
18.2 80186 Microprocessor 605

18.2.1 Architecture 605
18.2.2 Instruction set of 80186 606
18.3 80286 Microprocessor 607
18.3.1 Architecture 607
18.3.2 Register organization and real or protected addressing in
80286 608
18.3.3 Privilege levels in protected mode of operation 611
18.3.4 Descriptor cache or program-invisible registers 613
18.3.5 Accessing memory using GDT and LDT 613
18.3.6 Multitasking in 80286 615
18.3.7 Addressing modes and new instructions in 80286 616
18.3.8 Flag register 617
18.4 80386 Microprocessor 618
18.4.1 Architecture of 80386 618
18.4.2 Register organization in 80386 620
18.4.3 Instruction set of 80386 623
18.4.4 Addressing memory in protected mode 624
18.4.5 Physical memory organization in 80386 625
18.4.6 Paging mechanism in 80386 626
18.5 80486 Microprocessor 629
18.6 Pentium Microprocessor 632
18.6.1 Architecture of Pentium 632
18.6.2 Protected mode operation of Pentium 637
18.6.3 Addressing modes in Pentium 637
18.6.4 Paging mechanism in Pentium 637
18.7 Other Versions of Pentium 637
18.7.1 Pentium Pro processor 637
18.7.2 Pentium 11 processor 638
18.7.3 Pentium |11 processor 638
18.7.4 Pentium 4 processor 638
18.8 Operating Modes of Advanced Processors 638
18.9 Mode Transition 639
18.10 Memory Management in Protected Mode 640
18.11 Segment Descriptor 640
18.12 Protection: Purpose 643
18.12.1 Type checking 644
18.12.2 Limit checking/restriction of addressable domain 644
18.12.3 Privilege levels 645
18.13 Protected Mode Instructions 647
18.14 Multitasking 649

19. Embedded Systems 663

19.1 Introduction 663
19.1.1 Characteristics of embedded systems 663
19.1.2 Design metric 665
19.1.3 Evolution of embedded systems 667

© Oxford University Press. All rights reserved.

20.

19.1.4 Design technology
19.2 Classification of Embedded Systems
19.3 Embedded Processor Architecture
19.3.1 RISC and CISC architectures
19.3.2 SISD/SIMD
19.3.3 The €200z6 core
19.3.4 Cell microprocessor
19.3.5 PowerPC architecture
19.3.6 PIC16F877 microcontroller
19.3.7 ARM processors
19.4 SUN SPARC Microprocessor
19.4.1 SPARC architecture
19.4.2 Register file
19.4.3 Data types in SPARC architecture
19.4.4 SPARC instruction format

19.4.5 Adressing modes in SPARC microprocessor

19.4.6 Instruction set in SPARC microprocessor
19.4.7 Load and store instructions
19.4.8 Arithmetic and logical instructions
19.4.9 Branch instructions
19.4.10 Special instructions
19.5 Software Embedded into System
19.5.1 Codesign
19.6 Bus Architectures
19.6.1 Parallel bus protocols
19.6.2 Serial bus protocols
19.6.3 Serial wireless protocols
19.7 Memory
19.7.1 Memory technologies
19.7.2 Memory hierarchy
19.7.3 Memory interfacing
19.8 I/0O Interfacing
19.9 Smart Card Design

Detailed Contents

19.9.1 Vertical (concurrent) and horizontal (serial) codesign

19.9.2 Security extension

Hybrid Programming Techniques using ASM and C/C++

20.1 Combining Assembly Language with C/C++
20.2 Calling Conventions

20.2.1 CDECL calling convention

20.2.2 STDCALL calling convention

20.2.3 FASTCALL calling convention
20.3 Passing Parameter Techniques

20.4 Techniques for 16-bit ALP Microsoft C/C++ for DOS

20.4.1 Inline assembly
20.4.2 Linked assembly

20.5 Using ALP with C/C++ for 32-bit Applications

20.5.1 Calling ALP procedure from C
20.6 32-bit Windows Programming

© Oxford University Press. All rights reserved.

xxiii

667
668
669
671
673
673
675
675
679
695
707
707
709
712
713
714
714
715
716
717
718
721
722
725
725
726
727
727
728
728
729
729
730
731
732

736
736
737
738
739
740
740
741
741
742
743
744
744

xxiv Detailed Contents

20.6.1 Console functions
20.6.2 Microsoft Win32 application programming interface
20.7 Program Development Methods

Appendix A: 8086 Case Studies
Appendix B: 8051 Case Studies
Appendix C: 8275 CRT Controller Chip
Appendix D: Multiple Choice Questions
Appendix E: 8086 Instruction Set
Appendix F: 8051 Instruction Set
Bibliography

Index

© Oxford University Press. All rights reserved.

745
747
749

752
758
766
i
797
803
811
812

Microprocessors—Evolution and
Introduction to 8085

LEARNING OUTCOMES

After studying this chapter; you will be able to understand the following:
* Importance of microprocessors

* Origin and evolution of microprocessors

* Classification of microprocessors and memories

» Common input and output devices for computers

* Bus structures used in computers and technology improvements

» 8085 microprocessor architecture and instruction set

1.1 INTRODUCTION

The microprocessor is an electronic chip that functions as the central processing
unit (CPU) of a computer. In other words, the microprocessor is the heart of any
computer system. Microprocessor-based systems with limited resources are called
microcomputers. Today, microprocessors can be found in almost all consumer
electronic devices such as computer printers, washing machines, microwave ovens,
mobile phones, fax machines, and photocopiers and in advanced applications such
as radars, satellites, and flights. Any middle-class household will have about a
dozen microprocessors in different forms inside various appliances. The recent
developments in the electronics industry and the large-scale integration of devices
have led to rapid cost reduction and increased application of microprocessors and
their derivatives.

Typically, basic microprocessor chips have arithmetic and logic functional units
along with the associated control logic to process the instruction execution. Almost
all microprocessors use the basic concept of stored-program execution. Programs
or instructions to be executed by the microprocessor are stored sequentially in
memory locations. The microprocessor, or the processor in general, fetches the
instructions one after another and executes them in its arithmetic and logic unit. So
all microprocessors have a built-in memory access and management part as well
as some amount of memory.

A microprocessor can be programmed to perform any task that can be written
and programmed by the user. Without a program, the microprocessor unit is a
piece of useless electronic circuit. The programmer must take care of all the
resources of the microprocessor and use them efficiently for implementing the
required functionality. So to work with the microprocessor, it is necessary for the
programmer to know about its internal resources and features. The programmer

© Oxford University Press. All rights reserved.

2 Microprocessors and Interfacing

must also understand the instructions that a microprocessor can support. Every
microprocessor has its own associated set of instructions; this list is given by all
microprocessor manufacturers. The instruction set for microprocessors is in two
forms—one in mnemonic, which is comparatively easy to understand and the other
in binary machine code, which the microprocessor works with and is difficult
for us to understand. Generally, programs are written using mnemonics called
assembly-level language and then converted into binary machine-level language.
This conversion can be done manually or using an application called assembler.

In general, programs are written by the user for the microprocessor to work with
real world data. Data are available in many forms and from many sources. To input
these data to the microprocessor, the microprocessor-based systems need some
input interfacing circuits and some electronic processing circuits. These circuits
include data converters and ports. After processing the real world data, the output
from the microprocessor must be taken out to give to the output devices or circuits.
This again needs interfacing circuits and ports. So a microprocessor-based system
will need a set of memory units and interfacing circuits for inputs and outputs.
The circuits, together with the microprocessor, make the microcomputer system.
The physical components of the microcomputer system are called hardware. The
program that makes this hardware useful is called software.

The semiconductor manufacturing technology for chips has developed from
transistor—transistor logic (TTL) to complementary metal-oxide-semiconductor
(CMOS). Microprocessor manufacturing also has gone through these technological
changes. The other semiconductor manufacturing technology available is emitter-
coupled logic (ECL). TTL technology is most commonly used for basic digital
integrated circuits; CMOS is favoured for portable computers and other battery-
powered devices because of its low power consumption.

1.2 EXPLANATION OF BASICTERMS

The terms relevant to the use of microprocessors are explained in this section. These
explanations will give the reader an understanding of various microprocessor-
related terms, technologies, and topics.

Chip A chip or an integrated circuit is a small, thin piece of silicon with the
required circuits and transistors etched on it to perform a particular function.
Simpler processors may consist of a few thousand transistors etched onto a silicon
base just a few millimeters square.

Bit A bit means a single binary digit. The bit is also the fundamental storage
unit of computer memory. In binary form, a bit can have only two values, 0 or 1,
whereas a decimal digit can have 10 values, represented by symbols 0 through 9.

Bit size The bit size of a microprocessor refers to the number of bits that can be
processed simultaneously by the basic arithmetic circuits of the microprocessor.

Word A word is a number of bits grouped together for processing. In
microprocessors, a word refers to the basic data size or bit size that can be processed

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 3

by the arithmetic and logic unit (ALU) of the processor. A 16-bit binary number is
called a word in a 16-bit processor.

Memory word The number of bits that can be stored in a register or memory
element is called memory word. Mostly, all memory units use eight bits for their
memory word.

Byte An 8-bit word is referred to as a byte.

Nibble A 4-bit word is referred to as a nibble.

Kilobyte A collection of 1024 bytes is called a kilobyte (21° bytes).
Megabyte A collection of 1024 kilobytes is called a megabyte (2%° bytes).

RAM or R/W memory Random access memory or read/write memory is a type
of semiconductor memory in which a particular memory location can be erased
and written with new data at any time. These memory units are volatile, which
means that the contents of the memory are erased when the power to the chip is
disrupted. The access of the individual memory location can be done randomly. In
microprocessors, the RAM is used to store data.

DRAM Dynamic random access memory is a semiconductor memory in which
the stored contents need to be refreshed repeatedly at about thousands of times per
second. Without refreshing, the stored data will be lost. These memory chips are
preferred in a computer system as these are slower but economical.

SRAM Static random access memory chips keep the data stored in it as long as
power is available. There is no need for refreshing. In terms of speed, SRAM is
faster.

ROM Read only memory devices are memory devices whose contents are
retained even after removing the power supply.

Arithmetic and logic unit ALU is a digital circuit present in the microprocessor
to perform arithmetic and logic operations on digital data. The typical operations
performed by the ALU are addition, subtraction, logical AND, logical OR, and
comparison of binary data. Generally, the functions of the ALU of a microprocessor
will decide the processor’s functionality.

Microcontroller A microcontroller is a chip that includes microprocessor,
memory, and input/output signal ports. Microcontrollers can be called single-chip
microcomputers.

Microcomputer The system formed by interfacing the microprocessor
with the memory and 1/0 devices to execute the required programs is called
microcomputer.

Bus A bus is a group of wires/lines that carry similar information.

System bus The system bus is a group of wires/lines used for communication
between the microprocessor and peripherals.

© Oxford University Press. All rights reserved.

4 Microprocessors and Interfacing

Firmware Software written for a microprocessor application without provision
for changes is called firmware. These are stored in the permanent storage or ROM
of the computer system.

Input device The devices that are used for providing data and instructions to the
microprocessor or microcomputer system are called input devices. Keyboard and
mouse are the common input devices.

Output device The devices that are used for transferring data out of the
microprocessor or microcomputer system are called output devices. Display
screen, printer, and other forms of display are the common output devices.

Floppy disk A removable-type magnetic disk used for storing programs and
data for transferring from and to the computer is called floppy disk.

Disk drive The hardware component that is used to read or write data to devices
such as floppy disks is called disk drive.

Computer architecture The design, internal configuration, and accesses in a
digital computer are together called computer architecture.

Von-Neumann architecture The architecture in which the same memory is
used for storing programs as well as data.

Harvard architecture The architecture in which programs and data are stored
in two separate memory units.

CISC processor Complex instruction set computer is a processor architecture
that supports many machine language instructions.

RISC processor Reduced instruction set computer is a processor architecture
that supports limited machine language instructions. RISC processors are expected
to execute the programs faster than CISC processors.

High-level language A computer programming language in which programs
are written without the knowledge of the processor in which the program will
be executed. BASIC, Fortran, C, Pascal, and Java are examples of high-level
languages.

Assembly language A programming language written using the mnemonics
or the instruction set of a particular microprocessor is called assembly language.
Assembly language programming is microprocessor-specific. It is not as easily
understood as a high-level language program, but is easier than a machine language
program.

Machine language Machine language refers to binary code programs that are
specific to the processor and can be directly executed by the processor. Machine
language is the lowest level language and cannot be easily understood.

Assembler A computer application program that converts the assembly language
program into machine-level language program.

Compiler A computer program that converts the high-level language program
into machine-level language program.

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 5

Interpreter A computer program that reads the high-level or assembly-level
program one line at a time and converts it into machine-level program. Compiler
and assembler can function only on the entire program in a file.

Algorithm A sequence of operations or instructions that defines how to solve a
problem using a computer or microcomputer. An algorithm must be definite, must
follow a clear instruction flow without ambiguity, and must have definite start and
end points.

BIOS Basic input/output system is a set of programs that handles the input and
output functions and interacts with the hardware directly. A new hardware installed
must be provided with the corresponding BIOS routines.

Clock The circuit in the computer that generates the sequence of evenly spaced
pulses to synchronize the activities of the processor and its peripherals is called
clock. The clock speed determines the speed of the operation of the computer. The
computer with a high frequency clock works faster. Normally the clock frequency
is in the range of megahertz (MHz) or gigahertz (GHz).

MIPS Million instructions per second is a measure of the speed at which the
instructions are executed in a processor.

Tri-state logic It is the logic used by digital circuits. The three logic levels used
are high (1), low (0), and high impedance state (Z). The logic high state of a digital
circuit can source current and the logic low can sink current in a computer system,
but the high impedance state neither sources nor sinks current and so the other
devices connected to it are not affected.

Operating system The program that controls the entire computer and its
resources and enables users to access the computer and its resources is called
operating system. It is required for any computer system to become operational and
user friendly. Under the control of the operating system, the computer recognizes
and obeys commands typed by the user. In addition, the operating system provides
built-in routines that allow the user’s program to perform input/output operations
without specifying the exact hardware configuration of the computer. In low-level
microprocessor-based systems, the program that controls the hardware is called
monitor routine or monitor software.

1.3 MICROPROCESSORS AND MICROCONTROLLERS

The microprocessor (also called CPU) is the principal element of a computer
as it executes lists of instructions. These instruction lists are commonly called
programs. This programming language is complex to use since it is machine- or
processor-specific and coded into hexadecimal and binary.

Two types of processors are manufactured—the microprocessor and the
microcontroller. At the data processing level, the two are practically equivalent.
The distinction comes from the established functionalities.

The general-purpose microprocessors give the computers all the necessary
computing power. These microprocessors need additional circuitry elements such

© Oxford University Press. All rights reserved.

6 Microprocessors and Interfacing

as memory devices and I/O ports to connect the input and output devices. All
microprocessor-based systems need two types of memories—RAM and ROM.
RAM is used for storage of data while ROM is used for storage of programs,
especially the start-up program that runs when the microprocessor is powered on.

There are numerous microprocessors developed by many companies. The
evolution of microprocessors, from4-bit microprocessors to 64-bit microprocessors,
has been discussed later in this chapter. This book is devoted to the discussion
of two groups of microprocessors—Intel’s 8-bit 8085 microprocessor series in
brief and 16-bit 8086 series in detail.

Microcontrollers are microprocessors designed specially for control
applications. Microcontrollers contain memory units and 1/0 ports inside a chip, in
addition to the CPU. Microcontrollers are otherwise called embedded controllers;
they are generally used to control and operate smart machines. Some of the
machines using microcontrollers are microwave ovens, washing machines, sewing
machines, automobile ignition systems, computer printers, and fax machines.
You will be amazed to know that out of 100 processor chips manufactured, 99
are embedded processors; only one goes into a general computer! A plethora of
semiconductor companies are in the microcontroller market and any application
development engineer is flooded with a variety of microcontrollers to choose
from. This book discusses Intel’s 8-bit 8051 series and 16-bit 8096 series as also
other advanced microcontrollers.

1.4 MICROPROCESSOR-BASED SYSTEM

A computer system developed using a basic general-purpose microprocessor is
called a microcomputer system. The system consists of CPU, memory, and 1/O
ports as shown in Fig. 1.1.

CPU Memory Input Output
A A A A A A A A A A
- \ 4 \ 4 y__ Data bus _
> \/ \ v Control bus 4 _
D / Address bus _
Fig. 1.1 Microcomputer system (Von—Neumann model)

Figure 1.2 shows a typical personal computer system. The interfacing of the
processor with the other parts of the microcomputer system needs a three-bus
architecture. The three buses are data bus, address bus, and control bus.

Each memory location or I/O port is identified by a specific address similar
to a postal address. In microprocessor systems, the addresses are all in binary,
and in general, represented in hexadecimal number format. The address is a

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 7

RAM and ROM unique pattern used to identify a location

Output in the memory or an 1/0 port. The

address bus consists of many lines that

transport the digital data sent by the

processor. An address bus of eight bits

_ t0utput corresponds to eight lines of addresses

T2 and can thus address 28 different memory

locations. These addresses are written

in hexadecimal number format as 00H-

FFH and can be used to for 256 different

Fig. 1.2 Personal computer locations. Similarly, the 16-bit address

bus can address 2'6 different addresses.

Its address range is 0000H—FFFFH. The greater the number of lines in the address
bus, the greater the number of locations the processor is able to manage.

The address on the address bus can locate a specific memory or I/O location.
After selecting the location, the data transfer between the memory and processor
or between the 1/0 device and the processor is done through the data bus. The
width of the data bus determines the data size that can be transferred. An 8-bit
processor will generally have an 8-bit data bus and a 16-bit processor will have
a 16-bit data bus. The memory locations in microprocessors are accessed as
8-bit or one-byte units only. So the transfer of a 16-bit data from memory needs two
memory addresses. A 1 KB memory chip will have 1024 bytes of memory locations.

A control bus is needed for proper data transfer between the processor and
the peripherals. The control bus basically consists of signals for selection of the
correct memory or 1/O device from the address, indication of the direction of data
transfer, and synchronization of data transfer between slow devices. Many of the
control signals are given by the processor itself because the processor is the master
of the computer system. Some control signals such as selection of the correct
memory chip can be generated externally by the logic circuits. The timing of the
control signal is very important; the entire timing of the operation is controlled by
the microprocessor in synchronization with the clock signal input.

Input

1.5 ORIGIN OF MICROPROCESSORS

The microprocessor is the greatest invention of the 20" century. Its evolution started
from the earlier mechanical calculating devices, in the 1930s. These devices used
mechanical relays. Later, in the 1950s, these devices were replaced by vacuum
tubes. The vacuum tubes were quickly replaced by transistors. The breakthrough
in transistor technology led to the introduction of minicomputers in the 1960s and
the personal computer revolution in the 1970s.

The transistor technology led to the development of complex devices called
integrated circuits (ICs). The microprocessor, or microprocessing unit (MPU),
later evolved as an IC and was designed to fetch instructions and execute the
predefined arithmetic and logic functions. Intel was the first MPU producer and
has been holding a large share of the world market for this product. The evolution

© Oxford University Press. All rights reserved.

8 Microprocessors and Interfacing

of microprocessors is categorized into five generations: first, second, third, fourth,
and fifth.

1.5.1 First Generation (1971-1973)

The microprocessors that were introduced from 1971 to 1973 were referred to
as the first-generation systems. First-generation microprocessors processed their
instructions serially—they fetched the instruction, decoded it, and then executed
it. The first microprocessor, the 4004, was introduced in 1971. It was co-developed
by Busicom, a Japanese manufacturer of calculators, and Intel, a US manufacturer
of semiconductors. The 4-bit 4004 microprocessors ran at 108 kHz and contained
2300 transistors. They were fabricated using p-channel metal-oxide-semiconductor
(PMOS) technology, which provided low cost, slow speed, and low output currents.
They were not compatible with TTL. In 1972, Intel made the 8-bit 8008 and 8080
MICroprocessors.

1.5.2 Second Generation (1974-1978)

As the technology evolved, the number of circuits that could be fabricated on a
chip grew. Very large-scale integration (VLSI) led to chips that had speeds up to
hundreds of millions of switchings per second. The second generation marked the
beginning of very efficient 8-bit microprocessors. Some of the popular processors
were Motorola’s 6800 and 6809, Intel’s 8085, and Zilog’s Z80. The second-
generation devices marked a sharp contrast with the use of newer semiconductor
technology to fabricate chips. They were manufactured using n-channel metal-
oxide-semiconductor (NMOS) technology. This technology offered faster speed
and higher density than PMOS. It resulted in a five-fold increase in instruction
execution speed and higher chip densities.

1.5.3 Third Generation (1978-1980)

The third generation, introduced in 1978, was dominated by Intel’s 8086 and
Zilog’s Z8000, which were 16-bit processors with minicomputer-like performance.
These processors had the technology of 16-bit arithmetic and pipelined instruction
processing. The third generation came with IC transistor counts of about 250,000.
In Motorola’s MC68020, for example, an on-chip cache was incorporated for the
first time and the depth of the pipeline was increased to five or more stages. It
was designed using high density metal-oxide-semiconductor (HMOS) technology.
HMOS provides some advantages over NMOS: Its speed—power product is four
times better than that of NMOS; it can accommodate twice the circuit density of
NMOS.

1.5.4 Fourth Generation (1981-1995)

The microprocessors entered their fourth generation with designs containing more
than a million transistors in a single package. This era marked the beginning of 32-
bit microprocessors. Intel introduced 80386 and Motorola introduced 68020/68030.
They were fabricated using high density/high speed complementary metal-oxide-
semiconductor (HCMOS), a low-power version of the HMOS technology.

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 9

1.5.5 Fifth Generation (1995-till date)

The fifth generation microprocessors employ decoupled super scalar processing
and their design contains more than 10 million transistors. This generation marks
the introduction of devices that carry on-chip functionalities. It has also paved
the way for high speed memory I/O devices along with the introduction of 64-
bit microprocessors. Intel leads the show here with Pentium, Celeron, and very
recently, dual- and quad-core processors working with up to 3.5 GHz speed. This
generation is characterized by a low-margin single-microprocessor PC business,
which is complemented by high-volume sales. Table 1.1 gives the comparison of
the major processors based on specific parameters such as clock speed and data
word size.

Table I.I Comparison of general-purpose processors

General-purpose processors Transistors CPU speed Data length (bits)
8080 6,000 2MHz 8

8085 6,500 3MHz 8

8088 29,000 3MHz 16

8086 30,000 4MHz 16
80286 1,34,000 6MHz 16
80386 2,75,000 16 MHz 16/32
80486 12,00,000 33MHz 16/32
Athalon XP 37,00,000 2.8GHz 16/32/64
Celeron 75,00,000 1.06-2GHz 32
Pentium II 75,00,000 233-450 MHz 32
Pentium III 95,00,000 450MHz-1GHz 32
Pentium I Xeon 2,81,00,000 500 MHz—-1 GHz 32
Pentium 4 5,50,00,000 1.4-2.2GHz 32

IBM PowerPC G3 65,00,000 233-333MHz 32
PowerPC G4 1,05,00,000 400-800 MHz 32

1.5.6 Timeline of Microprocessor Evolution

(i) 1971—Intel 4004 microprocessor with 2300 transistors, working at a speed
of 108 kHz

(i) 1971—Intel 8008, twice as powerful as the 4004, with 3500 transistors and
speed of 200 kHz

(ii1)) 1974—Intel 8080 processor with 6000 transistors and speed up to 2 MHz

(iv) 1976—Intel 8085 processor with about 6500 transistors and speed of
3-5MHz came into existence. There were multiple versions of 8085
microprocessors. The original version of the 8085 microprocessor without
suffix A was manufactured by Intel. It was quickly replaced with the 8085A,
which had a bug-fixer. A few years later, in the 1980s, Intel introduced
the 8085AH, the HMOS version of 8085A followed by the 80C85A, the
CMOS version of the 8085A.

© Oxford University Press. All rights reserved.

10 Microprocessors and Interfacing

(v) 1978—Intel 80X86 families of microprocessors. The first generation of the
80X86 families included the 8086 and the 8088. It was followed by the
80186, 80286, 80386, and 80486.

(vi) 1979—Intel 8088, which was similar in architecture to the 8086; the
difference was in the available number of data bits of the data bus. Number
of transistors: 29,000; speed: SMHz, § MHz, 10 MHz

(vii) 1985—Intel 80386, the first 32-bit chip that contained 275,000 transistors,

processing five million instructions per second, and running all popular
operating systems, including Windows.

(viii) 1989—Intel 486 with an 8 KB cache memory (shared for data and
instructions), operating at clock frequencies from 25 to 100 MHz

(ix) 1993—Intel Pentium processor retains the 32-bit address bus of the 80486
but doubles the data bus to 64 bits. It includes two 8 KB cache memories—
one for instructions and the other for data. It was based on dual pipeline
method known as superscalar architecture and currently operates with
frequencies up to 1.75GHz, 20-stage pipeline, and three-level cache
memory architectures.

(x) 1997—Intel Pentium I1 processor was designed specifically to process video,
MMX audio, and graphics data efficiently with speeds o200 MHz, 233 MHz,
266 MHz, and 300 MHz.

(xi) 1999—Intel Celeron processor and Intel Pentium 111 processor

(xi1) 2000—Intel Pentium 4 processor

Various other companies such as Motorola, NEC, Mitsubishi, Siemens,
AMD, Toshiba, and Texas Instruments also manufacture processor chips. These
companies have their own chips and architectures in addition to the regular Intel-
based architectures.

1.6 CLASSIFICATION OF MICROPROCESSORS

Microprocessors can be classified based on their specifications, applications, and
architecture.
Based on the size of the data that the microprocessors can handle, they are
classified as 4-bit, 8-bit, 16-bit, 32-bit, and 64-bit microprocessors.
Based on the application of the processors, they are classified as follows:
(i) General-purpose processors
(if) Microcontrollers
(iii) Special-purpose processors

General-purpose processors are those that are used in general computer system
integration and can be used by the programmer for any application. Common
microprocessors from Intel 8085 to Intel Pentium are examples of general-purpose
processors. Microcontrollers are microprocessor chips with built-in hardware
for the memory and ports. These chips can be programmed by the user for any
generic control application. Special-purpose processors are designed specifically

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 |1

to handle special functions required for an application. Digital signal processors
are examples of special-purpose processors; these have special instructions to
handle signal processing. Application-specific integrated circuit (ASIC) chips are
also examples of this category of microprocessors.
Based on the architecture and hardware of the processors, they are classified as

follows:

(i) RISC processors

(it) CISC processors
(iii) VLIW processors

(iv) Superscalar processors

RISC is a processor architecture that supports limited machine language
instructions. RISC processors can execute programs faster than CISC processors.
CISC processors have about 70 to a few hundred instructions and are easier to
program. However, CISC processors are slower and more expensive than RISC
processors. Very long instruction word (VLIW) processors have instructions
composed of many machine operations. These instructions can be executed in
parallel. This parallel execution is called instruction-level parallelism. VLIW
processors also have a large number of registers. Superscalar processors use
complex hardware to achieve parallelism. It is possible to have overlapping of
instruction execution to increase the speed of execution.

1.7 TYPES OF MEMORY

Memory unit is an integral part of any microcomputer system. Its primary purpose is
to hold program and data. The main objective of the memory unit design is to enable
it to operate at a speed close to that of the processor. Although technology is available
to design such a high speed memory, cost is the major limiting factor. To strike a
balance between cost and operating speed, a memory system is usually designed
using different materials such as solid state, magnetic, and optical materials.
A microcomputer memory can be logically divided into four groups:

(i) Processor memory/register

(if) Cache memory
(iif) Primary or main memory
(iv) Secondary memory

Processor memory refers to a set of CPU registers. Processor registers are the
first set of storage devices available for the programmers to store any data, but
they are generally few in number—up to a few tens or hundreds. As these registers
are available within the processor, they are the fastest memory registers. The main
disadvantage is the cost involved, which restricts the number of registers and their
bytes.

Cache memory is the fastest external memory; it is placed close to the processor.
The instructions to be executed are placed in the cache memory for access by
the processor. These are a few kilobytes in size. Cache memory contains volatile
semiconductor RAMs. The processor fetches instructions from the cache memory
and if an instruction is not in cache, it refers to the primary memory.

© Oxford University Press. All rights reserved.

12 Microprocessors and Interfacing

Primary memory is the storage area from which all the programs are executed.
All the programs and corresponding data for execution must be within the primary
memory. The primary memory is much larger than the processor memory and the
cache memory but its operating speed is slower. The primary memory in a system
varies from few KB to a few MB.

Secondary memory refers to the storage medium for huge files such as program
source codes, compilers, operating systems, etc. These are not accessed directly or
very frequently by the microprocessor in a computer system. Secondary memory
consists of slow devices such as magnetic tapes and optical disks. Sometimes, they
are referred to as auxiliary or backup store. Stored information in a magnetic tape
or magnetic disk is not lost when power is turned off. Therefore, these storage
devices are called non-volatile memories.

Classification of primary memory Primary memory normally includes ROM
and RAM, which are further classified as shown in Fig. 1.3. Microprocessor-based
systems have at least one RAM and one ROM chip.

Primary memory

Semiconductor RAM ROM

Static Dynamic Mask OTP EPROM EEPROM Flash
PROM ROM memory

Fig. 1.3 Classification of primary memories

RAM devices allow both reading and writing to their memory cells. In static
RAM devices, bits are stored as the status of on/off switches. There are no charges
involved and hence, no charges to leak. However, static RAM devices have complex
construction and hence larger size per unit storage. So they are more expensive.
Static RAMs are comparatively faster and are used in cache memories.

In dynamic RAM devices, the data bits are stored as charge in capacitors. Since
capacitor charge has a tendency to leak, these devices need refreshing even when
they are powered. However, they have simpler construction and smaller size per
unit storage. These devices are less expensive and comparatively slower.

As the name implies, a ROM permits only read access. There are many kinds
of ROMs:

(i) Mask programmable ROMs (MPROMs) are custom-made for the customer;
their contents are programmed by the manufacturer. Since they are mass
produced, they are inexpensive. The customer cannot erase or program it
afterwards.

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 13

(i1)) Programmable ROMs (PROMs) or one-time programmable (OTP) ROMs
are devices that can be programmed by the user in his/her place using
special equipments. The main disadvantage of PROMs is that they cannot
be erased and reprogrammed.

(ii1) Erasable and programmable ROMs (EPROMs) allow the erasure and
reprogramming of the content by the user. In an EPROM, programs are
entered using electrical impulses and the stored information is erased using
ultraviolet rays.

(iv) Electrically erasable PROMs (EEPROMs) or electrically alterable ROMs
(EAROMs) allow the users to electrically erase and reprogram its contents.
EEPROMs are different from RAMs in that electrical signals are required
to erase and program them. EEPROMSs require a higher voltage for erasing
and programming than the normal 5V supply.

(v) Flash memory devices are a group of single transistor cell EPPROMs. Cell
sizes are about half the size of a two-transistor EEPROM. The operation
requires bulk erasure of a large portion of the memory array.

1.8 INPUT AND OUTPUT DEVICES

Input and output devices permit the user to feed data to the computer and retrieve
the computed result from it. Sometimes, the input and output devices can
communicate among themselves. In general, computer systems have I/O ports;
I/O devices are connected to these ports for data transfer. Basically, the ports are
digital registers that allow the computer to transfer data between the I/O devices
using additional control signals. These control signals allow error-free transfer of
data.

The common input device used in almost all systems is the keypad.
Microprocessor-based basic microcomputer systems use simple numeric keypads.
However, advanced computer systems use keyboards with a large number of keys
involving alphabets, numbers, and special characters. Nowadays, a number of
optical devices and scanners such as mouse, joystick, and bar code scanners are
also being used as input devices. Microcomputer systems also use different types
of sensors for data input. These sensors need data converters such as analog to
digital converters. Any introductory course on microprocessors should cover the
interfacing of data converters, keypads, and switches.

An output device is a device through which the user can receive the results from
the computer. The output can be a rapidly changing display or printed material.
Other forms of output are sounds and alarms. The simplest output devices, used in
almost all microprocessor-based systems and computer systems, are LEDs, seven-
segment LED displays, and LCD displays. The advanced video display terminals
(either cathode-ray tubes or LCDs) and ink-jet and laser printers are the common
output devices nowadays. Some output devices can be used to directly control
machineries. Some devices, such as display terminals with touch screen, may
provide both input and output. Modems and other network interface cards can
also be called output devices as they enable the transmission and reception of data
between computers.

© Oxford University Press. All rights reserved.

14 Microprocessors and Interfacing

1.9 TECHNOLOGY IMPROVEMENTS ADAPTEDTO
MICROPROCESSORS AND COMPUTERS

Technological improvements are taking place rapidly in microprocessor,
microcomputer, and personal computer systems. Some of these improvements are
listed here:

(1)

(i)

(iii)

(iv)

v)

(vi)

Increase in data bus/address bus width: The processing capability of the
microprocessor can be drastically improved by increasing data size. This
development can be seen clearly from the advancements in microprocessors
(Section 1.5).

Increase in speed: As the data to be processed by the microprocessors and
computers increased in volume, it became necessary to increase the speed of
the processor. With high speed processors, the user can get results quickly,
even with large data volumes.

Reduction in size and increase in capability: The trend in microprocessor
technology is to include a large number of peripherals such as memory and
I/O ports within a single chip. Microcontrollers are manufactured in this
fashion. In addition, developments in large scale integration have led to the
manufacture of small microprocessor chips with large built-in peripherals.
Processors with a large amount of flash memory are now available in the
market.

Development of external peripherals: The use of computers in all fields have
resulted in the development of many fast and advanced peripheral devices.
For example, the application of microprocessors in medicine has resulted
in the development of many handheld electronic devices with specialized
input sensors, output printers, etc. Faster peripherals can increase the speed
of processor execution and provide a good user interface.

Increase in memory unit size and speed: The developments in IC technology
have led to a reduction in the size of the memory units and an increase in
memory speed. This reduces the memory access time of the processor and
results in higher speed of execution. More amount of memory per unit area
is possible.

Microprocessors are largely used in handheld devices operated from a
battery source. This has resulted in research on the reduction of power
consumption in microprocessor chips. As power consumption is reduced,
these devices work for more time once the batteries are fully charged. There
are many devices operating at 3.3V or even lower voltages and have low
power consumption.

1.10 INTRODUCTIONTO 8085 PROCESSOR

The microprocessor is a semiconductor device consisting of electronic logic
circuits manufactured using either large-scale integration (LSI) or very large-scale
integration (VLSI) technique. It basically contains registers, an arithmetic and
logic unit, flip-flops, and timing and control circuits. All microprocessors work
using Von—Neumann architecture. In this architecture, the CPU or the processor

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 15

fetches instructions from the memory, decodes it (i.e., interprets the nature of
the instruction/command and develops clock-synchronized steps for execution),
generates appropriate control signals, and finally executes it. The program is
stored in consecutive memory locations. The execution steps are repeated for all
the instructions of the program until the execution is terminated by hardware or
software. The data required may be taken either from memory or from input ports;
the results of the program may be either stored in the memory or transferred out
through output ports.

A program is a list of instructions for the microprocessor to execute. Before
the start of execution, the complete program must be stored in the memory. Let us
assume that the starting address of the stored program is 8800H. While running
the program, the microprocessor must be directed to ‘go’ from 8800H. Once it has
executed the instruction in 8800H, it goes to the next address 8801H (assuming
single-byte instructions) and so on until it reaches the end of the program.

Intel 8085 is an 8-bit microprocessor manufactured by Intel Corporation and
is usually called a general-purpose 8-bit processor. It is upward compatible with
microprocessor 8080, which was Intel’s earlier product. There are several faster
versions of the 8085 microprocessor such as 8085AH, 8085AH-1, and 8085AH-2.

A microprocessor system consists of three functional blocks—central
processing unit (CPU), input and output units, and memory units, as shown in
Fig. 1.4. The CPU contains several registers, an arithmetic and logic unit (ALU),

Memory

(ROM)
Read only memory

(RAM)
Random access memory

Processor
Control unit
Input o | Output
unit] 1 unit
ALU

Fig. 1.4 A microprocessor system

© Oxford University Press. All rights reserved.

16 Microprocessors and Interfacing

and a control unit. The function of ALU, as the name implies, is to perform
arithmetic and logical operations. The control unit translates the instructions and
executes the desired task.

.11 ARCHITECTURE OF 8085

The block diagram explaining the architecture of Intel 8085 microprocessor is
shown in Fig. 1.5. It is generally available as a 40-pin IC package and uses +5V
for power. It can run at a maximum frequency of 3 MHz. The modified versions
of the 8085 processor have these minimum common features and functional
similarities.

The 8085 is called an 8-bit processor since its data length and data bus width is
eight bits. It has an addressing capability of 16 bits, i.e., it can address 2'®= 64 KB
of memory (1 KB = 1024 bytes). The processor contains five functional units:

(1) Arithmetic and logic unit (i1) General-purpose registers
(iii) Special-purpose registers (iv) Instruction register and decoder
(v) Timing and control unit

I.11.1 Arithmetic and Logic Unit

ALU is the circuitry that performs the actual numerical and logical operations.
Addition (ADD), subtraction (SUB), increment (INR), decrement (DCR),
and comparison (CMP) are the arithmetic operations possible in the 8085

INTA RST 6.5 TRAP
INTR T RSTlF% l le SOD
Interrupt control [Serial I/0 control|

S T v

\
ilﬁ b T . & J% T
Accumulator| [Temp reg. nstruction Multiplexer
(8) (§) reg. (8) P ‘
o ff

A

17 >
A W ®Z ®
ﬂ Temp reg. | Temp reg.
B ®|C (@
‘S| Temp reg.| Temp reg.
Instruction =D ®[E ©®
decoder o | Temp reg.| Temp reg.)
and | [H ®FfL ©® Register
machine & [Temp reg.| Temp reg. array
en(?géilieng Stack pointer (16)
Program counter (16)
| Incrementer/Decrementer
EL%?,)?; GSI\\I]D ﬂ | Address latch (16)
X]—»lCLK Timing and control < ~7
_)GfN Cimrm¢ Statui DMi Reset¢ |Addressi1ﬁfer (8)||Data/A%ress buffer (8)]
[EARAAEE RN
SIL_JKI' RE A%%ﬁLEsosio/MO E{[I)J%[ESE? IIEI\SI SN Address bus Address/Data bus

Fig. 1.5 Functional block diagram of Intel 8085

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 17

microprocessor. The possible logical operations are AND (AND), OR (OR),
exclusive OR (EXOR), complement (CMA), etc.

The ALU of the 8085 processor is called accumulator-oriented ALU as one of
the data used in arithmetic and logic operations must be stored in the accumulator.
The other data is taken from a memory location or register. The results of the
arithmetic and logical operations are stored in the accumulator. If the operation
needs only one data, that data must be stored in the accumulator.

1.11.2 General-purpose Registers

A register is a collection of eight D-type flip-flops with parallel-in and parallel-
out operation. A flip-flop can only store one bit at a time. Therefore, to handle
eight bits at a time, eight flip-flops are required and hence the term 8-bit register.
Though the registers are all storage areas inside the microprocessor, they differ in
the purpose of storage. The general-purpose registers are used to store only the
data that is being used by the program under execution and the results obtained
from it. These general-purpose registers are user accessible through programs.
Registers B, C, D, E, H, and L are the general-purpose registers in the 8085,
as shown in Fig. 1.6. They can also be called scratchpad registers. In almost all
arithmetic and logical

operations, these registers Accumulator A (8)
are used as the second B () c®)
operands, the first operand

being the accumulator) 2

(A). The general-purpose H (8) L(8)
registers are all 8-bit
registers but they can be
handled as 16-bit registers
as well. This can be
achieved by combining
the register pairs B and C,
D and E, and H and L to . i
perform 16-bit operations. Fig. 1.6 Registers of Intel 8085

They are then named register pairs BC, DE, and HL, respectively.

Among these pairs, HL has a special significance. A few memory-related
instructions of the 8085 (refer instruction set) use the HL pair as a memory pointer.
For example, the instruction MOV A, M transfers the content of the memory
location to which the HL pair is pointing, to the accumulator. The HL pair is pre-
loaded with the memory address in which data is available.

Stack pointer (SP) (16)

Program counter (PC) (16)

Data bus Address bus
8|lines (bidirectional) 16 lines (unidirectional)

1.11.3 Special-purpose Registers

There are also special-purpose registers that are dedicated to a specific function.
The accumulator, flag register, program counter (PC), and stack pointer (SP)
constitute the special registers in the 8085 microprocessor.

1.11.3.1 Accumulator
The accumulator is an 8-bit register; it is a part of the ALU and is the most

© Oxford University Press. All rights reserved.

18 Microprocessors and Interfacing

important register. It is used to store 8-bit data and to perform arithmetic and
logical operations. The output of an operation is also stored in the accumulator.
The accumulator is identified as register A in the instruction set of the 8085. The
programmer can use it at any time to store an 8-bit binary number. Being only
eight bits long, it can only hold one byte at a time. Any previous data stored in this
register will be overwritten as soon as new data is stored. The 8085 microprocessor
communicates with input/output devices only through the accumulator.

1.11.3.2 Flag Register

This is a special 8-bit register. Each bit of the flag register is quite independent of the
others. In all other registers, each bit is part of a single binary byte value and hence
each bit would have a numerical value. The flag is an 8-bit register used to indicate
the status of a recent arithmetic or logical operation. It may be set or reset after an
arithmetic or logical operation according to the condition of the processed data. The
five flag bits are zero (Z2), carry (CY), sign (S), parity (P), and auxiliary carry (AC);
their bit positions in the flag register are shown in Fig. 1.7. The remaining three bits
(D1, D3, and D5) of the flag

register remain unassigned: S22 X IO | P xjey
they are marked with an X to D7 D6 D5 D4 D3 D2 DI DO
show that they are not used

and are don’t cares. Fig. 1.7 Flag register

Any flag register bit is said to be ‘set’ when its value is | and ‘cleared’ when its
value is 0. The most commonly used flags are zero, carry, and sign. AC flag cannot
be accessed externally.

Sign flag (S) The sign flag is just a copy of the bit D7 (most significant bit—
MSB) of the accumulator. A negative number has a 1 in bit 7 and a positive
number has a 0 in 2’s complement representation. This flag indicates the sign of
the number. (It may be recalled that signed magnitude numbers use 1 to indicate
a negative number and 0 to indicate a positive number.) This flag can be used in
signed arithmetic operations.

Zero flag (Z) The zero flag is set if an arithmetic operation results in a zero. It
sets, i.e., it changes to binary 1 if the result in the accumulator is zero; if not, it
remains reset, i.e., at binary 0.

Carry flag (C) The carry flag is set when a carry is generated in the process
of an arithmetic operation in the accumulator. When addition is carried out, it
sometimes results in a ninth bit being carried over to the next byte. The C flag
copies the value of the carry, which is an extra bit, from D7. It also reflects the
value of the borrow in subtractions.

Auxiliary carry flag (AC) The auxiliary carry flag is set when an auxiliary
carry is generated in the process of an arithmetic operation in the accumulator,
i.e., when a carry results from bit D3 and passes on to D4 (from the lower nibble
to the higher nibble). This carry is also called half-carry. It may also occur in the
process of a subtraction operation. In other words, this flag is set if the subtraction
operation results in borrowing from the higher nibble.

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 19

Parity flag (P) The parity flag is set if the content of the accumulator after an
arithmetic operation has an even number of 1s. Otherwise, the parity flag is reset.
It is set for operation in the even parity mode.

1.11.3.3 Program Counter

Program counter (PC) is a 16-bit register that always points to the address of the
next instruction to be executed. In other words, this register is used to sequence the
execution of the instructions. After execution of every instruction, the content of
the memory location indicated by the PC is moved to the instruction register and
the PC is loaded with the next address. It keeps track of a program by counting the
memory address from which the next byte is to be fetched, and hence the name
program counter.

1.11.3.4 Stack Pointer

Stack is an array of memory locations organized in last-in, first-out (LIFO) or
first-in, last-out (FILO) fashion. It is accessed using a 16-bit pointer register called
stack pointer (SP), which holds the address of the memory location of the top of
the stack. The programmer can reserve and allocate a series of RAM locations
to be used as a stack and accordingly initialize the stack pointer. The range of
stack memory locations must be chosen carefully so that it does not affect the
program space. In all microprocessor-based systems, the stack is mainly used to
store the return address of the main program when a subroutine is called. While
the programmer uses the stack for storage and retrieval of data, the microprocessor
uses the stack during subroutine calls. Care must be taken by the programmer to
ensure that the data stored in the stack is retrieved properly, so that the data stored
in the stack by the processor is not affected.

1.11.4 Instruction Register and Decoder

It is an 8-bit register that temporarily stores the instructions drawn from memory
locations, before their actual execution. The content of the register is decoded by
the decoder circuitry, where the nature of the operation to be performed is decided
(interpreted). In addition, there are two temporary registers W and Z, which are
controlled internally and not available for user access.

1.11.5 Timing and Control Unit

The timing and control unit gets commands from the instruction decoder and
issues signals on the data bus, address bus, and control bus. The following sections
explain the operation of the various buses and the timing.

A typical microprocessor communicates with memory and input/output devices
using buses. There are three types of buses—the address bus, the data bus, and the
control bus.

1.11.5.1 Data Bus

The microprocessor performs its functions using wires or lines called buses. For
example, an 8-bit microprocessor normally uses eight wires to carry data between
the microprocessor and the memory. To make their representation simple, the data
wires with common functions are grouped together and referred to as the data bus.

© Oxford University Press. All rights reserved.

20 Microprocessors and Interfacing

The data bus (D0-D7) is a two-way bus carrying data around the system.
Information going into the microprocessor and results coming out of the
microprocessor are through this data bus. It is used for transfer of binary information
between the microprocessor, memory, and peripherals. The lower group of eight
address lines AO—A7 is multiplexed with the data bus in order to reduce the pin
count. Therefore, the multiplexed lower group of address lines and data lines is
more generally denoted as ADO-AD?7.

1.11.5.2 Address Bus

The address bus carries addresses and is a one-way bus from the microprocessor to
the memory or other devices. It is a group of sixteen unidirectional lines that allows
flow of address from the processor to its peripheral devices. Each peripheral and
memory location is identified by a 16-bit binary number called address. It follows
that the maximum number of memory locations that can be addressed by the 8085
processor is 2!¢ bytes = 64 KB. Its basic function is to identify a peripheral or
memory location.

The address bus lines are generally identified as AO—A15. The address bus has
eight higher-order address lines (A8—A15), which are unidirectional. The lower-
order eight lines (AO—A7) are multiplexed (time-shared) with the eight data bits
(D0-D7) and hence, they are bidirectional. When the instruction is executed, these
lines carry the address bits during the early part, and the eight data bits during the
later part. To separate the address from the data, a latch is used externally to save
the address before the function of the bits changes.

1.11.5.3 Control Bus

The control bus carries control signals that are partly unidirectional and partly
bidirectional. For a microprocessor to function correctly, these control signals are
vital. The control bus typically consists of a number of single lines that coordinate
and control microprocessor operations. For example, a read/write control signal
will indicate whether memory is being written into or read from. Thus, they are
individual lines that provide a pulse to indicate the operation of the microprocessor.
In fact, the microprocessor generates specific control signals for every operation,
which in turn are used to identify the type of device the processor intends to
communicate with. The following points describe the control and status signals
of the 8085 processor:

(i) ALE (output): Address Latch Enable is a pulse that is provided when an
address appears on the ADO-AD?7 lines, after which it becomes 0. This
signal can be used to enable a latch to save the address bits from the AD
lines, thereby de-multiplexing the address bus and data bus.

(ii) RD (active low output): The Read signal indicates that data are being read
from the selected 1/0 or memory device and that they are available on the
data bus.

(iii) WR (active low output): The Write signal indicates that the data on the data
bus are to be written into a selected memory or 1/0 location.

(iv) 10/M (output): It is a signal that distinguishes between a memory operation
and an I/O operation. An active low on this signal shows it is a memory

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 21

operation (I0/M = 0) and a high on this line indicates an I/O operation (I0/M
=1).

(v) SI and SO (output): These are status
signals used to specify the kind of
operation being performed. The status S1 S0 States
signals combine with /O signals to

Table 1.2 Status signals and
associated operations

_ _ 0 0 Halt
govern various operations; they are 0 1 Write
listed in Table 1.2. If both SO and S1 1 0 Read
are low, the operation of the processor 1 1 Fetch

tends to halt. If SO is low and S1 is
high, the processor reads data. If SO is high and S1 is low, the processor
writes data onto a memory or 1/O device. If both SO and S1 are high, the
fetch operation is performed.

The schematic representation of the 8085 bus structure, shown in Fig. 1.8, explains

how the movement of data within the computer is accomplished by a series of

buses. Address information, data, and control signals have to be carried around
inside the microprocessor as well as in the external system. Hence, the buses are
present both internally and externally.

(vi) Interrupts: These signals are used to make the microprocessor respond to high
priority externally initiated signals. When an interrupt signal is detected by the
processor, it suspends the execution of the current program and executes the
program corresponding to the interrupt signal instead. Five interrupt signals
(INTR, RST 5.5, RST 6.5, RST 7.5, and Trap) are available to facilitate the
processor to receive and acknowledge the interrupt call of peripherals. The
8085 processor accepts three more externally initiated signals—RESET IN,
Hold, and Ready as inputs. The following points explain these signals in
brief:

(a) INTR (input): It is a general-purpose interrupt request signal. It is an
active high signal.

(b) INTA (output): It is used to acknowledge an interrupt. It is an active low
signal.

(c) Restart interrupts (input): These are vectored interrupts that transfer the

‘:105 —> Address bus >
< < b
Memory Input
8085
Output > Ree}!j
MPU v&o%
A - ata
g(7)< < > Data bus - >
| | | |
—> Control bus

Fig. 1.8 Schematic representation of the 8085 bus structure

© Oxford University Press. All rights reserved.

22 Microprocessors and Interfacing

program control to specific memory locations. They have higher priority
than INTR interrupts. The priority order is RST 7.5, RST 6.5, and RST
5.5.

(d) Trap (input): It is a non-maskable interrupt, i.e., it cannot be stopped or

©
®

overridden by any command. It has the highest priority among all 8085
interrupts.

RESET IN (input): When the signal on this pin goes low the program
counter is set to zero and the processor is reset. It is an active low signal.
RESET OUT (output): This signal can be used to reset other devices that
are connected to the processor. It is an active high signal.

(g) Hold (input): This signal indicates that a peripheral such as a direct

memory access (DMA) controller is requesting the use of the address
and data buses.

(h) HLDA (output): It is an acknowledge signal that is sent in response to

(1)

the Hold request. During the Hold state, the peripheral (1/0) devices
get control over the data and address buses for data transfer to and from
memory. This operation is called direct memory access (DMA). DMA
is useful when high-speed peripherals want to transfer data to and from
memory. The processor does not intervene during this period.

Ready (input): It is a signal that serves to delay the microprocessor
read/write signals until a slow-responding peripheral is ready to send or
accept data. If this signal goes low, then the processor is allowed to wait
for an integral number of clock cycles until Ready becomes high. The
Ready signal must be synchronized with the processor clock.

X1—1 40 — Ve
X2—2 39— HOLD]_DMA
RESET OUT— 3 38— HLDA
Serial | l +5yv GND
SOD—4 37 CLK (OUT) 2
1/0 D bl 0 |
signals — SID—5 36— RESET IN xTAL[T] | T higher-order
TRAP —6 35—— READY X1 X2 Vccvss address bus
RST 7.5 —7 34— |O/M Al5
RST 6.5 — 8 33— 31 A8
RST5.5 —9 T 32—RD SID —>| :\Aultipleged
INTR — 10 31— WR _SOD <— ouier-orcer
_— TRAP —> address/data
INTA —11 30— ALE RST 7.5 —> AD7 bus
ADO — 12 29— S0 11%% gg —>
S —>»
AD1 —13 28— A15 AR c0gs 0> ALE
AD2 —14 27— Al4 INTA <— > 31
] [READY ——> > 50
AD3 15 26 Al B | 0
AD4 —116 25— Al2 HLDA <—| —> 10
AD5 — 17 24— All RESET —>| —>RD
AD6 — 18 23— Al0 IN —>WR
AD7 — 19 22— A9 ¢ ¢
Vg—120 21— A8 RESET OUT CLK (OUT)
(@ (b)

Fig.2.7 8085 details (a) Pin diagram (b) Signal groups

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 23

The typical pin layout and signal groups of the 8085 microprocessor are shown
in Figs 1.9 (a) and 1.9 (b), respectively. The 8085 is available with 40 pins as a
dual in-line package (DIP).

Intel 8085 has 40 pins, operates at 3 MHz clock frequency, and requires +5V
for power supply.

1.11.5.4 Serial 110 Signals

There are two signals to implement serial transmission. They are serial input data
(SID) and serial output data (SOD). The data bits are sent over a single line, one
bit at a time, in serial transmission.
(i) SID (input): The bit data on this line is loaded in the seventh bit of the
accumulator whenever a RIM instruction is executed.
(i) SOD (output): The output SOD is set or reset as specified by the SIM
instruction.

RIM and SIM instructions have been explained in detail in Chapter 5.

1.11.5.5 Power Supply and System Clock

The following pins are available in the 8085 chip to provide power and clock
signal to the processor:

(i) X1, X2 (input): A microprocessor needs a square wave (clock) signal to
ensure that all internal operations are synchronized. A crystal or R—C or L-C
network is connected to these two pins. The crystal frequency is internally
divided by two to give the operating system frequency. There are three
advantages in increasing the frequency of a crystal—as frequency increases,
the crystal size becomes smaller, and the crystal becomes lighter and cheaper.
Therefore, clock circuits include a divide-by-two circuit so that a double-
frequency crystal can be used. So, to run the microprocessor at 3MHz, a
6MHz crystal should be connected to the X1 and X2 pins. The crystal is
preferred as a clock source because of its high stability, large Q (quality
factor), and absence of frequency drifting with aging. Without a clock signal,
the microprocessor cannot execute any program.

(if) CLK (output): This output clock pin is used to provide the clock signal to the
rest of the system.

Power supplies: V.—+5V supply; Vs,—ground reference.

1.12 MICROPROCESSOR INSTRUCTIONS

Every microprocessor has its own instruction set. Based on the design of the
ALU and the decoding unit, microprocessor manufacturers generally list out the
instructions for every microprocessor manufactured. The instruction set consists
of both assembly language mnemonics and the corresponding machine code.

The purpose of the instruction set is to facilitate the development of efficient
programs by the users. The instruction set is based on the architecture of the
processor. So to understand the instruction set of a processor, it is necessary to
understand the basic architecture of the microprocessor and the user-accessible

© Oxford University Press. All rights reserved.

24 Microprocessors and Interfacing

registers in it. An instruction is a bit pattern that is decoded inside a microprocessor
to perform a specific function. The assembly language mnemonics are the codes for
these binary patterns so that the user can easily understand the functions performed
by these instructions. The entire group of instructions that a microprocessor
can handle is called its instruction set; this determines the microprocessor’s
functionality. The Intel 8085 processor has its own set of instructions listed both
in mnemonics and machine code, also called as object code. As the 8085 is an 8-
bit processor, the machine codes for the instructions are also 8 bits wide.

The syntax for 8085 instructions may contain one or more of the following
notations:
R = 8-bit register (A, B, C, D, E, H, and L)
Rs = Source register }
Rd = Destination register J (A, B, C, D, E, H, and L)
Rp = Register pair (BC, DE, HL, and SP)
P = Port address (8-bit binary number or two hex digits)
8-bit = 8-bit data or two hex digits
16-bit = 16-bit data/address or four hex digits
() = Contents of

1.13 CLASSIFICATION OF INSTRUCTIONS

Microprocessor instructions can be classified based on parameters such as
functionality, length, and operand addressing.

1.13.1 Based on Functionality

Based on the functionality, the instructions are classified into the following five
categories:

(i) Data transfer (copy) operations (ii) Arithmetic operations
(iif) Logical operations (iv) Branching operations
(v) Machine control operations

1.13.1.1 Data Transfer (Copy) Operations

This group of instructions copies data from a location called source register to
another location called destination register. Generally, the contents of the source
register are not modified. Although the term data transfer is used for the copy
operation, it is misleading because it implies that the contents of the source
memory location are destroyed. The various types of data transfer are listed in
Table 1.3 along with examples of each type.

Table 1.3 Types of data transfer

Type Example

Transferring data between one register MOV A, D—Copies the content of
and another register D to the accumulator
Storing a data byte in a register or MVI C, 66H—Loads register C with
memory location the data 66H

(Contd)

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 25

Table 1.3 Types of data transfer (Contd)

Type Example

Transferring data between a memory LDA 8800H—Loads the contents of
location and a register memory location 8800H in the accumulator
Transferring data between an I/O device ~ IN PORT1—Transfers data from an input
and the accumulator device to the accumulator

1.13.1.2 Arithmetic Operations

Arithmetic operations include addition, subtraction, increment, and decrement. As
the 8085 has an accumulator-oriented ALU, one of the data used in the arithmetic
operations is stored in the accumulator; the result is also stored in the accumulator.
Arithmetic and logical operations cannot be executed without the accumulator.

Addition (ADD) The addition instructions of the 8085 add the contents of
a register or memory location with the contents of the accumulator. The result
is stored in the accumulator. The Intel 8085 instruction set supports two types
of addition instructions—with and without addition of the carry flag content to
the least significant bit of the numbers. The instruction set also supports 16-bit
addition, i.e., the content of the HL register pair can be added to that of another
register pair and the result stored in the HL register pair.

Subtraction (SUB) The instruction set of the 8085 supports two types of
subtraction—with borrow and without borrow. Like addition, the subtraction
operation also uses the accumulator as reference, i.e., it subtracts the content of a
register or memory location from that of the accumulator and stores the result in
the accumulator.

Increment/Decrement These operations can be used to increment or decrement
the contents of any register, register pair, or memory location. Unlike the arithmetic
and logical operations, the increment and decrement operations need not be based
upon the accumulator.

1.13.1.3 Logical Operations

Logical instructions are also accumulator-oriented, i.e., they require one of the
operands to be placed in the accumulator. The other operand can be any register or
memory location. The result is stored in the accumulator. The operations that use
two operands are logical AND, OR, and EXOR. The operation that uses a single
operand (i.e., the accumulator) is the logical complement or NOT operation.

The instruction set of the 8085 supports rotation of the data stored in accumulator.
The data can be rotated left or right, through the carry or without the carry.

The most important 8085 instruction is the compare instruction. This instruction
is used to compare register or memory content with the accumulator content. The
result of comparison such as equal to, greater than, or less than is reflected in the
flag register bits.

1.13.1.4 Branching Operations
Branching instructions are important for programming a microprocessor. These

© Oxford University Press. All rights reserved.

26 Microprocessors and Interfacing

instructions can transfer control of execution from one memory location to another,
either conditionally or unconditionally. Branching can take place in the following
two ways:
(1) Execution control cannot return to the point of branching. Example: Jump
instructions
(if) Execution control can return to the point of branching, which is stored by the
8085. Example: Subroutine call instructions

1.13.1.5 Machine Control Operations

These instructions can be used to control the execution of other instructions. They
include halting the operation of the microprocessor, interrupting program execution,
etc. Detailed explanations for 8085 instructions are given in Section 1.14.

1.13.2 Based on Length

Based on the length of the machine language code, 8085 instructions can be
classified into the following three types:

(i) One-byte instructions (it) Two-byte instructions
(iii) Three-byte instructions

Assembly language instructions should be converted into machine code for
storage and execution by the processor. So the length of the machine language
code instructions determines the length of the program. This in turn determines the
amount of memory required for the program.

1.13.2.1 One-byte Instructions

Instructions that require only one byte in machine language are called one-byte
instructions. These instructions just have the machine code or opcode alone to
represent the operation to be performed. The common examples are the instructions
that have their operands within the processor itself. Some examples of one-byte
instructions are given in Table 1.4. Even though the instruction ADD M adds the
content of a memory location to that of the accumulator, its machine code requires
only one byte.

Let us now understand the
instruction MOV Rd, Rs. This Opcode Operand Machine code/Opcode/

Table 1.4 One-byte instructions

instruction copies the contents of Hex code

source register Rs to destination MOV A, B 78

register Rd. (Rd < Rs) ADD M 86
It is coded as Oldddsss. Here, XRA A AF

ddd is the binary code of one of the
seven general-purpose registers that is the destination of the data and sss is the
binary code of the source register.

Example:
MOV A, B (coded as 01111000 = 78H)

1.13.2.2 Two-byte Instructions

Instructions that require two bytes in machine code are called as two-byte
instructions. The first byte of the two-byte instructions is the opcode, which

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 27

specifies the operation to be performed. The second byte is the 8-bit operand,
which is either an 8-bit number or an address. Some common examples of two-
byte instructions are listed in Table 1.5.

Table 1.5 Two-byte instructions

Opcode Operand Machine code/Opcode/Hex code Byte description
MVI A, 7TFH 3E First byte

7F Second byte
ADI OFH Cé6 First byte

OF Second byte
IN 40H DB First byte

40 Second byte

The instruction is stored in two consecutive memory locations.
MVI R, data—(R <«— data)

Example:
MVI A, 32H (coded as 3E 32 in two contiguous bytes)
This is an example of immediate addressing.

The following two instructions are also examples of two-byte instructions:

(1) ADI data (A <— A + data)

(i1)) OUT port (where port is an 8-bit device address. (Port) «— A) Since the byte
is not the data itself, but points directly to where it is located, this is called
direct addressing. For a detailed account of addressing modes, see Section
1.13.3.

1.13.2.3 Three-byte Instructions

Instructions that require three bytes in machine code are called three-byte
instructions. In 8085 machine language, the first byte of the three-byte instructions
is the opcode which specifies the operation to be performed. The next two bytes
refer to the 16-bit operand, which is either a 16-bit number or the address of a
memory location. Some common examples of three-byte instructions are listed in
Table 1.6.

Table 1.6 Three-byte instructions

Opcode Operand Machine code/Opcode/Hex code Byte description
IMP 9050H C3 First byte
50 Second byte
90 Third byte
LDA 8850H 3A First byte
50 Second byte
88 Third byte
LXI H, 0520H 21 First byte
20 Second byte
05 Third byte

© Oxford University Press. All rights reserved.

28 Microprocessors and Interfacing

The instruction LXI Rp, 16-bit data can be explained as follows:

Rp is one of the pairs of registers BC, DE, or HL, which are used as 16-bit
registers. The two data bytes are to be stored as a 16-bit number in L and H in
sequence. LXI H, 0520H is coded as 21H 20H O5H in three bytes. (This is an
example of immediate addressing.)

In executing the instruction LDA addr, the accumulator is loaded with the memory
content of the address given in the instruction. Addr is a 16-bit address. LDA 8850H
is coded as 3AH 50H 88H. (This is an example of direct addressing.)

1.13.3 Addressing Modes in Instructions

Every instruction in a program has to operate on data. The process of specifying
the data to be operated on by the instruction is called addressing. Efficient
software development for the microprocessor requires complete familiarity with
the addressing mode employed for each instruction. For example, the instructions
MOV B, A and MVI A, 82H are used to copy data from a source to a destination.
In these instructions, the source can be a register or an 8-bit number (00H to FFH);
the destination is a register. The source and destination are operands. The various
formats for specifying operands are called addressing modes. The 8085 has the
following five types of addressing:

(i) Immediate addressing (i) Memory direct addressing
(iii) Register direct addressing (iv) Indirect addressing

(v) Implied or implicit addressing
1.13.3.1 Immediate Addressing
Immediate addressing transfers the Instruction
operand given in the instruction—a byte

or word—to the destination register or
memory location. The operand is part of

Opcode | Operand

the instruction. The format for immediate Fig. 1.10 Format of immediate
addressing is given in Fig. 1.10. addressing
Example:

MVI A, 9AH

(a) The operand is part of the instruction.
(b) The operand is stored in the register mentioned in the instruction.

Example:

ADI O5H
(a) Add O5H to the contents of the accumulator.
(b) O5H is the operand.

Immediate addressing has no memory reference to fetch data. It executes faster,
but has limited data range.

1.13.3.2 Memory Direct Addressing

Memory direct addressing moves a byte or word between a memory location and
register. The memory location address is given in the instruction. The instruction
set does not support memory-to-memory transfer. Memory direct addressing is
illustrated in Fig. 1.11.

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 29

Instruction

| Opcode | Memory address A Memory

> Operand

Fig. 1.1l Format of memory direct addressing

Example:

LDA 850FH
This instruction is used to load the contents of the memory location 850FH in the
accumulator.

Example:

STA 9001H
This instruction is used to store the contents of the accumulator in the memory
address 9001H.

In these instructions, the memory address of the operand is given in the instruction.

Direct addressing is also used for data transfer between the processor and
input/output devices. For example, the IN instruction is used to receive data from
the input port and store it in the accumulator; the OUT instruction is used to send
the data from the accumulator to the output port.

Example:
IN @0H and OUT @1H

1.13.3.3 Register Direct Addressing

Register direct addressing transfers a copy of a byte or word from the source
register to the destination register. The operand is in the register named in the
instruction. It executes very fast, has very limited register space, and requires
good assembly programming. The operand is within in the processor itself; so the
execution is faster. Register direct addressing is illustrated in Fig. 1.12.

Instruction

| Opcode| Register R | Registers

Y

Operand

Fig. 1.12 Format of register direct addressing

© Oxford University Press. All rights reserved.

30 Microprocessors and Interfacing

Example:
MOV Rd, Rs
MOV B, C
It copies the contents of register C to register B.

Example:
ADD B
It adds the contents of register B to the accumulator and saves it in the accumulator.

1.13.3.4 Indirect Addressing

Indirect addressing transfers a byte or word between a register and a memory
location. The address of a memory location is stored in a register and that register
is specified in the instruction. This is illustrated in Fig. 1.13.

In indirect addressing, the effective address is calculated by the processor using
the contents of the register specified in the instruction. This type of addressing
employs several accesses—two accesses to retrieve the 16-bit address and a further
access (or accesses) to retrieve the data which is to be loaded in the register.

Example:

MOV A, M
Here, the data is in the memory location pointed to by the contents of the HL pair.
The data is moved to the accumulator.

Instruction

|Opcode | Register address R |

Memory
Registers
Memory address
2 to operand > Operand

Fig. 1.13 Format of indirect addressing

1.13.3.5 Implied or Implicit Addressing

In implied addressing mode, the instruction itself specifies the data to be operated
upon. For example, CMA complements the contents of the accumulator. No
specific data or operand is mentioned in the instruction.

1.14 INSTRUCTION SET OF 8085

The 8085 microprocessor instruction set has 74 operation codes and 246
instructions. It is compatible with that of its predecessor, the 8080A, but has
two additional instructions—SIM (set interrupt mask) and RIM (read interrupt
mask)—related to serial I/O. The complete instruction set is listed in Appendix 1
with additional information such as number of clock states required for execution
and the flags affected.

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 31

I.14.1 Format of Assembly Language Instructions and Programs

Assembly language programs are written for performing specific functions,
converted into machine language code, and then stored in the memory of the
microprocessor-based system. The conversion of an assembly language program
into machine language code is called assembling; the application that performs this
task is called assembler. This conversion or assembling can also be done manually
by the programmers. To facilitate the process of assembling, the assembly language
programs are written in a specific format as shown in Fig. 1.14.

| Memory address | Machine code/Opcode | Label | Mnemonics with operands | Comments |

Fig. 1.14 Format for writing assembly language programs

In general, the assembly language mnemonics with their operands are written
first. The address where the instructions are stored is given a dummy name called
label. The purpose of labels is to give the correct branch addresses in instructions.
Labels are separated from mnemonics with a colon.

The comments column is essential for any program as it helps the programmer
understand the logic of the program at any point in time. Without comments, it is
difficult to understand an assembly language program. Comments are separated
from the mnemonics with a semicolon.

The first two columns correspond to the physical memory address and the
actual machine code. These two columns are filled in after completing the assembly
language programming. These columns must contain only binary numbers, but for
easy understanding, hexadecimal numbers are used. For manual assembling, these
two columns are filled in by the programmer. An assembler can generate these
columns automatically.

An example of the assembly language program format is given in Table 1.7.

Table 1.7 Sample assembly language program

Memory Machine code/ Label Mnemonics Comments

address Opcode with operands

8000 3E START: MVIA, 5SFH ; Load data in the accumulator.

8001 SF

8002 ; Address of the next memory
location

The instruction in Table 1.7 moves the data SFH to the accumulator.

1.14.2 Data Transfer Instructions

Data transfer instructions are used to transfer data between two registers in the
microprocessor or between a peripheral device and the microprocessor. Some
instructions and their features are given in the following points. The complete list
with explanations is given in Table 1.8.
(1) MVl instruction is used for storing 8-bit data in a microprocessor register.
(i1) LXI instruction is used for storing 16-bit data in a register pair.

© Oxford University Press. All rights reserved.

32 Microprocessors and Interfacing

(i) In direct addressing mode, MOV instruction is used for data transfer between
registers. In indirect addressing mode, MOV is used for data transfer between
a memory location and a register. If the instruction has M in the operand field,
the memory location pointed to by the HL pair is considered for data transfer.

Table 1.8 Data transfer instructions

Mnemonics

MVI R, 8-bit
LXI Rp, 16-bit

MOV Rd, Rs

LDA 16-bit

LHLD 16-bit

STA 16-bit

SHLD 16-bit

PUSH Rp

POP Rp

OUT 8-bit

Tasks performed on
execution

Moves the 8-bit data
to the register

Loads the 16-bit data in
the register pair

Copies the data from
the source register to
the destination register

Loads the accumulator
with the data from the
memory location
indicated by the

16-bit address

Loads the H and L
registers directly from
the two consecutive
memory locations
indicated by the
16-bit address

Stores the contents of
the accumulator in the
memory location
indicated by the
16-bit address

Stores the contents of
the H and L registers
in two consecutive
memory locations
indicated by the
16-bit address

Pushes the contents of
the register pair onto
a stack

Pops the top two memory

locations of the stack
onto a register pair

Outputs the data in the
accumulator to the port
indicated by the

8-bit address

Addressing
mode

Immediate
Immediate

Register
direct

Memory
direct

Memory
direct

Memory
direct

Memory
direct

Register
direct

Register
direct

/o

Instruction
length

Two bytes
Three bytes

One byte

Three bytes

Three bytes

Three bytes

Three bytes

One byte

One byte

Two bytes

© Oxford University Press. All rights reserved.

Example

MVI B, 3FH
LXI B, SAF3H

MOV A, B

LDA 905FH

LHLD 900AH

STA 9050H

SHLD 809FH

PUSH B

POP H

OUT 40H

(Contd)

Microprocessors—Evolution and Introduction to 8085 33

Table 1.8 Data transfer instructions (Contd)

Mnemonics Tasks performed on Addressing Instruction Example
execution mode length

IN 8-bit Inputs the data from the 1/O Two bytes IN 30H
port indicated by the
8-bit address to the
accumulator

MOV Rd, M Copies the contents of Indirect One byte MOV B, M

the memory location
pointed to by the HL
register pair to

the register

MOV M, Rs Copies the contents of the Indirect One byte MOV M, C

register to the memory
location pointed to by
the HL register pair

LDAX Rp Loads accumulator with Indirect One byte LDAX B

the contents of the
memory location pointed
to by the register pair

STAX Rp Stores the contents of the Indirect One byte STAX D

accumulator in the
memory location pointed
to by the register pair

XCHG Exchanges the contents Implicit One byte XCHG

of the HL register pair
with that of the D and E
register pair

SPHL Copies the contents of Implicit One byte SPHL

the H and L registers to
the stack pointer

XTHL Exchanges the contents Implicit One byte XTHL

of the HL register pair
with the top of stack

(iv)
v)

(vi)

(vii)

LDA and STA use memory direct addressing mode and a 16-bit memory
address as operand.

LDAX and STAX use indirect addressing mode for data transfer. The
operand given in the instruction is one of the register pairs BC or DE.
Register pair HL is not used with LDAX due to the availability of the
alternative instruction MOV A, M.

LHLD and SHLD are the instructions used to transfer 16-bit data between
the HL register pair and two consecutive memory locations. For example,
executing SHLD 9000H instruction will store the contents of L register in
9000H and the contents of H register in 9001H.

PUSH and POP instructions are used for data transfer between a register

© Oxford University Press. All rights reserved.

34 Microprocessors and Interfacing

(viii)

(ix)

(x)

pair and a stack. The stack is a set of memory locations configured as a last-
in, first-out (LIFO) or first-in, last-out (FILO) array. The top of the stack
locations is pointed to by a special register, the stack pointer, which is within
the microprocessor. PUSH instruction will store the register pair given in
the instruction to the top two memory locations of the stack. Similarly, POP
instruction will copy the last two bytes stored in the stack to the register pair
mentioned in the instruction. Care must be taken in using these instructions as
the stack is configured as a LIFO array. Another instruction to store data in the
stack is XTHL, which exchanges the top two memory locations of the stack
with the contents of the HL register pair.

Stack pointer can be initialized using LXI or SPHL instructions. SPHL
instruction will copy the contents of the HL register pair to the stack pointer.
IN and OUT instructions use 8-bit port addresses as operand. IN instruction
is used to get data from the input port and the data obtained is stored in the
accumulator. OUT instruction is used to issue data from the accumulator to
an output port.

XCHG instruction is used to exchange the contents of the HL and DE
register pairs.

1.14.3 Arithmetic Instructions

The arithmetic instructions supported by the 8085 are addition, subtraction, and
their variants. The arithmetic instructions are listed in Table 1.9.

Table 1.9 Arithmetic instructions

Mnemonics Tasks performed on Addressing Instruction Example
execution mode length

ADI 8-bit Adds the 8-bit data to Immediate Two bytes ADI 30H
the contents of the
accumulator

ACI 8-bit Adds the 8-bit dataand Immediate Two bytes ~ ACI 4FH
the carry flag to the
contents of the
accumulator

SUI 8-bit Subtracts the 8-bit data Immediate Two bytes SUI 2AH
from the contents of the
accumulator

SBI 8-bit Subtracts the 8-bit data ~ Immediate =~ Two bytes SBI 5CH

and the borrow from the
contents of the
accumulator

ADD R Adds the contents of the Register One byte ADD C

register to the contents direct
of the accumulator

(Contd)

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 35

Table 1.9 Arithmetic instructions (Contd)

Mnemonics Tasks performed on Addressing Instruction Example
execution mode length
ADCR Adds the contents of the Register One byte ADCE

register and the carry to direct
the contents of the
accumulator

SUBR Subtracts the contents of Register One byte SUBB
the register from that of direct
the accumulator

SBB R Subtracts the contents Register One byte SBB C
of the register and the direct
borrow from that of the
accumulator

DAD Rp Adds the contents of the Register One byte DADB
register pair to that of the direct
H and L registers

INR R Increments the register ~ Register One byte INR B
by 1 direct

INX Rp Increments the register ~ Register One byte INX B
pair by 1 direct

DCRR Decrements the register Register One byte DCRE
by 1 direct

DCX Rp Decrements the register Register One byte DCX D
pair by 1 direct

ADD M Adds the contents of the Indirect One byte ADD M

memory location pointed
to by the HL register pair
to that of the accumulator

ADCM Adds the contents of the Indirect One byte ADCM
memory location pointed
to by the HL register pair
and the carry to that of
the accumulator
SUB M Subtracts the contents of Indirect One byte SUB M
the memory location
pointed to by the HL
register pair from that
of the accumulator
SBB M Subtracts the borrow and Indirect One byte SBBM
the contents of the
memory location pointed
to by the HL pair from
that of the accumulator

(Contd)

© Oxford University Press. All rights reserved.

36 Microprocessors and Interfacing

Table 1.9 Arithmetic instructions (Contd)

Mnemonics Tasks performed on Addressing Instruction Example
execution mode length
INR M Increments the memory Indirect One byte INR M

location pointed to by the
HL register pair by 1

DCRM Decrements the memory Indirect One byte DCRM

location pointed to by the
HL register pair by 1

DAA Converts the contents of Implicit One byte DAA

the accumulator from
binary to BCD (Decimal-
Adjust Accumulator)

The following points list some key features of arithmetic operations:

(1)
(i1)
(iii)
(iv)
(v)
(vi)

For arithmetic operations, one of the data must be stored in the accumulator
and the other given or addressed in the instruction.

Add-with-carry instructions are used for multi-byte and higher-order byte
addition.

Similarly, subtract-with-borrow instructions are used in multi-byte and
higher-order byte subtraction.

Increment and decrement instructions can be operated not only on the
accumulator, but also on other registers including memory locations.

The contents of a register pair can be incremented or decremented using INX
and DCX instructions.

DAA is the 8085 instruction that supports BCD addition. The addition of
BCD data is done like binary addition, using the ADD instruction. DAA is
used to convert the result of the binary addition of BCD numbers into a BCD
number. This instruction cannot be used to directly convert binary numbers
into BCD numbers.

1.14.4 Logical Instructions

The most important logical instructions supported by the 8085 are AND, OR,
EXOR, and NOT. The complete list is given in Table 1.10.

Table 1.10 Logical instructions

Mnemonics Tasks performed on execution Addressing Instruction Example

mode length

ANI 8-bit The 8-bit data is logically ANDed Immediate Two bytes ~ ANI OFH

with the contents of the accumulator.

XRI 8-bit The 8-bit data is logically EXORed = Immediate Two bytes ~ XRIO01H

with the contents of the accumulator.

ORI 8-bit The 8-bit data is logically ORed Immediate Two bytes ORI 80H

with the contents of the accumulator.
(Contd)

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 37

Table 1.10 Logical instructions (Contd)

Mnemonics Tasks performed on execution

ANAR The contents of the register are
logically ANDed with the contents
of the accumulator.

XRAR The contents of the register are
logically EXORed with the contents
of the accumulator.

ORAR The contents of the register are
logically ORed with the contents
of the accumulator.

ANAM The contents of the memory
location pointed to by the HL
register pair is logically ANDed
with the contents of the accumulator.

XRAM The contents of the memory
location pointed to by the HL
register pair is logically EXORed
with the contents of the accumulator.

ORAM The contents of the memory
location pointed to by the HL
register pair is logically ORed
with the contents of the accumulator.

RLC Rotates the bits of the accumulator
left by one position

RRC Rotates the bits of the accumulator
right by one position

RAL Rotates the bits of the accumulator
left by one position, through the carry

RAR Rotates the bits of the accumulator

right by one position, through the carry

CPI 8-bit Compares the 8-bit data with the
contents of the accumulator

CMPR Compares the contents of the register
with that of the accumulator

Addressing Instruction

mode

Register
direct

Register
direct

Register
direct

Indirect

Indirect

Indirect

Implicit

Implicit

Implicit

Implicit

Immediate

Register
direct

CMP M Compares the contents of the memory Indirect

location pointed to by the HL register
pair with that of the accumulator

CMA Complements the contents of the
accumulator

CMC Complements the carry

STC Sets the carry

Implicit

Implicit
Implicit

length
One byte

One byte

One byte

One byte

One byte

One byte

One byte
One byte
One byte
One byte
Two bytes
One byte

One byte

One byte

One byte
One byte

Example

ANAC

XRAD

ORAE

ANAM

XRAM

ORAM

RLC

RRC

RAL

RAR

CPI FFH

CMP B

CMPM

CMA

CMC
STC

© Oxford University Press. All rights reserved.

38 Microprocessors and Interfacing

For logical operations, one of the data must be stored in the accumulator and the
other given or addressed in the instruction. Logical operations can be performed
with immediate data, data stored in a register, or indirectly addressed memory
location content.

Besides the instructions already mentioned, two types of rotate instructions
are available in the 8085. One set—RLC and RRC—rotates the accumulator
contents within itself. The RLC instruction shifts the accumulator content left by
one bit. In the process, the most significant bit of the accumulator becomes the
least significant bit. The RRC instruction shifts the accumulator content right by
one bit.

The other set of rotate instructions—RAL and RAR—rotates the accumulator
content along with the carry flag. The RAL instruction shifts the accumulator
content left by one bit and in the process, the most significant bit will be shifted to
the carry flag and the carry flag content will be shifted to the least significant bit of
the accumulator.

The instruction set of the 8085 supports a compare instruction for comparing
the magnitude of two binary numbers. The compare instructions are used to
compare the accumulator content with the operand specified in the instruction.
CPI instruction uses immediate addressing and CMP uses registers or indirectly
addressed memory location for comparing with the accumulator. The result of the
compare instruction is indicated in the flag register, as follows:

If[(A) — operand] = 0, i.e., (A) = operand, the zero flag is set.

If [(A) — operand] <0, i.e., (A) < operand, the carry flag is set.

If [(A) — operand] > 0, i.e., (A) > operand, the zero and carry flags are reset.

1.14.5 Branching Instructions

Branching instructions are used to transfer the program execution to a different
address. Branching instructions are of two types—jump instructions and
subroutine instructions. The jump instructions merely transfer the execution from
one location in the program to another, whereas the subroutine instructions in the
main program transfer execution to a new location and also return to the main
program. Return instructions are used for this purpose. The branching can take
place unconditionally or conditionally, based on the flag conditions shown in
Table 1.11. PCHL instruction is a special instruction used to branch to the address
stored in the HL register pair.

RST n is the restart instruction supported by the 8085. Upon execution of the
RST n instruction, the program execution will be transferred to the address given
by n x 8. For example, RST 4 instruction will transfer the execution to the address
0020H which is the hexadecimal equivalent of 32 (in decimal form).

In machine code or opcode, thel6-bit or 4 hex digit addresses in the branching
instructions are given such that the lower-order byte of the address follows the
higher-order byte. For example, JMP 8030H is coded as C3 30 80. The opcode for
JMP, C3, is stored first, followed by 30 and then by 80.

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 39

Table 1.11 Branching instructions

Mnemonics Tasks performed on Instruction Example

execution length
JMP 16-bit Jump unconditionally Three bytes JMP 9500
JC 16-bit Jump if carry is set Three bytes JC 9500
IJNC 16-bit Jump on no carry Three bytes IJNC 9500
JP 16-bit Jump on positive Three bytes JP 9500
IM 16-bit Jump on minus Three bytes IM 9500
JZ 16-bit Jump on zero Three bytes JZ. 9500
INZ16-bit Jump on no zero Three bytes INZ 9500
JPE 16-bit Jump on parity even Three bytes JPE 9500
JPO 16-bit Jump on parity odd Three bytes JPO 9500
CALL 16-bit Call unconditionally Three bytes CALL 9500
CC 16-bit Call on carry Three bytes CC 9500
CNC 16-bit Call on no carry Three bytes CNC 9500
CP 16-bit Call on positive Three bytes CP 9500
CM 16-bit Call on minus Three bytes CM 9500
CZ 16-bit Call on zero Three bytes CZ 9500
CNZ 16-bit Call on no zero Three bytes CNZ 9500
CPE 16-bit Call on parity even Three bytes CPE 9500
CPO 16-bit Call on parity odd Three bytes CPO 9500
RET Return unconditionally One byte RET
RC Return on carry One byte RC
RNC Return on no carry One byte RNC
RP Return on positive One byte RP
RM Return on minus One byte RM
RZ Return on zero One byte RZ
RNZ Return on no zero One byte RNZ
RPE Return on parity even One byte RPE
RPO Return on parity odd One byte RPO
PCHL Copy HL contents to One byte PCHL

the program counter
RST 0/1/2/3/4/5/6/7 Restart One byte RST 5

1.14.6 Machine Control Instructions

Machine control instructions are used to control the microprocessor execution
and functioning and are listed in Table 1.12. They are explained in detail in the
following points:

(i) NOP means no operation. When this instruction is executed, nothing is done;
no changes occur in the contents of the registers. The program counter alone
is incremented to fetch and execute the next instruction.

(i) HLT instruction is used to halt the execution of the program. The operation
of the microprocessor is suspended when HLT instruction is executed. The
only way to exit the halt state is to apply the hardware reset signal.

© Oxford University Press. All rights reserved.

40 Microprocessors and Interfacing

(iii) Interrupts are disabled and enabled using DI and EI signals, respectively.
Once the DI instruction has been executed, the processor ignores any
interrupt request received. To enable interrupts again, the EI instruction has
to be executed.

(iv) The SIM instruction is used to send serial data on the serial output data
(SOD) line of the microprocessor and the RIM instruction is used to receive
serial data on the serial input data (SID) line of the processor. The SIM and
RIM instructions are also associated with the setting and reading of interrupt
masks for RST hardware interrupts.

Table 1.12 Machine control instructions

Mnemonics Tasks performed on execution Addressing Instruction
mode length
NOP No operation Implicit One byte
HLT Halts the microprocessor execution Implicit One byte
DI Disables interrupts Implicit One byte
El Enables interrupts Implicit One byte
RIM Reads interrupt mask Implicit One byte
SIM Sets interrupt mask Implicit One byte

1.15 SAMPLE PROGRAMS
1. Write an assembly language program to add two numbers.

The program given in Table 1.13 uses immediate addressing for the two data to be
added. The data to be added are stored in memory locations 8001H and 8003H.
The sum is stored in the memory location 8500H. This program assumes that no
carry is generated from the addition.

Table 1.13 Program for adding two 8-bit numbers

Memory Machine code/ Labels Mnemonics with Comments

address Opcode operands

8000 3E START: MVIA,32H ; Load the first number in

8001 32 the accumulator.

8002 Co6 ADI 64H ; Add the second number with
8003 64 the contents of the accumulator.
8004 32 STA 8500H ; Store the sum in the memory
8005 00 location 8500H.

8006 85

8007 76 HLT ; Terminate program execution.

2. Write an assembly language program to add two numbers of 16 bits each.

This program also uses immediate addressing for loading the data in the processor
registers. The sum is stored in the memory locations 8500H and 8501H, as shown
in Table 1.14.

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 41

Table 1.14 Program for adding two |6-bit numbers

Memory
address

8000
8001
8002
8003
8004
8005
8006

8007
8008
8009
800A

Machine
code/
Opcode

21
SF
80
01
3A
12
09

22
00
85
76

Labels Mnemonics with
operands

START: LXIH, 805FH

LXI B, 123AH

DADB

SHLD 8500H

HLT

Comments

; Load the first 16-bit number in
the HL register pair.

; Load the next number in the BC
register pair.

; Add the two numbers using
double addition instruction.

; Store the result in the HL pair in
the memory locations 8500H and
8501H.

; Terminate program execution.

3. Write an assembly language program to add the two numbers stored in the
memory locations 8500H and 8501H and store the result in 8502H.

This program uses indirect addressing instructions to load the numbers to be
added in the processor registers. The carry, if generated, is ignored. The program
is shown in Table 1.15.

Table I.15 Program for adding two numbers from memory

Memory
address

8000
8001
8002
8003
8004
8005
8006

8007

8008

Machine
code/
Opcode

21
00
85
7E
23
86
23

77

76

Labels Mnemonics with
operands

START: LXIH, 8500H

MOV A, M
INX H
ADD M
INX H

MOV M, A

HLT

Comments

; Initialize HL register pair to point
to the memory location of the
first number.

; Load the first number in the
accumulator.

; Increment the HL pair to point to
the memory location of the next
number.

; Add the two numbers.

; Increment the HL pair to point to
the next memory location.

; Store the contents of the
accumulator in the memory location
pointed to by the HL register pair.

; Terminate program execution.

© Oxford University Press. All rights reserved.

42 Microprocessors and Interfacing

1.16 INSTRUCTION EXECUTION

The 8085 microprocessor is designed to fetch the instruction pointed to by the
program counter, and then decode and execute the instruction within the processor.
If necessary, further operand fetch takes place before completing the execution.
Each instruction, as we have already seen, has two parts—operation code (known
as opcode) and operand. The opcode is a command such as ADD and the operand
is an object to be operated on, such as a byte or the contents of a register.
Instruction cycle is the time taken by the processor to complete the execution
of an instruction. An instruction cycle consists of one to six machine cycles.
Machine cycle is the time required to complete one operation—accessing either
the memory or an I/O device. A machine cycle consists of three to six T-states.
T-state is the time corresponding to one clock period. The T-state is the basic
unit used to calculate the time taken for execution of instructions and programs in
a processor.
To execute a program, the 8085 performs various operations such as opcode fetch,
operand fetch, and memory read/write or 1/O read/write. The microprocessor’s
external communication function can be divided into three categories:
(i) Memory read/write (if) /O read/write
(ii1) Interrupt request acknowledge

POINTS TO REMEMBER

e The microprocessor is an electronic circuit that functions as the central processing
unit (CPU) of a computer, providing computational control.

e The microprocessor is the controlling element in a computer system. The
microprocessor performs data transfers, does simple arithmetic and logical
operations, and makes simple decisions.

e The basic operation of the microprocessor is to fetch instructions stored in the
memory and execute them one by one in sequence.

Microprocessors are used in almost all advanced electronic systems.
Microcontrollers are advanced forms of microprocessors, with memory and ports
present within the chip.

e A microcomputer system is made by interfacing memory and I/O devices to a
microprocessor.

e Microprocessor evolution is classified into five generations. The processors that are
currently in use belong to the fifth generation.

e The microprocessor is a semiconductor device consisting of electronic logic
circuits manufactured using either large-scale integration (LSI) or very large-scale
integration (VLSI) technique. It works at a fixed clock frequency.

e Abus is a collection of wires connecting two or more chips.

e A typical microprocessor communicates with memory and other input/output
devices using three buses—address bus, data bus, and control bus.

o Salient features of the 8085 microprocessor manufactured by Intel
= [t is an 8-bit microprocessor.
= It has a 16-bit address bus (A0—A15) and hence, can address up to 2!¢ = 65,536

bytes (64 KB).

© Oxford University Press. All rights reserved.

Microprocessors—Evolution and Introduction to 8085 43

= The 8085 has a multiplexed bus (AD0-AD7), which is used as the lower-order
address bus and the data bus. It can be de-multiplexed using a latch and the ALE
signal.

= The data bus is a group of eight lines (D0-D7).

= |t supports external interrupt request.

= [t has a 16-bit program counter (PC) and a 16-bit stack pointer (SP).

= [t has six 8-bit general-purpose registers, which can be arranged in pairs as BC,
DE, and HL.

= Jtrequires a +5 V power supply and operates at 3 MHz clock frequency.

= [t contains 40 pins and is available as a dual in-line package (DIP).

= |t has five flags—sign, zero, auxiliary carry, parity, and carry.

e The microprocessor operations related to data manipulation can be summarized in

the following four functions:
(i) Transferring data
(if) Performing arithmetic operations
(iii) Performing logical operations
(iv) Testing for a given condition and altering the program sequence

o The instructions are classified into three groups according to word size: one-, two-,
and three-byte instructions.

e An instruction has two parts—opcode (operation to be performed) and operand
(data to be operated on). The operand can be data (8-bit or 16-bit), addresses,
registers, or implicit in the opcode. The method of specifying an operand (directly,
indirectly, etc.) is called addressing mode.

o The instructions are executed in steps of machine cycles and each machine cycle
requires many T-states.

KEY TERMS

Accumulator It is an 8-bit register; it is a part of the ALU and is the most important
register. It is used to store 8-bit data and to perform arithmetic and logical operations.
The output of an operation is also stored in the accumulator. The accumulator is
identified as register A.

Address bus This bus carries the binary number (i.e., the address) used to access
a memory location. Binary data can then be written into or read from the addressed
memory location. The address bus consists of 16 wires and can, therefore, handle 16
bits.

Addressing mode It is the method of specifying the data to be operated on by the
instruction.

Bus It is a group of conducting lines that carry data, address, and control signals
Clock speed This determines how many instructions per second the processor can
execute. It is specified in megahertz (MHz).

Control bus This bus has various lines for coordinating and controlling
microprocessor operations. For example, RD and WR lines.

Data bus This bus carries data in binary form between the microprocessor and
external units such as memory. Typical size is eight or 16 bits.

DMA controller Tt is used to take control of the system bus by placing a high signal
on the Hold pin.

Flag It is a flip-flop used to store information about the status of the processor and
the status of the instruction executed most recently.

© Oxford University Press. All rights reserved.

44 Microprocessors and Interfacing

Hold and HLDA These signals are used for direct memory access (DMA) type
of data transfer. The Hold request makes the 8085 drive all its tri-stated pins to high
impedance state. The HLDA signal goes high to acknowledge the receipt of the Hold
signal.

Immediate addressing It transfers the operand given in the instruction—a byte or
word—to the destination register or memory location.

Implied addressing In this addressing mode, the instruction itself specifies the data
to be operated on.

IN This instruction is used to move data from an I/O port to the accumulator.
Indirect addressing It transfers a byte or word between a register and a memory
location addressed by another register.

Instruction cycle It is the time required to execute an instruction.

IO/M signal This signal is used to differentiate memory access and 1/O access. For
input/output instructions it is high; for memory reference instructions it is low.

JMP and CALL JMP instruction permanently changes the program counter. CALL
instruction leaves information on the stack so that the original program execution
sequence can be resumed.

Machine cycle It is the time required to access the memory or input/output devices.
Memory direct addressing It moves a byte or word between a memory location
and a register.

Opcode 1t is the part of the instruction that specifies the operation to be performed.
Operand It is the data on which the operation is performed.

OUT This instruction is used to move data from the accumulator to an 1/0O port.
Ready It is an input signal to the processor. It is used by the memory or 1/O devices
to get extra time for data transfer or to introduce wait states in the bus cycles.
Register direct addressing It transfers a copy of a byte or word from a source
register to a destination register.

Timing diagram It is a graphical representation of the time taken by each instruction
for execution. The execution time is represented in T-states.

Trap Itis anon-maskable interrupt of the 8085 and is not disabled by processor reset
or after reorganization of interrupt.

T-state Itisthe basic unitused to calculate the time taken for execution of instructions
and programs in a processor. It is the time corresponding to one clock period.

REVIEW QUESTIONS

What is the main function of a computer?

Name any three input devices of a computer.

Name any two output devices of a computer.

Name any three storage devices of a computer.

Name any three places where computers can be used.

Draw a block diagram of a computer and label its components.
Who developed the world’s first microprocessor?

What is the data bus width of the 8085 microprocessor?

When did Intel introduce the Pentium 4 microprocessor?
What is the amount of memory that the Pentium 4 processor can address?
What are the basic units of a microprocessor?

. What is the function of microprocessor in a system?

»—
PO YXXNNN W

— =
&

© Oxford University Press. All rights reserved.

13.

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

25.
26.
27.
28.
29.

30.

31.
32.

33.
34.
35.

36.
37.

38.

39.
40.

41.
42.
43.
44.
45.
46.

47.

48.

Microprocessors—Evolution and Introduction to 8085 45

How many memory locations can be addressed by a microprocessor with 14
address lines?

Name any two types of memories that are used in a computer.

Define computer hardware.

Define computer software.

What is the role of CPU in a computer?

What are input and output devices?

Describe and draw the diagram of Von—Neumann model.

Define the following abbreviations: CPU, RAM, and ROM

Name any three features of the 8085.

What are the operations performed by the ALU of the 8085?

What are the various registers in the 8085?

What is a flag? List its types. What is the structure of the flag register? Explain
each flag with an example.

List the 16-bit registers of the 8085 microprocessor.

What is a bus?

Why is the data bus bidirectional?

How are the signals of the 8085 classified?

How are clock signals generated in the 8085? What is the frequency of the internal
clock?

How does the 8085 processor differentiate a memory access (read/write) signal
from an 1/O access (read/write) signal?

Why is crystal a preferred clock source?

Which interrupt has the highest priority in the 8085? What is the priority of the
other interrupts?

When and where is the Ready signal used?

What are Hold and HLDA? How are they used?

Draw a general block diagram of a microprocessor-based system. Explain briefly
the various blocks of the system. Give some examples of the types of devices used
for each block.

What is a microprocessor? Sketch and explain the various pins of the 8085.
Explain the operation of these 8085 signals: Ready, S1 and SO, Hold and HLDA,
and ALE.

Explain the architecture of the 8085 with the help of its internal block schematic
diagram.

List the four categories of 8085 instructions that are used for data manipulation.
Define opcode and operand. Identify the opcode and the operand in the instruction
MOV H, L.

Explain the instruction XCHG.

What is an instruction? List any four arithmetic instructions and their uses.
Define stack. Explain the instructions related to stack operations.

When is the instruction XRA A used?

How many operations are there in the instruction set of the 8085 microprocessor?
Explain with examples the different instruction formats, based on the length of the
instructions.

List the four instructions which control the interrupt structure of the 8085
microprocessor.

What is the last instruction executed in a program? Why?

© Oxford University Press. All rights reserved.

46

49.
50.
S1.

52.
53.
54.

AR

Microprocessors and Interfacing

What is the significance of XCHG and SPHL instructions?

Explain the operation carried out when the 8085 executes the instruction RST 0.
What is addressing? What are the various addressing modes available in the
8085?

Explain direct addressing with an example.

Explain implied addressing with an example.

What are the machine cycles in the 8085 microprocessor?

THINK AND ANSWER

Compare the instructions CALL and PUSH.

What is the difference between the shift and rotate instructions?

How many address lines are there in a 4096 x 8 EPROM chip?

Explain the difference between the instructions JMP and CALL.

If the instructions CALL and RET were not available in the 8085, would it still be
possible to write subroutines? How would the subroutine be called? How would
one return to the main program?

© Oxford University Press. All rights reserved.

Methods of Data Transfer and
Serial Transfer Protocols

LEARNING OUTCOMES

After studying this chapter, you will be able to
* Different approaches to data transfer

* Different data transfer mechanisms

Serial data transfer protocols

understand the following:

; i
* Data transfer for slow peripheral devices

Interrupt structure in microprocessors

2.1 DATA TRANSFER MECHANISMS

Data transfer is essential in any microprocessor-

between the processor and the memory, the proce:
or

based system. It can take place
ssor and an input/output device,
em d-annput/output device, — —

Data can be transferred in several ways. The mechanism differs based on
characteristics such as the addressing of the devices, amount of data transferred,
method of data transfer, and i

nteraction among the devices. The data transfer
mechanism is divideq jgto the following types:

%\; Based on the addressing of the device—w

(i) V/O-mapped /O access (ii) Memory-mapped 1/0 access

Based on the program and hardware involved
(i) Programmed data transfer
(a) Polled mode of data transfer
(ii) Direct memory access
(a) Burst mode

(b) Interrupt-driven data transfer

(b) Cycle stealing mode
“Based on the method of data transfer and access
() Parallel data fransfer
(a) Simple data transfer (b) Handshake mode data transfer
(i) Serial data transfer

(@) Synchronous data transfer (b) Asynchronous data transfer

2.2 MEMORY-MAPPED AND I/O-MAPPED DATA TRANSFER
In I/O-mapped device data transfer

Separately. A separate address range
control signals are used for memory

method, 1/0 devices and memory are handled
is assigned for input/output devices. Separate
access and for I/O device read/write operation,

48 Microprocessors and Interfacing

The microprocessor has separate instructions for input and output device access,
such as the IN and OUT instructions of the 8085. As memory and /O device
accesses are governed by separate control signals, a single address can be assigned
to both an I/O device and a memory location.

-= In memory-mapped /O, each input/output device is treated like a memory
location. The same control signals are used for 1/O device read/write operation and
for memory access. Each input or output-device-is-identified by a unique address
in the memory address range. All m
tead data from memory a;eised to access input input and output devices. Since the /O
devices use some of the memory address space, the maximum memory addressing
capacity is reduced in this system.

2.3 PROGRAMMED DATA TRANSFER

The instructions for programmed data transfer are written and controlled by the
programmer and executed by the processor. The data transfer between the processor
and I/O devices (and vice versa) takes place by executing the corresponding
instructions. Programmed 1/O data transfers are identical to read and write
operations for memories and device registers. An example of programmed /O is a
device driver writing one data byte at a time directly into the device’s memory.

Programmed data transfer can take place ata time determined by the p
Based on the time of execution of the data transfer instruction, programmed data
transfer is divided into two types—polled mode of data transfer and interrupt-
driven data transfer.

In polled mode of data transfer, data is read from an input device when the
processor or CPU is ready. The processor then executes the data transfer instruction.
If the input device is not ready, the processor waits until the device is ready with
data. Similarly, data is written into an output device by the processor when it
executes the write instruction corresponding to that output device. The program is
written in such a way that the processor waits in a loop until the output device is
ready to receive data. Clearly, in waiting for the device to be ready, processor time
is wasted in this mode of data transfer.

In mterrupt -driven L&eﬁrﬂns

ita is read from the input device only when

ce is_ready; it gives an interrupt signal to
he_processor _indicating that the data is ready. In the interrupt service routine
(ISR), a program is executed to read the data from the corresponding input device.
Sumla:ly, the output device gives an interrupt to the processor when it can accept
daMheﬂgmers have to write an ISR for data transfer to the corresponding

5 output device. Interrupt-driven data transfer is advantageous as data transfer is
done only when the device is ready; the processor need not wait until the device
is ready. The processor can execute some other main routines and data transfer
program will be executed as ISRs. It is an efficient technique because processor
time is not wasted in waiting while an /O device is getting ready or not ready.
Slow /O devices can be interfaced for data transfer using the interrupt-driven
technique.

Methods of Data Transfer and Serial Transfer Protocols 49

2.4 DIRECT MEMORY ACCESS
In programmed I/O data transfer, the processor is e{cﬁv’cly i’n’v’olVed in the entire

data transfer]grocess mite

fer rate is limited. The processor is tied up
and processor time is wasted To overcome these disadvantages, the direct memory
access (DMA) method of data transfer is used.

Dlrect memory access is a technique to transfer data between the peripheral /O
devwes and the memory, w1thout the 1ntervent10n of the processor: ’]Zthasm idea
data dlrectly between the memory and the peripherals. Even
thoughthe t transfer is done without the processor, the processor initiates the DMA
operation. This techmque is generally used to transfer large blocks of data between
‘memory and I/O. During DMA data transfer, the processor/CPU is kept in an idle
suspended state called as Hold state. DMA performs high-speed data transfer to
and from mass storage peripheral devices such as hard disk drives, magnetic tapes,
CD ROMs, and video controllers. A hard disk may have a transfer rate of 5Mbps,
i.e., one byte every 200ns. Performing such data transfer using the CPU is not
only undesirable but also unnecessary, since the CPU transfer rate is limited by the
speed of the memory and peripheral devices.

Under normal circumstances, the CPU has full control of the address and data
buses in the system. When direct memory access occurs, an external device or
DMA controller takes over the temporary control of the system bus from the CPU.
The CPU writes necessary control words into the DMA controller, to indicate the
following details about the data transfer: read or write operation, device address
involved, starting address of the data memory block and the amount of data to
be transferred. After this initialization, the DMA controller takes care of the data
transfer. In the 8085, the hold request is received and acknowledged using the
HOLD and HLDA pins, respectively.

The sequence of events in a typical DMA process is as follows:

(i) The peripheral or the DMA controller asserts one of the request pins (such

as HOLD) for holding the processor.

(ii) The processor completes its current instruction and enters into the Hold
state. In the Hold state, the processor temporarily stops the execution of the
instruction and releases the address and data buses by making them enter
into a high impedance state.

(iii) The processor issues a Hold Acknowledge (HLDA) signal to indicate the
release of bus control to the peripheral or the DMA controller.

(iv) The DMA operation starts.

(v) Upon completion of the DMA operation, the peripheral or the DMA
controller removes the Hold signal applied to the processor and relinquishes
bus control.

In general, a DMA controller can interface several peripherals that may
request DMA with the processor. It is the controller that decides the priority of
DMA requests that are received simultaneously from many peripherals. It then
communicates with the peripheral device and the processor, and provides memory
addresses for transferring data. The 8237 programmable DMA controller is the

50 Microprocessors and Interfacing

controller device that is most commonly used with the 8085 and 8088. It is a

four-channel device, with each channel being dedicated to a particular peripheral

device. In addition, each channel is capable of addressing 64 KB of memory.
DMA data transfer can be divided into two types:

~i) Burst or block transfer mode

i) Cycle stealing or interleaved mode

In burst mode of DMA data transfer, a complete block of data is transferred in a
single DMA cycle. The system bus is released by the peripheral or DMA controller
only after the required bytes of data are transferred. In cycle stealing mode of data
transfer, a block of data is transferred over many DMA cycles. The system bus is
released to the processor after a byte or a set of bytes are transferred in one DMA
cycle. Thus, the processor is not suspended from its activities for a long time. It
takes several DMA cycles to complete the transfer of one block of data.

2.5 PARALLEL DATA TRANSFER

In parallel mode of data transfer, all the bits in a word are simultaneously
transmitted. Since the 8085 word consists of eight bits, all the eight bits are
transmitted and received in parallel form. In some special cases, the number of
data bits transferred will be lesser than eight. In general, parallel data transfer
is used for transfer of data over short distances such as within a system, within
a printed circuit board (PCB), etc. It can be done either in polled mode or in
interrupt-driven mode. In polled method, data is read from the input device by the
processor at a time determined by the processor. This polled mode of data transfer
can be done in two ways—synchronous or simple I/O and handshake I/O.

In simple or synchronous mode, data is read from the input device by the
processor irrespective of the status of the input device. It is assumed that the
input device is in synchronism with the processor and that it is ready with data
whenever the processor reads the data. Similarly, the data is written into the output
device irrespective of its status. The processor assumes that the output device is in
synchronism with the processor.

In handshake 1/O mode, the processor checks for the status of the I/O devices
before data transfer. An input device gives a signal to the processor, indicating that
it is ready with the data. The processor checks continuously for the reception of
this signal and upon reception can read the data. Similarly, an output device gives
a signal to the processor, indicating that it can accept data. The processor, before
writing data to the output device, checks for this signal. If the signal indicating
readiness of the output device is available, the processor can write the data to
the output device. The signals that are transferred between the devices and the
processor are called handshake signals.

2.6 SERIAL DATA TRANSFER

Parallel data transfer has the drawback of needing several wires to transfer all the
bits of data. So, it can not be used effectively for long distance transfers. As one
wire is used for each bit, byte-wise data transfers are eight times more expensive

Methods of Data Transfer and Serial Transfer Protocols 51

than a single bit transfer.Serial data transfer is the solution for data transfers over
long_distances. It is a low-cost way to-send-data 6ver long distances. In serial
data transfer, only Wm transfer lineS All the bits in

a data word can be transmitted by using a sht ister-and transferring the data
bit by bit.jParallel—to—sedal data conversion is done by a device called universal
“asynchronous receiver—transmitter (UART).

In serial data transfer, the following three aspects are important: First, the speed
or frequency at which the bits are transmitted into the serial data line. The frequency
at which the data is transmitted serially is technically called baud rate. Baud rate
is the measure of the number of bits transmitted over a second. Second, the mode
of data transfer. Serial data transfer can be done in two modes—synchronous
and asynchronous. Third, the voltage levels for logic 1 and logic 0 for the data
being transmitted. Various serial communication protocols define these aspects as
standards for proper communication.

In synchronized data transfer, the device that sends the data and the device that
receives the data are synchronized with the common clock. In synchronous mode,
data transfer takes place with a fixed and known time frame. In asynchronous
data transfer, data words are transmitted with a random time frame between them.
Most microprocessor- and computer-related data communications are based on
the asynchronous mode of transmission. Microprocessors use interrupts and other
software techniques to synchronize random timing between data words, so as to
receive the data completely.

The modem plays an important role in serial transmission. It is a device that
allows transmission of serial data over communication lines such as telephone
lines. In general, communication lines are incapable of carrying the voltage changes
required for a direct digital connection. A modem overcomes this limitation by
modulating digital information into analog signals using one of the modulation
techniques and demodulating it back into digital information upon reception.

The computer or a microprocessor terminal that initiates the serial
communication is called data terminal equipment (DTE). The final equipment
that receives the serial data is also called data terminal equipment. Data
C ication equip t (DCE) is a device that connects the DTE to a
transmission line. So, the transmitting DTE sends the serial data to the DCE.
The DCE is generally a modem. This helps in level shifting and transmitting the
serial data over the chosen transmission line. Similarly, at the receiving station,
a DCE (generally a modem) receives the signal and transfers the serial data to. &s
the receiving DTE. —_— ¢

This section introduces the RS-232, RS-485, general-purpose interface bus
(GPIB), and IEEE 488 standards, which are used for data transfer between two
computer or processor systems. RS-232 is a common serial communication
protocol used in computer systems.

2.6.1 Introduction to RS-232 Standard
RS-232 is a serial communication standard given by the Electronic Industries
Association (EIA), an organization represented by a group of electronic industries.

52 Microprocessors and Interfacing

It is used for one-to-one communication between two computers or processor
systems. RS-232 standard can also be used with modems. RS-232 can be used to
interface a processor system or DTE with a modem/DCE. It is the standard used
on personal computers’ COM port. The maximum possible speed with RS-232 is
20kbps and the maximum possible cable length is 50 feet.

Logic 1 is represented by voltages in the range —3 V to =25V, and typically by
~12V. Logic 0 uses the voltage range from 3V to 25V, and typically 12 V. When
no data is sent over the transmission line and the transmitter is inactive, the voltage
level on the line is kept at a logic high level, i.e., —12 V. Figure 2.1 shows the RS-
232 voltage levels.

EvEE

—12V—f—~‘ ? ? ? T T

o ingcﬁve condition . 0 0

|

Fig.2.1 RS-232 voltage levels

RS-232 is a serial communication standard for asynchronous communication.
The transmitter places logic 1 on the data bus when it is inactive. To start
transmission, the transmitter sends a logic 0 as the start bit. The start bit makes the
receiver wake up from idle mode and start receiving data. After the start bit, data
bits are transmitted on the serial transmission line. The length of the data bits can
be five, six, seven, or eight depending on the transmitting equipment. The least
significant bit of the data byte is transmitted first in the data line. The data bits are
succeeded by a parity bit or any other error correcting bit set by the programmer.
After this, the stop bit is sent by the transmitter to indicate the end of the data bits.
Logic 1 is used as the stop bit in RS-232 communication standard. The format of
the signal transmitted is shown in Fig. 2.2. Here, the ASCII code for the character
A is shown being transmitted on the line with the parity bit as 1. The format uses
two stop bits of logic 1 consecutively.

;li,.o "BO‘J Bll B2 | B3| B4 | B5| B6 | P S1:ffie ST
T - A
Parity bit Stop bits

Start bit o ~ ASCII character

‘A’ (100 0001) Binary levels transmitted

Fig.2.2 RS-232 bit format for transmitting character ‘A’

Methods of Data Transfer and Serial Transfer Protocols 53

Another parameter specified by the RS-232 communication standard is the
baud rate. It is the rate at which data is transmitted and received. The baud rate
and the timing for each bit is related by the following formula:

Time period for each bit in seconds = 1/baud rate

Table 2.1 lists the standard baud rate used by the RS-232 communication
standard and the corresponding bit duration.

RS-232 communication connection Table 2.1 Bit timings for standard

is done through standard connectors. baud rates

TW(.) types of RS-232. connectors are TR T tor saehion
available. One has 25 pins and the other mitrossconds
has nine. Details of the DB25S and DB9S

connectors are shown in Fig. 2.3. A cable 1200 833

with any one of these connectors is used 2400 417

to connect the DTE (computer) with the 9600 104

DCE (modem). 19,200 52

(e N S|
OROIEWOHO O

O
O
O
O=

o)
PO 0 00 00000
25 24 23 22 21 20 19 18 17 16 15 14
& @ ®
Pin Signal Pin Signal
2 TXData 2 RXData
Ak 3 RXData 3 TXData
vt 4 RTS 4 DR
9.8 7 6 5 €IS 5 GND
6 DSR 6 DSR ;
®) 7 GND 7 RIS
20 DTR 8. «CI8 i

Fig.2.3 Basic details of RS-232 (a) DB25S and (b) DB9S connectors

The basic signals used in these connectors are given in Table 2.2.

Table 2.2 Signals of RS-232 connection

signil S : Function

Receive data line (RXD) Data is received by the processor on this line

Transmit data line (TXD) Data is sent by the processor through this line

Data Terminal Ready (DTR) Signal sent out by the processor to indicate that it is
ready for Communication

Data Set Ready (DSR) oignal sent by the mogern to the processor to
m.dlcate that it js ready to transmit or receive

Request to Send (RTS) ,sn‘fi? altsetrl:t 3.2 the processor to the modem to

cate it i
Clear to Send (CTS) ,Sig“al Sema:’;t :l:eady b

indicate thag modem to the processor to

tit can accept data for transmission

54 Microprocessors and Interfacing

Figure 2.4 shows the standard connection for RS-232 communication between
two DTEs through two modems.

TXD T ission line < ™D
RXD < > RXD
RTS [<— RTS
CTS > CTS
DTR («<— DTR
DSR —> DSR
GND <— GND
DTE DCE modem DCE modem DTE

Fig.2.4 RS-232 communication connection using modems and line

The system uses all handshake signals such as RTS, CTS, DTR, and DSR
mentioned in Table 2.2. Although the figure does not indicate the handshake signals
between the two modems, some amount of signal transfer takes place between the
modems also.

If there is no modem, and two processors or computer systems are directly
connected using the serial communication line, the connection shown in Fig. 2.5 is
used. Here, the handshake signals are not used, since they are connected within the
DTE system itself. The communication assumes that the receiver is always ready
to receive data.

9-pin 9-pin
™o P 3 xp
2 2
RXD RXD
7 7 -
RTS 7 RTS -
e f
CTS [« TS E
prR [+ 4 pmr]
6 6 g
DSR DSR
GND P 3 GNp E

Fig.2.5 RS-232 connections with no handshaking and DCE (modem)

2.6.2 Introduction to RS-485 Standard
RS-485 is another serial communication standard defined by the EIA. The major
difference between RS-232 and RS-485 is that RS-232 is used for one-to-one
communication, whereas RS-485 is used in a network environment. The major
features of RS-485 standard are as follows:
(i) RS-485 can connect several processors or DTEs in a network structure for
communication.

Methods of Data Transfer and Serial Transfer Protocols 55

(i) RS-485 can be used for communication over longer distances than RS-232.
(iif) RS-485 can communicate with higher baud rates, i.e., faster than RS-237.
(iv) One RS-485 transmitter can drive up to 32 receivers in a network.

(v) RS-485 transmitter uses two signal lines—tsig and —sig. The RS-485
receiver senses the voltage difference between these lines. So, any voltage
difference on the ground line between the transmitter and the receiver does
not affect the reception. However, RS-232 receiver senses the voltage level
of the signal with respect to the ground and so, the noise voltage level may
affect the data sensed.

By default, all the senders on the RS-485 bus are tri-stated, i.e., in high
impedance state. In higher-level protocols, one of the nodes is defined as a master
that sends queries or commands over the RS-485 bus. All other nodes receive these
data. Depending of the information contained in the data sent, zero or more nodes
on the line respond to the master. In this situation, bandwidth of almost 100% can
be used. There are other ways of implementing the RS-485 network, where every
node can start a data session on its own. This is comparable to the way Ethernet
networks function. Since there is a possibility of data collision in this type of
implementation, theoretically only 37% of the bandwidth will be effectively used.
With such an implementation of an RS-485 network, it is necessary to implement
error detection in the higher-level protocol so as to detect data corruption and
resend the information later.

2.6.3 GPIB/IEEE 488 Standards

Hewlett-Packard designed the Hewlett-Packard Interface Bus (HP-IB) to connect
their programmable smart instruments to computers. This standard suppoi'ts many
devices connected to a common bus and forming a network. Communication can
take place between all the devices connected to the bus. This standard has a higher
transfer rate of up to 1 Mbyte/s, in comparison with the RS-232 and RS-485. This
standard has been named IEEE Standard 488. HP-IB is also called GPIB. The
devices in the GPIB bus can be connected in a linear network, star configuration,
or a combination of both.

GPIB standard categorizes the devices connected together into three types—
talkers, listeners, and controllers. A talker can send data to other devices. A listener
isa device that can receive data from other devices connected in the bus. A controller
is a device that determines which of the devices should be listeners and which of
them should be talkers. In general, a GPIB bus has one controller and many talkers
and listeners. Some of the devices in the bus network can act as both talkers and
listeners. Communication can take place from one talker to one listener or from
one talker to many listeners in the bus. The controller decides the data transfers
and also issues commands to other devices. A bus system with only one talker
does not need any controller. The talkers and listeners are generally computer or
microprocessor systems. The microprocessor systems can be configured as talkers
or listeners by interfacing it to the Intel 8291 GPIB talker—listener. Similarly, Intel
8292 GPIB controller can be interfaced to the microprocessor or computer systems
to manage the GPIB communication.

56 Microprocessors and Interfacing

The GPIB interface system
uses 24-pin connectors, as
shown in Fig. 2.6.

transmission and reception of NDAC

20 ||| GND (Twisted pair with NDAC)

Among the 24 pins, eight O
lines are bidirectional data
lines and eight are ground \
lines. Among the remaining DIo1 ||| 1 | 13 ||| DIOS
eight lines, three pins are DI02 ||| 2 | 14 ||| DI0O6
for handshake signals and DIO3 || 3 | 15 ||| DI07
five are for bus interface Dio4]| 4 | 16 ||| D108 |
management signals. The EDHHI 51T | REN : il I
eight data lines are used for 0 [l L5 GND (vised puesatfD S |
NRED ||| 7 | 19 ||| GND (Twisted pair with NRFD)
8
9

data, addresses, commands, IFC 21 ||| GND (Twisted pair with IFC)

and status bytes. SRQ| [[10 | 22 ||| GND (Twisted pair with SRQ)
The five bus interface ATN ||| 11 | 23 ||| GND (Twisted pair with ATN)

management lines and their SHIELD ||| 12 | 24 ||| SIGNAL GROUND |

functions are as follows: / |
(i) IFC (Interface O @

(ii)

(iii)
(iv)

)

Clear)—The con- \ J

troller in the bus sends - . e
this signal to all other Fig.2.6 GPIB bus connector and signals
devices in the bus to

initialize the bus and reset the system communication upon powering on.
ATN (Attention)—The controller sends an active low ATN signal to indicate
that it is sending a universal command or an address on the bus. This signal
is made high for data transfers.

REN (Remote Enable)—The controller makes this signal active to directly
control a device instead of the front panel controllers in the device.

EOI (End or Identify)—The EOI signal is issued by the talker to indicate
the end of block transfer of data. The controller uses the EOI line to make
devices identify themselves in a parallel poll.

SRQ (Service Request)—This signal is made active by any device that
requires to transfer data on the bus.

Three lines are used as handshake signals to control the transfer of message
bytes between devices. The process is called a three-wire interlocked handshake
and it is used to transfer data from different devices at different transfer rates.
It guarantees that message bytes on the data lines are sent and received without
transmission error.

O]

(i)
(i)

NRFD (Not Ready for Data)—This signal is sent by all devices when they
are not ready to receive a message byte. When receiving data, the devices
make this line inactive by making it low.

DAV (Data Validy—The controller makes DAV low while sending
commands, and the talker drives DAV low while sending data messages.
NDAC (Not Data Accepted)—The active low NDAC signal is low until the

Methods of Data Transfer and Serial Transfer Protocols 57

transmitted data is received by the slowest listener. This signal indicates
that a device in the bus has not received a message byte. Usually, the talkers
wait for this signal and once the NDAC is high, the DAV signal is removed
by the talkers.

The GPIB uses active low logic with standard TTL levels. For example, when
DAV is active, the devices send a TTL low level (0.8 V), and when DAV is made
inactive, the line has a TTL high level (>2.0V).

2.7 INTERRUPT STRUCTURE OF A MICROPROCESSOR

Interrupt is a mechanism by which the processor (CPU) is made to transfer control
from its current program execution to another program of more importance or
higher priority. The interrupt signal may be given to the processor by any external
peripheral device. In general, interrupts are generated by a variety of sources,
either internal or external, to the CPU. Interrupts are the primary means by which
input and output devices obtain the services of the CPU.

The program or the routine that is executed upon interrupt is called interrupt
service routine (ISR). The processor must temporarily stop its current task and
execute the ISR, which relates specifically to the event or device that issues
the interrupt signal. After execution of the ISR, the processor must return to
the interrupted program. Processors have many interrupt signals and proper
identification of interrupt signals is done internally by the processor.

The key features in the interrupt structure of any microprocessor are as follows:

(i) The number and types of interrupt signals available.

(ii) The address of the memory where the ISR is located for a particular interrupt
signal. This address is called interrupt vector address.

(iii) The masking and unmasking feature for the interrupt signals. This feature
allows the programmer to execute the ISR only when required.

(iv) The priority of interrupts when more than one interrupt signals are available

(v) The timing of the interrupt signals

(vi) The handling and storing of information about the interrupted program
(status information). This information must be loaded into the CPU when
the ISR is executed. When the return instruction is executed, control is
transferred back to the interrupted program.

2.8 TYPES OF INTERRUPTS

Interrupts are classified based on their maskability, interrupt vector address, and
source. These classifications are discussed in Sections 2.8.1-2.8.3.

2.8.1 Vectored and Non-vectored Interrupts
The vectored and non-vectored interrupts are as follows:

(i) Non-vectored interrupts have fixed interrupt vector address for ISRs of
different interrupt signals. They are useful for small systems, where there
are few interrupt sources and the software structure is not complicated.

(ii) Vectored interrupts require the interrupt vector address to be supplied by

58 Microprocessors and Interfacing

the external device that gives the interrupt signal. This technique, called
vectoring, is implemented in a number of ways.

2.8.2 Maskable and Non-maskable Interrupts
The maskable and non-maskable interrupts are as follows:
(i) Maskable interrupts are interrupts that can be blocked; the corresponding ISRs
are not executed. The masking can be done by software or hardware means.
(i) Non-maskable interrupts (NMIs) are interrupts that are always recognized;
the corresponding ISRs are executed.

2.8.3 Software and Hardware Interrupts
The software and hardware interrupts are as follows:

(i) Software interrupts are special instructions, which after execution transfer
the control to a predefined ISR. These instructions are included in the
program by the programmer.

(ii) Hardware interrupts are signals given to the processor from external devices,
for recognition as an interrupt and execution of the corresponding ISR.

2.9 INTERRUPT HANDLING PROCEDURE

‘When an interrupt signal is recognized, the processor will have to store information
about the current program before executing the ISR. The processor checks for the
interrupt request signals at the end of every instruction execution. If the interrupt is
masked, it will not be recognized until interrupts are re-enabled. The CPU responds
to an interrupt request by a transfer of control to another program, in a manner
similar to a subroutine call. This is shown pictorially in Fig. 2.7. The sequence of
operations that take place when an interrupt signal is recognized is as follows:

(i) Save the program counter (PC) contents (address of the next instruction)
and supplementary information about the current state (flags, registers, etc.)
in the stack.

(ii) Load PC with the beginning address of an ISR and start to execute it.

(iii) Finish ISR when the return instruction is executed.

(iv) Return to the point in the interrupted program where execution was
interrupted by reloading the saved program counter content from the stack.

ISR ISR ISR

Main Main Main Main

Fig.2.7 Transfer of control from main memory to ISR

Interrupts and stack memory Stack is a special memory organization that
operates on the last-in, first-out (LIFO) principle. The data stored recently is retrieved
first. Similarly, data stored first in the stack is read last. Stack is a temporary storage
memory in the RAM area. It is basically administered by a special register called

Methods of Data Transfer and Serial Transfer Protocols 59

stack pointer (SP). SP register always contains the address of the top of the stack
(ToS). Storing a data in the stack memory pointed to by the stack pointer is called
push operation. Reading a data from the stack is called pop operation.

Stack is used by the interrupt system of the microprocessor for implementing
the subroutine call and return mechanism, passing parameters to subroutines, etc.
When the transfer of control takes place from the interrupted program to the ISR,
the program counter content is stored in the stack, because after the execution of
the ISR, the control must return to the program counter content. To facilitate this
control transfer, the stack pointer must be properly initialized to a physically available
memory with sufficient memory range. In the 8085, the stack memory grows towards
lower addresses and so, the stack pointer must be initialized with the highest memory
address allotted for the stack operation.

The stack can be accessed by the instructions PUSH and POP. The ISRs should
not disturb the return address stored by the processor in the stack. So, the ISRs
should have equal number of PUSH and POP instructions. This condition ensures
that the return address stored in the stack is retrieved properly by the processor.

POINTS TO REMEMBER

e Different data transfer schemes are available for data transfer between two
processors or between a processor and an I/O device.

o The different data transfer schemes are programmed data transfer and DMA, polled
and interrupt-driven, and serial and parallel data transfer.

e Various serial port standards such as RS-232, RS-485, IEEE488, and GPIB are used
for data transfer in different applications.

o Interrupts are an important mechanism available in the processors to temporarily
stop current program execution and execute a program of higher priority.

o Interrupt vector addresses and the source, priorities, and timing of interrupts are very
important to program and understand the operation of interrupts in a processor.

o Interrupts can be either hardware generated and random, or software generated and
programmed.

e The processor can be interrupted before the completion of an interrupt service
routine (ISR) if the program has executed the EI instruction. This enables nested
ISR execution.

KEY TERMS

DMA 1t is a special method of data transfer between I/O devices and memory
without the need of processor for data transfer.

I/O-mapped I/O scheme This scheme uses special control lines and different
address space for accessing 1/O devices. The processor needs separate instructions for
I/0O-mapped I/O access.

Interrupt priorities The sequence or order in which the interrupts are sensed by the
microprocessor. This order decides which ISR will be executed first, when more than
one interrupt is applied simultaneously to the processor.

Interrupt service routine The routine executed by the processor upon sensing an
interrupt signal is called interrupt service routine.

60 Microprocessors and Interfacing

Interrupt vector address It is the location to which program control is transferred,
upon receipt of an interrupt.

Interrupt-driven I/O scheme This scheme uses a special signal from the O
devices to initiate a data transfer by the processor.

M y-mapped I/O sch This scheme uses the same instructions and hardware
used for memory accesses, for accessing I/O devices.

Parallel data transfer It is the method in which all the bits of a word are transmitted
simultaneously.

Polled I/O transfer This method uses a software routine to access and transfer data
between processor and /O devices.

Serial data transfer It is the method of transferring a single bit at a time over a

transmission line.

REVIEW QUESTIONS

1. Explain memory-mapped I/O.
2. What is /O-mapped I/O?
3. Compare memory-mapped I/O with peripheral-mapped I/O.
4. What are the various schemes of data transfer?
5. Discuss interrupt-driven data transfer scheme.
6. Explain DMA method of data transfer.
7. Ifthe speed of the /O devices is lesser than that of the processor, what type of data
transfer scheme can be used?
8. What are the advantages of serial data transfer?
9. Compare synchronous and asynchronous modes of data transfer.
10. Explain the RS-232 method of serial data transfer.
11. What is meant by ‘priority of interrupts’? Explain the operation of the interrupts
structure of the 8085, with the help of a circuit diagram.
12. Distinguish between (i) vectored and non-vectored interrupt, (ii) maskable and
non-maskable interrupt, (iii) software and hardware interrupt.
13. Explain interrupt-driven /O technique. How does the 8085 respond to the INTR

interrupt?

THINK AND ANSWER

What are the ways to identify the device that has interrupted the processor in a
microprocessor-based system?

Part |

-
INTEL 8086—16-BIT MICROPROCESSORS

Intel 8086 Microprocessor Architecture, Features, and Signals

Addressing Modes, Instruction Set, and Programming of 20’6

e 8086 Interrupts

o Memory and VO Interfacing

e Features and Interfacing of Programmable Devices for
8086-based Systems

« Multiprocessor Configuration

o 8086-based Systems

Intel 8086 Microprocessor
Architecture, Features, and Signals

LEARNING OUTCOMES

After studying this chapter, you will be able to understand the following:

* Internal architecture of the 8086, which consists of an execution unit and a bus interface
unit

Different general-purpose and segment registers and their functions

Accessing of instructions and data from the memory using the segment and offset
addresses

Pin details of the 8086
Functions of the maximum mode and minimum mode signals
Differences between the 8086 and 8088

3.1 INTRODUCTION

In 1978, Intel released its first 16-bit microprocessor, the 8086, which executes the
instructions at 2.5 MIPS (million instructions per second). The execution time for
one instruction is 400 ns (= 1/MIPS = 1/(2.5 x 106)). The 8086 can address 1 MB
(IMB =22 bytes) of memory, as it has a 20-bit address bus. The width of the data
bus in the 8086 is 16 bits. This higher execution speed and larger memory size
have enabled the 8086 to replace the smaller minicomputers in many applications.
Another feature in the 8086 is the presence of a small six-byte instruction queue
in which the instructions fetched from the memory are placed before they are
executed.

3.2 ARCHITECTURE OF 8086

The functional block dlagram of the 8086 is shown in Fig. 3.1. It is subdivided into
the following two units:
(i) An execution unit (EU), which includes the ALU, eight 16-bit general-
purpose registers, a 16-bit flag register, and a control unit.
(ii) Abus interface unit (BIU), which includes an adder for address calculations,
four 16-bit segment registers (CS, DS, SS, and ES), a 16-bit instruction
pointer (IP), a six-byte instruction queue, and bus control logic.

3.2.1 Execution Unit
The EU consists of eight 16-bit general-purpose registers—AX;-BX, CX, DX,

L, and DI. Among these registers, AX, BX, CX, and DX can be further

divided into two 8-bit registers—AH and AL, BH and BL, CH and CL, and DH
and DL, respectively, as shown in Fig. 3.1. The general-purpose registers can

e
64
|cropmcessors and Interfacing

[dess @entina fion

Address bus

General-purpose
registers

L 1
\\arf /A

Six bytes
Instruction queue

Qi & ~p s Execution unit (EU)

Bus interfacing unit (BIU)

Fig.3.1 Functional block diagram of the 8086

be used to store 8-bit or 16-bit data during program execution. In addition, each
register has the following special functions:

——(i) AX/AL: AX or AL is used as the accumulator. It is used in the multiply,
divide, and input/output (I/O) operations, and in some decimal and ASCII
adjustment instructions.

—(ii) BX: The BX register holds the offset address of a location in the memory.
1t is also used to refer to the data in the memory using the look-up table
technique, with the help of the XLAT instruction.

~—iii) CX/CL: CX is used to hold the count value while executing the repeated
used to hold the count value while executing the shift/rotate instructions.
The count value indicates the number of times the same code has to be
executed when the LOOP instruction is used, and the number of times the
data item has to be shifted/rotated when the shift/rotate instruction is used.

~(iv) DX: DX is used to hold a part of the result during a multiplication operation
and a part of the dividend before a division operation. It is also used to hold
the I/O device address while executing the IN and OUT instructions.

SP: The SP register or the stack pointer is used to hold the offset address of

the data stored at the top of the stack segment. SP is used along with the SS

register to decide the address at which the data is to be pushed or popped,
during the execution of the PUSH or POP instruction, respectively.

(v

<

Intel 8086 Microprocessor Architecture, Features, and Signals 65

(vi) BP: The BP register is called base pointer. It is also used to hold the offset
address of the data to be read from or written into the stack segment.

(vii) SI: The SI register is called source index register. It is used to hold the
offset address of the source data in the data segment, while executing string
instructions.

(viii) DI: The DI register is called destination index register. It is used to hold the
offset address of the destination data in the extra segment, while executing
string instructions.

Here, the term segment refers to a portion of the memory where the data, code,
or stack for a program is stored. In the 8086, the maximum size of a segment can
be 64 KB and the minimum size can be even 1 byte. A segment always begins at a
memory address divisible by 16. This means that the starting address of a segment
in the memory in hexadecimal form is XXXXOH. The reason for this is explained
in Section 3.2.2.

The flag register of the 8086 is shown in Fig. 3.2.

D15 |D14 |D13 |D12 [D11 |DI0 [D9 [D8 |D7 |D6 |D5 (D4 |D3 |D2 |DI |DO

E ol S IOF IDE IF: TF [SF: |ZE |=| JAE 4= & BEe sl Glion
NOTE B marked == Tntelreserved bits (normally set 10 0)

Fig.3.2 Flag register of the 8086

The flags in the flag register can be classified into status flags and control flags.
The ﬂags@F, PF, AF, ZF, SF, and O'f)re called status flags, as they indicate the
status of the result that is obtained after the execution of an arithmetic or logic
instruction. The flags DF, IF, and TF are called control flags, as they control the
speration of the CPU. The functions of the different flags are as follows:

(i) CF (carry flag): CF holds the carry after an 8-bit or 16-bit addition or the
borrow after an 8-bit or 16-bit subtraction operation.

(i) PF (parity flag): If the lower eight bits of the result have an odd parity (i.e.,
odd number of 1s), PF is set to 0. Otherwise, it is set to 1.

(iii) AF (auxiliary carry flag): AF holds the carry after addition or the borrow
after subtraction of the bits in the bit position 3 (the LSB is treated as bit
position 0). This flag is used by the DAA or the DAS instruction to adjust
the value in AL after a BCD addition or subtraction, respectively.

(iv) ZF (zero flag): ZF indicates that the result of an arithmetic or logic operation
is zero. If Z = 1, the result is zero and if Z = 0, the result is not zero.

(v) SF (sign flag): SF holds the arithmetic sign of the result after an arithmetic
or logic instruction is executed. If S = 0, the sign bit is 0 and the result is
positive.

(vi) TF (trap flag): TF is used to debug a program using the single-step

.. technique. If it is set (i.e., TF = 1), the 8086 gets interrupted (trap or single-

o€ step interrupt) after the execution of each instruction in the program. If TF
is cleared (i.e., TF = 0), the trapping or debugging feature is disabled.

66 Microprocessors and Interfacing

(vii) DF (direction flag): DF selects either the increment or decrement mode for
the DI and/or SI register, during the execution of string instructions. If D
=0, the registers are automatically incremented; if D = 1, the registers are
automatically decremented. This flag can be set and cleared using the STD
and CLD instructions, respectively.

(viii) IF (interrupt flag): IF controls the operation of the INTR interrupt pin of
the 8086. If IF = 0, the INTR pin is disabled and if IF = 1, the INTR pin is
enabled. This flag can be set and cleared using the STI and CLI instructions,
respectively.

(ix) OF (overflow flag): Signed negative numbers are represented in the 2’s
complement form in the microprocessor. When signed numbers are added
or subtracted, an overflow may occur. An overflow indicates that the result
has exceeded the capacity of the machine. For example, if the 8-bit signed
data 7EH (= +126) is added with the 8-bit signed data 02H (= +2), the
result is 80H (= —128 in the 2’s complement form). This result indicates
an overflow condition and the overflow flag is set during the given signed
addition operation. In an 8-bit register, the minimum and maximum value
of the signed number that can be stored is —128 (= 80H) and +127 (= 7FH),
respectively. In a 16-bit register, the minimum and maximum value of
the signed number that can be stored is —32,768 (= 8000H) and +32,767
(= TFFFH), respectively. For operations on unsigned data, OF is ignored.

3.2.2 Bus Interface Unit

There are four segment registers CS, DS, SS, and ES in the 8086. The function
of these registers is to indicate the starting or base address of the code segment,
data segment, stack segment, and extra segment, respectively, in the memory. The
code segment contains the instructions of a program and the data segment contains
data for the program. The stack segment holds the stack of the program, which
is needed while executing the CALL and RET instructions and also to handle
interrupts. The extra segment is an additional data segment that is used by some
string instructions.

The base address of any segment can be obtained by appending four binary 0s
to the farthest right portion of the content of the corresponding segment register,
which is the same as appending the hexadecimal digit 0. It is also equivalent to
shifting the content of the segment register left by four bits. Hence, a segment in the
8086 always starts at a memory address that is divisible by the decimal number 16
(also known as 16-byte boundary). This is illustrated with an example as follows:

Example 3.1
Let us assume that the segment registers have the following values stored in them:
CS DS SS ES
[2000H] [4000H | [6000H | [8000H |

The base address of the code segment is obtained by appending four binary
0s (same as the hexadecimal digit 0) to the content of CS. Therefore, the base

PA VA dones » £ seqperen }
“\ L~y SN)

3 () g
N = Intel- 8086 Microproces:

address is 20000H. Similarly, the

nd Signals 67
. re, Features: 2
sor Archlcectu

Address

Memory 00000H

base address of the data segment,
stack segment, and extra segment
are 40000H, 60000H, and 80000H, 20000H ¢
respectively. Figure 3.3 shows the Code
location of these segments in the segment JFFFFH
memosy. 40000H
If the size of two different segments IMB |
is less than 64KB, it is possible Is)e";‘;em 4FFFFI~I;Aem0ry b
that the two segments may overlap 60000
(i.e., another segment may begin
within the 64KB allocated to Stackem
a segment). For example, let a e 6FFFFH
particular application in the 8086 80000H
require a code segment of size 1KB Extra
and a data segment of size 2KB. If segment SFFFFH i
nt is stored in the g
memory from the address 20000H, ot

it will end—at-the-memory address
203FFH. The data segment can be 9 " — .
STor: m the ac Fig.3.3 Location of various segments
stored_from_the address 20400H g e oty

(which is the next immediate 16- :
byte boundary in the memory). The CS and DS registers are loaded with the values
2000H and 2040H, respectively, for running this application in the 8086.

TR T T R R

3.2.3 Minimum and Maximum Mode Operations

The 8086 can be operated in either minimum or maximum mode. By connecting
the MN/MX pin to logic 1, the 8086 is operated in minimum mode. In the
minimum mode of operation, the 8086 itself generates all the control signals.
There is a single 8086 in the minimum mode system. The other components in a
minimum mode 8086 system are latches, transceivers, clock generator, memory,
and /O devices. Chip selection logic may be required for selecting memory or /O
devices, depending upon the address map of the system.

The 8086 is operated in the maximum mode by connecting the MN/MX pin
to the ground. In this mode, the 8086 generates the status signals and another
chip called bus controller (8288) generates the control signals using this status
information. In the maximum mode, there may be more than one 8086 in the
system configuration. The other components in the system are the same as in the
minimum mode 8086 system.

3.3 ACCESSING MEMORY LOCATIONS
Each address in the physical memory (ROM/EPROM) is called a physical address.

To_access an operand (either data or instruction) from a particular segment of the
memory, the 8086 has to first calculate the physical addressof that operand. To

accomplish this task, the 8086 adds the base address of the corresponding segment

68 Microprocessors and Interfacing

with an offset ad- Table 3.1 Segment registers and default offset registers in
dress, which may the 8086

be the content of
a register, an 8-bit

Segment registers Default offset registers

or 16-bit displace- cs P
ment given in the DS BX, SI, DI, 8- or 16-bit displacement
instruction, or a ss SP and BP

combination of
both, depending
upon the address-
ing mode used by the instruction. The designers of the 8086 have assigned certain
register(s) as default offset register(s) for the segment registers, as shown in Table
3.1. However, this default assignment can be changed by using the segment over-
ride prefix in the instruction, which is explained in Chapter 4 (Section 42).

ES DI for string instructions

Example 3.2
The fetching of an instruction from the memory in the 8086 is explained in this
example.

Let us assume that the CS register has the value 3000H and the IP register has
the value 2000H. To fetch an instruction from the memory, the CPU calculates the
memory address from which the next instruction is to be fetched, as follows:

CS x 10H = 30000H Base address of the code segment
+IP= 2000H—> Offset address
32000H—> Memory address from where the next instruction is taken
REER e A8
Example 3.3
Let us see the fetching of data from the memory using the DS and BX registers,
with an example. Consider the execution of the instruction MOV AX, [BX].

The square bracket around BX in this instruction indicates that the data specified

by the BX register is in the memory; the BX register holds the offset address of

Memory Address
10000H
AH AL
3AH 13000H |
4BH 13001H
1 byte
A~ . S oS T e -

Fig.3.4 Execution of the instruction MOV AX, [BX]

Intel 8086 Microprocessor Architecture, Features, and Signals 69

the data in the data segment. The data obtained from the memory is moved to the
AX register. Let us assume that DS and BX have the values 1000H and 3000H,
respectively. To calculate the memory address from where the data has to be taken,
the CPU does the following operation:

DS x 10H =10000H —> Base address of the data segment

+BX = 3000H —> Offset address
13000H —> Memory address from where the data is taken
This is also explained in Fig. 3.4.

Example 3.4 .
Let us see the pushing of data into the stack segment using the PUSH instruction,
with an example.

Assume that the SS and SP registers have the values 3000H and 0105H,
respectively. Consider the execution of the instruction PUSH AX by the 8086. The
steps carried out by the 8086 to execute the PUSH AX instruction are as follows:

(i) SPisdecremented by 1 (i.e., SP=0104H) and the content of the AH register
(higher byte of AX) is pushed into the offset address specified by SP in the
stack segment, as shown in Fig. 3.5 (a).

(ii) SPis again decremented by 1 (i.e., SP = 0103H) and the content of the AL
register (lower byte of AX) is pushed into the offset address specified by SP
in the stack segment, as shown in Fig. 3.5 (b).

Memory Address
30000H—Base address of
stack segment (=SS X 10H)
SP = 0104H
3CH 30104H—(SS X 10H + SP)
(@
Memory Address
30000H—(SS X 10H)
AH AL
3CH 2BH SP=0103H
2BH 30103H—(SS X 10H + SP)
3CH 30104H
(b)

e e —

Fig.3.5 PUSH AX (a) Pushing the first byte of AX onto the stack segment
(b) Pushing the second byte of AX onto the stack segment

70 Microprocessors and Interfacing

The instruction queue is six bytes long and stores the pre-fetched instructions
from the code segment. From there, the instruction is taken to the instruction
decoder, where it is decoded. The decoder passes the decoded information to the
timing and control circuit, which in turn generates the various control signals to
execute the instruction. Whenever this decoded instruction requires branching
(which arises when conditional or unconditional jump instructions are decoded),
the instruction queue is flushed and the instruction bytes from the branch address
are fetched into the queue. The BIU fetches the instruction bytes from the memory
whenever the EU is not using the address/data bus and puts them in the instruction
queue. Hence, fetching and execution of instructions can take place simultaneously.
Thus the instruction queue reduces the execution time of a program.

The segment and offset mechanism for accessing the memory in the 8086 allows
the programmer to write relocatable programs or data structures. A relocatable
program or data structure is one that can be placed anywhere in the memory map
of the 8086 and executed without any modification. This is not possible in the 8085
microprocessor. In a relocatable program, the jump instructions use only relative
values (positive or negative) with respect to the program counter, using which the
jump address is calculated. In addition, in a relocatable data structure, the data is
referred to using the offset address in the data segment or the extra segment.

3.4 PIN DETAILS OF 8086

The 8086 can operate in any one of the following two modes—minimum mode and
maximum mode.@n the minimum mode, all the control signals for the memory and
T/O are generated by the 8086. In the maximum mode, some control signals must
be externally generated} This requires the addition of an external bus controller
such as the 8288 to the 8086. Some pins in the 8086 have the same function in both
modes; other pins have different functions. Figure 3.6 shows the pin details of the
8086.

3.4.1 Function of Pins Common to Minimum
and Maximum Modes

The pins that have a common function in both the modes are as follows:

(i) ADI15-ADO: These pins act as the multiplexed address and data bus of the

microprocessor. Whenever the ALE (address latch enable) pin is high (..,
1), these pins carry the address, and when the ALE pin is low (i.e., 0), these
pins carry data. Using two external octal latches such as two 74373s along
with the ALE signal, these pins can be de-multiplexed into the address bus
(A15-A0) and data bus (D15-D0).

(i) A19/86-A16/S3: These pins (address/status bus) are multiplexed to provide
the address signals A19-A16 and the status bits S6-S3. When ALE = 1,
these pins carry the address and when ALE = 0, they carry the status lines.
Using one external octal latch (74373) along with the ALE signal, these
pins can be de-multiplexed into the address bus (A19-A16) and the status
bus (S6-S3). S3 and S4 indicate the segment accessed by the 8086 during
the current bus cycle. This is shown in Table 3.2.

Intel 8086 Microprocessor Architecture, Features, and Signals 71

Max. mode (Min. mode) g

GND 1 w0 v,
AD14 []2 39[1 ADI15 I
ADI3 3 381 A16/S3 !
ADI2 []4 3700 A17/s4
AD11 05 36[1 Al8/S5 ;
AD10 [6 3500 A19/S6 i
AD9 7 34[1 BHE/S7
ADS []8 330 MNMX i
AD7]9 nh @ MY ‘ |
AD6 10 8086 310 RQ/GTO| (HOLD) |
AD5 11 300 RQGTI, (MLDA) |
AD4 [12 2901 LOCK | (WR) y

.. AD3 13 28052 | ewio) I
AD2 [14 270 ST (DT/R) ek §
ADI 015 2601 S0 . (DEN) L ¢
ADO 16 2501 QS0 (ALE)
NMI 17 2401 Qsl (INTA)
INTR []18 231 TEST
CLK []19 22[1 READY
GND []20 21[] RESET ;,

w?

Fig.3.6 Pin details of the 8086

Table 3.2 Function of status bits S4 and S3

; S@qunt accessed

Extra segment
Stack segment
Code segment or no segment

0
1
0
1

Data segment

The status bit S5 indicates the condition of the IF bit; S6 always remains at logic

0.
(ii)

(iv)
™)

(vi)
(vii)

NMI: The non-maskable interrupt (NMI) input is a hardware interrupt. It
cannot be disabled by software. It is a positive edge-triggered interrupt and
when it occurs, the type 2 interrupt occurs in the 8086.

INTR: The interrupt request (INTR) is a level-triggered hardware interrupt,
which depends on the status of IF. When IF = 1, if INTR is held high (i.e.,
logic 1), the 8086 gets interrupted. When IF = 0, INTR is disabled.

CLK: The clock signal must have a duty cycle of 33% to provide proper
internal timing for the 8086. Its maximum frequency can be 5, 8, and
10 MHz for different versions of the 8086—the 8086, 8086-2, and 8086-1,
respectively.

Vc: This power supply pin provides a +5 V signal to the 8086. The variation
allowed in the power supply input is £10%.

BHE/S7: The bus high enable (BHE) pin is used in the 8086 to enable the

72 Microprocessors and Interfacing

(vii)

(x)

(xi)

(xii)

(xiii)

most significant data bus (D15-D8) during a read/write operation. The state
of the status line S7 is always logic 1.

MN/MX: The MN/MX pin is used to select either the minimum mode or
the maximum mode operation for the 8086. This is achieved by connecting
this pin to either +5V directly (for minimum mode) or to the ground (for
maximum mode).

RD: Whenever the Read signal (RD) is at logic 0, the 8086 reads the data
from the memory or I/O device through the data bus.

TEST: The TEST pin is an input that is tested by the WAIT instruction. If
the TEST pin is at logic 0, the WAIT instruction functions as a NOP (no
operation) instruction. If the TEST pin is at logic 1, the WAIT instruction
waits for the TEST pin to become logic 0. This pin is often connected to
the BUSY pin of the 8087 (numeric coprocessor) to perform floating-point
operations.

READY: This input is used to insert wait states into the timing cycle of the
8086. If the READY pin is at logic 1, it has no effect on the operation of the
microprocessor. If it is at logic 0, the 8086 enters the wait state and remains
idle. This pin is used to interface the slowly operating peripherals with the
8086.

RESET: This input causes the 8086 to reset, if it is held at logic 1 for a
minimum of four clocking periods. Whenever the 8086 is reset, CS and IP
are initialized to FFFFH and 0000H, respectively, and all other registers are
initialized to 0000H. This causes the 8086 to begin executing instructions
from the memory address FFFFOH.

GND: The GND connection is the return for the power supply (V). The
8086 has two GND pins and both must be connected to ground for proper
operation.

3.4.2 Function of Pins used in Minimum Mode
The pins lied in the minimum mode are as follows:
(i)OM/IO: This pin indicates whether the 8086 is performing memory read/

(i)

(iii)

(iv)

™)

(vi)

write operation (M/IO = 1) or I/O read/write operation (M/IO = 0).

WR: The Write signal indicates that the 8086 is sending data to a memory
or I/O device. When WR is at logic 0, the data bus contains valid data for
the memory or I/O.

DT/R: The Data Transmit/Receive signal indicates that the 8086 data bus is
transmitting (DT/R = 1) or receiving (DT/R = 0) data. This signal is used to
control the data flow direction in external data bus buffers.

DEN: The Data Bus Enable signal activates external data bus buffers. When
data is transferred through the data bus of the 8086, this signal is at logic 0.
When DEN is high, no data flows in the data bus.

ALE: When the Address Latch Enable (ALE) signal is high, it indicates
that the 8086 multiplexed address/data bus (AD15-ADO0) and multiplexed
address/status bus (A19/S6-A16/S3) contain an address, which can be
either a memory address or an I/O port address.

INTA: The Interrupt Acknowledge signal is a response to the INTR input

(vii)

(viii)

3.43

Intel 8086 Microprocessor Architecture, Features, and Signals 73

pin. The INTA signal is used to place the interrupt type or vector number in
the data bus, in response to the INTR interrupt.

HOLD: The Hold input requests a direct memory access (DMA) and is
generated by the DMA controller. If the Hold signal is at logic 1, the 8086
completes the execution of the current instruction and places its address,
data, and control buses in the high impedance state. If the Hold signal is at
logic 0, the 8086 executes the instructions normally.

HLDA: The Hold Acknowledge signal indicates that the 8086 has entered
the hold state and is connected to the HLDA input of the DMA controller.

Function of Pins used in Maximum Mode

The pins used in the maximum mode are as follows:

@

S2, ST, and SO: The status bits indicate the function of the current bus cycle.
These signals are normally decoded by the 8288 (bus controller). Table 3.3
shows the function of these three status bits in the maximum mode.

Table 3.3 Function of 52, ST, and S0 pins

|

s2 S1 S0 Function

0 0 0 Interrupt acknowledge

0 0 1 1/O read

0 1 0 1/0 write

0 1 1 Halt

1 0 0 Opcode fetch

1 0 1 Memory read

1 1 0 Memory write

1 1 1 Passive (inactive)
(if) LOCK: The Lock output is used to lock peripherals off the system. This pin

(iif)

(iv)

is activated by using the LOCK prefix on any instruction.

RQ/GTO and RQ/GTT: The request/grant pins request DMA during the
maximum mode operation of the 8086. These lines are bidirectional and are
used to request and grant a DMA operation.

QS1 and QSO0: The queue status bits show the status of the internal
instruction queue in the 8086. These pins are provided for access by the
numeric coprocessor (8087). Table 3.4 shows the function of the QS1 and
QS0 bits.

Table 3.4 Function of QS| and QSO pins

Qs1

—_— 0 O

Qso Function

Queue is idle (or no operation).

First byte of opcode is read from the queue.
Queue is empty.

-0 = O

Subsequent byte of opcode is read from the queue.

74 Microprocessors and Interfacing

3.5 DIFFERENCES BETWEEN 8086 AND 8088

Intel 8088 is the predecessor of the 8086 processor. Both the processors are 16-bit
processors with identical architectures and instruction sets, but they have minor
differences. Both the processors are made with the high performance metal oxide
semiconductor (HMOS) technology with the 40-pin dual in-line package. The data
in the 8088 is 8 bits whereas it is 16 bits in the 8086. The 8088 is developed with
the provision of connecting external interfaces such as the 8255, 8253, 8259, etc.
so that all the existing circuits built around the 8085 can work as before with the
8088 but with more flexibility in programming and all other features of the 8086.
The differences between the 8086 and 8088 are listed in Table 3.5.

Table 3.5 Differences between the 8086 and the 8088

[Intel 8086
« Data bus is 16 bits wide.

« The 8086 has the signal M/IO in pin
28.

« Pin number 34 is BHE/S7—bus high
enable/status signal.

« The 8086 has a 6-byte instruction
queue. At least two bytes must be free
to fetch the next instruction into the
queue.

« There are two memory banks in the
8086, namely, odd and even banks, and
the total memory size is 1 MB, which is

d by segn offset mechani

« There are two /O banks in the 8086,
namely, odd and even banks, and
the total I/O address space is 64 KB.
Both 8-bit and 16-bit I/O ports can be
interfaced with the 8086.

Intel 8088

» Data bus is 8 bits wide.

« The corresponding signal in the 8088
is the JO/M pin (complement of that in
the 8086).

» Pin number 34 is SSO—status output
signal. In the maximum mode, it is
always high. In the minimum mode,
the pin is logically equivalent to SO in
the 8086.

* The 8088 has a 4-byte instruction
queue. A single free byte in the
instruction queue is enough to fetch
the next instruction into the queue.

* There is a single memory bank in the
8088, and the total memory size is 1
MB, which is accessed by segment-
offset mechanism.

* There is a single I/O bank in the 8088,
and the total I/O address space is
64 KB. Only 8-bit I/O ports can be
interfaced with the 8088.

Figures 3.7 and 3.8 show the pin details of the 8086 and 8088 processors,
respectively.

Both the processors can be operated in the minimum and maximum modes.
The difference between the two processors lies in the pin numbers 28 and 34. The
8088 has only an 8-bit data bus and so, the bus AD0-AD?7 acts as the multiplexed
address and data bus. In the 8086, the bus ADO-ADI15 acts as the multiplexed
address and data bus as the data bus is 16 bits wide.

The instruction sets for the 8086 and the 8088 are common; hence the programs
written for one processor can be executed in the other. Both the processors are said
to have software compatibility.

Intel 8086 Microprocessor Architecture, Features, and Signals 75

Min. mode (Max. mode)

GND [1 400 v,
AD14 [J2 3900 ADI5
ADI13 [J3 38 Al16/S3
ADI12 4 3700 A17/s4

AD11 05 36[0 A18/S5
AD10 06 35[0 A19/S6

AD9 7 341 BHE/S7

ADS []8 330 MN/MX

AD7 [19 320 RD

AD6 C]10 8086 310 HOLD (RQ/GTO)
ADS5 11 300 HLDA (RQ/GTT)
AD4 12 2901 WR (COCK)
AD3 13 2800 MO (32)
AD2 14 270 DTR (30)
AD1 []15 261 DEN (30)
ADO []16 250 ALE (QS0)
NMI 17 240 INTA (QS1)
INTR []18 23] TEST 3
CLK []19 220 READY

GND []20 21[] RESET

Power supply
vcc
T T Address/data bus

DR > ADO-ADIS, A16/S3-A19/S6
B
ot TEST ——>

NMI ——>
——> ALE

SeabT 8086 —— BHE/S?
——> M/10
¢ HOLD —>| ——> DT/R Memory/IO controls
DMA interface HLDA | 5
: Vo ———> WR
Mode select ———> DEN
MN/MX [«——— READY
CLK
Clock

Fig. 3.7 Pin details of the 8086 processor

The major difference between the two processor-based systems lies in the
design of the interface between the memory and the I/O devices. The 8086 uses
two banks of memory, namely, lower or even memory bank connected to the data
bus D7-DO0, and higher or odd memory bank connected to the data bus D15-DS8.
This is because the 8086 has a 16-bit data bus and the memory chips are available
with 8-bit data bus only. In the 8088, only one memory bank is interfaced with the

76 Microprocessors and Interfacing

Min. mode (Max. mode)

GND 1 00 v,
Al4 2 390 AilS

A13 03 38 [0 A16/S3

A2 04 3700 A17/54

Al Os 36 [0 A18/S5

Al10 06 35[0 A19/56

A9 O7 340 SSO

A8 8 33 [0 MN/MX
AD7 09 320 RD
AD6 []10 5088 310 HOLD (RQ/GTO)
ADS (11 30[J HLDA (RQ/GTT)
AD4 (12 291 WR (COCK)
AD3 13 280 IOM (52)
AD2 []14 270 DTR (SD)
AD1 15 26 0 DEN (S0)
ADO []16 250 ALE (QS0)
NMI 17 240 INTA (QSl)
INTR []18 23 [0 TEST
CLK 19 22 [0 READY
GND []20 21[1 RESET f

Power supply
V.. GND
T Address/data bus

INTR ——>

INTAE—
Interrupt ____

interface TEST ———>
NMI A8-A15

RESET ——>| [T ALE
8086 |——»SSO

1

ADO0-AD7, A16/S3-A19/86

DMA interface HoLD ——>DT/R Memory/IO controls
HLDA «——— D I
Yee > WK :
Mode select ——> DEN i
CLK |
Clock

e T —T——

Fig.3.8 Pin details of the 8088

O
processor

processor with the available 8-bit data bus. Similarly, there are two I/O banks in
the 8086, namely, odd and even banks, and the tota] 1/ address space is 64 KB.
There is a single /O bank in the 8088, and the total /0 address space is 64 KB.
In this book, only the 8086 is considered for programming and interfacing. All
the programming aspects are common to both 8086 and 8088 processors. The
difference in interfacing is explained in the Section 6.9 of Chapter 6.

Intel 8086 Microprocessor Architecture, Features, and Signals 77
POINTS TO REMEMBER

® The internal architecture of the 8086 mainl
unit (BIU) and the execution unit (EU).

¢ The BIU fetches instructions and data from the
content of a segment register and an offset.

e There exists a six-byte instruction queue in the 8086, which is used to store the

recently fetched instructions in the CPU. This is used to speed up the execution of
a program.

y contains two units—the bus interface

memory to the processor, using the

e There are four memory segments—code, data, stack, and extra segments in the

8086 and their base address is indicated by adding four binary 0s to the right of the

corresponding segment register’s content. The maximum size of amemory segment
is 64KB.

e For fetching either an instruction byte or a data, the 8086 adds the base address of

the particular segment with an offset address present in a register or available as an
- or 16-bit displacement in the instruction, or obtained by a combination of both.

o The designers of the 8086 have fixed the default offset register(s) for every segment
register. However, this can be changed using the segment override prefix in the
instruction.

e The EU contains the ALU, general-purpose registers, and the flag register, which
are used during the execution of an instruction.

o The flag register contain different fla

gs, which can be classified as status flags and
control flags. The status flags reflect

the result of arithmetic and logical operations,
and the control flags control the operation during execution of instructions.

e The 8086 can be operated in minimum mode or maximum mode.
* Inthe 8086, the size of the address bus and data bus is 20 bitsand 16 bits, respectively.

The 8086 can access a maximum memory size of 1 MB (= 229 as it has a 20-bit
address bus.

KEY TERMS

—Bus interface unit This unit BIU includes an adder
16-bit segment registers (CS, DS, SS, and ES),
byte instruction queue, and bus control logic. This unit is responsible for fetching the
instructions and data into the 8086 from the memory or /O device.

—— Code segment This segment contains the instructions of a program.

— Data segment This segment contains the data for a program.

—— Execution unit This unit includes the ALU, eight 16-bit general-purpose registers,
a 16-bit flag register, and the control unit. This unit is responsible for executing
instructions in the 8086.

— Extra segment This is an additional data se

" Flags These show information related to the
performed in the ALU. Flags in the flag regi
control flags.

T Instruction queue It is six b

for address calculations, four
a 16-bit instruction pointer (IP), a six-

gment used by some string instructions.
result of the arithmetic or logic operation
ster can be classified as status flags and

ytes long in the 8086 and stores the pre-fetched

instructions from the memory. It is used to speed up the execution of a program,

—— Maximum mode operation In this mode, some control signals must be externally
generated, using a bus controller such as the 8288. N

78

Microprocessors and Interfacing

Minimum mode operation In this mode, all control signals for the memory and /O
are generated by the microprocessor itself.

Offset This is a 16-bit number that is added to the base address of a segment, to
select a byte of instruction or data from the memory.

Relocatable program It is the one that can be placed anywhere in the memory map
of the 8086 and executed without any modification.

Segment register This register indicates the starting or base address of a segment
in the memory.

Stack segment This segment holds the stack of a program.

REVIEW QUESTIONS

1. What is the size of the address bus and data bus in the 80867

w N

20.

2L
22.

RN - VRS

. What is meant by multiplexed address and data bus?
. Draw the register organization of the 8086 and explain typical applications of

each register.

. How is the 20-bit physical memory address calculated in the 8086 processor?
. Write the different memory segments used in the 8086 and their functions.
. List the segment registers and their default offset registers in the 8086.

What are the steps involved when PUSH BX is executed by the 80867

. Write the function of the DF, IF, and TF bits in the 8086.
. The content of the different registers in the 8086 is CS = FO00H, DS = 1000H,

SS = 2000H, and ES = 3000H. Find the base address of the different segments in
the memory.

. Ifthe current content of the CS and IP registers is FFFFH and 0000H, respectively,

from which memory location will the 8086 fetch the next instruction?

. If the content of the DS and BX registers is 2500H and 1000H, respectively,

from which memory location will the 8086 fetch the data, while executing the
instruction MOV CX, [BX]?

. If the content of the SS and SP registers is 5000H and 1000H, respectively, in

which memory location is the content of DX saved, when the 8086 executes the
instruction PUSH DX?

. What is the difference between the minimum and maximum mode operation of

the 80867

. What is the supply to be given to the V. input of the 80867
. What is the maximum frequency and duty cycle of the clock signal given to the

80867

. What is the function of the BHE and ALE signals in the 8086?
. Which pins of the 8086 are used to enable and control the external data bus

buffers?

. What is the minimum time for which the Reset input must be activated for proper

reset of the 80867

. What are the contents of the CS and IP registers immediately after the reset of the

8086?

‘What is meant by DMA operation? Which pins of the 8086 are used to perform
the DMA operation in the minimum and maximum modes of the 80867

What is the role of the status lines S4 and S3 in the 80867

What is the function of the S2, ST, and SO signals in the maximum mode operation
of the 8086?

No LA WwN

oo

Intel 8086 Microprocessor Architecture, Features, and Signals 79

. What is the role of the TEST pin in the 80867

. Explain the architecture of the 8086 with a neat functional block diagram.
. Explain the function of the different flags in the 8086.

. What are the differences between the 8086 and 8088 processors?

THINK AND ANSWER

. How much memory, in terms of bytes, can be interfaced with the 8086? Why?

What is the minimum and maximum size of a segment in terms of bytes? Why?
Why is memory divided into segments in the 8086? What are its advantages?

. How many 8K x 8 memory chips are required to construct a 1 MB memory?

Which pin of the 8086 determines the mode of operation? How?

. What are the differences between NMI and INTR interrupts in the 8086?

Which pin of the 8086 is used to synchronize the slowly operating peripherals
with the 8086? How?

. Is it possible for a segment to begin at a memory address that is not divisible by

16 (i.e., the address that does not end with the digit OH) in the 80862 Why?

. Is it possible for two segments to overlap in the 80867 Why?
10.
. Mention the differences between 8085 and 8086 microprocessors.

Why is the stack segment said to be growing downwards in the 8086?

Addressing Modes, Instruction Set,
and Programming of 8086

LEARNING OUTCOMES

After studying this chapter, you will be able to understand the following:
« Different addressing modes and instruction formats in the 8086
« Function of data transfer, arithmetic, logical, shift/rotate, flag manipulation, string, program
control transfer, and processor control instructions in the 8086 g
"« Assembly language programming of the 8086
- 8086 bler and function of bler directives

4.1 ADDRESSING MODES IN 8086

There are different addressing modes in the 8086. The addressing mode indicates
the way in which the operand or data for an instruction is accessed and the way
in which the microprocessor calculates the branch address for the jump, call, and
return instructions. We can classify the addressing modes in the 8086 under five
categories:
(i) Register addressing mode (iv) Program memory addressing modes
(i) Immediate addressing mode (v) Stack memory addressing mode
(iii) Data memory addressing modes

Let us see each addressing mode in detail.
4.1.1 Register Addressing Mode

In this addressing mode, the data present in the register is moved or manipulated
and the result is stored in the register.

Example:
(a) MOV AL, BL ; Move the content of BL to AL.
(b) MoV CX, BX ; Move the content of BX to CX.

Add the contents of CL and BL and store the
result in CL.

Add the contents of BX, the carry flag, and
DX, and store the result in BX.

(c) ADD cL, BL

(d) ADC BX, DX

4.1.2 Immediate Addressing Mode
In this mode, the destination can be either a memory location or a register. The
data can be 8 bits or 16 bits wide and is directly given in the instruction.

Addressing Modes, Instruction Set,and Programming of 8086 81

Example:
(a) MOV AL, 5eH ; Move the data 5@H to AL.
(b) MOV BX, 23AeH ; Move the data 23AeH to BX.

(c) MOV [SI], 43CeH ; Move the data 43CeH to the memory at [SI].

In the last example, [SI] represents the memory location in the data segment at
the offset address specified by the SI register.

4.1.3 Data Memory Addressing Modes
The term effective address (EA) represents the offset address of the data within a
segment, which is obtained by different methods, depending upon the addressing
mode that is used in the instruction. Let us assume that the various registers in
the 8086 have the following values (Table 4.1) stored in them, throughout the
discussion of data memory addressing modes.

Table 4.1 Values stored in different registers of the 8086

Register cs DS SS ES BX BP Sl DI
Stored value 1000H 3000H 4000H 6000H 2000H 1000H 1000H 3000H

The different data memory addressing modes are as follows:
(i) Direct addressing: In this mode, the 16-bit offset address of the data within the
segment is directly given in the instruction.

Example:

(a) MOV AL, [1@@0H]

In this instruction, the effective address is 1000H. Since the destination is an 8-
bit register (i.e., AL), a byte is taken from the memory at the address given by
DS x 10H + EA (= 31000H) and stored in AL.

(b) MOV BX, [2000H]

EA =2000H in this instruction. Since the destination is a 16-bit register (i.e., BX),
aword is taken from the memory address DS x 10H + EA (= 32000H) and stored
in BX. (Note: Since a word contains two bytes, the bytes present at the memory
addresses 32000H and 32001H are moved to BL and BH, respectively.)

(ii) Base addressing: In this mode, EA is the content of the BX or BP register.

When the BX register is present in the instruction, data is taken from the data

segment and when BP is present, data is taken from the stack segment.
T

Example: ly BK o A 3 S

(a)Mov cL, [BX] W

EA = (BX) = 2000H

Memory address = DS x 10 + (BX) = 32000H. The byte from the memory address
32000H is read and stored in CL. -)y

(b)Mov DX, [EPT—>— SO L e

EA = (BP) = 1000H

Memory address = SS x 10 + (BP) = 41000H. The word from the memory address
41000H is read and stored in DX.

\
1}

82 Microprocessors and Interfacing

(iii) Base relative addressing: In this mode, EA is obtained by adding the content of
the base register with an 8-bit or 16-bit displacement. The displacement is a signed
number with negative values represented in 2’s complement form. The 16-bit
displacement can have values from —32768 to +32767 and the 8-bit displacement

_’can have values from —128 to +127.

“— Example:
(a) MOV AX, [BX + 5]
EA=(BX)+5

Memory address =DS x 10H + BX)+5
=30000H + 2000H + 5 = 32005H
The word from the memory address 32005H is read and stored in AX.

(b)MOV CH, [BX — 10@H]
EA = (BX) — 100H
Memory address = DS x 10H + (BX) — 100H
— 30000H + 2000H — 100H = 31FO0H
The byte from the memory address 31FO0H is read and stored in CH.

mode, EA is the content of the SI or DI register,

(iv) Index addressing: In this
tion. The data is taken from the data segment.

which is specified in the instruc

Wi AR

Example: o0

(a)mov BL, [SI]

EA = (SI) = 1000H

Memory address = DS x 10H + SI
=30000H + 1000H = 31000H

A byte from the memory address 31000H is read and stored in BL.

(b)mov CX, [DI]
EA = (DI) = 3000H
Memory address =DS x 10H+ (DI)
=30000H + 3000H = 33000H
A word from the memory address 33000H is read and stored in CX.

(v) Index relative addressing: This mode is the same as the base relative addressing
mode, except that instead of the BP or BX register, the SI or DI register is used.
Example:
(a)MoV BX, [SI — 10@H]
EA = (SI) — 100H
Memory address =DS x 10H + (SI) — 100H

=30000H + 1000H — 100H = 30FO0H
A word from the memory address 30F00H is read and stored in BX.
(b)MoV CL, [DI + 1@H]
EA = (DI)+ 10H
Memory address = DS x 10H + (DI) + 10H

=30000H + 3000H + 10H = 33010H

A byte from the memory address 33010H is read and stored in CL.

Addressing Modes, Instruction Set, and Programming of 8086 83

(vi) Base plus index addressing: In this mode, EA is obtained by adding the conten
of a base register and an index register.

Example:
MOV AX, [BX + SI]
EA = (BX) + (SI)
Memory address = DS x 10H + (BX) + (SI)
=30000H + 2000H + 1000H = 33000H
A word from the memory address 33000H is taken and stored in AX.

Base relative, index relative, and base plus index addressing modes are used to
access a byte or word type data one by one, from a table or an array of data stored
in the data segment.

(vii) Base relative plus index addressing: In this mode, EA is obtained by adding
the content of a base register, an index, and a displacement.

Example:
(a)MOV CX, [BX + SI + 5@H]
EA = (BX) + (SI) + 50H
Memory address = DS x 10H + (BX) + (SI) + 50H
=30000H + 2000H + 1000H + 50H
=33050H
A word from the memory address 33050H is read and stored in CX.

Base relative plus index addressing is used to access a byte or a word in a particular
record of a specific file in the memory. An application program may process many
files stored in the data segment. Each file contains many records and a record
contains a few bytes or words of data. In base relative plus index addressing, the
base register may be used to hold the offset address of a particular file in the data
segment; the index register may be used to hold the offset address of a particular
record within that file; the relative value is used to indicate the offset address of

particular byte or word within that record. Vd ¥4 \C’f«/ \ Preo s
= : y
4.1.4 Program Memory Addressing Modes) hivse :

Program memory addressing modes are used with the JMP and CALL instructions
and consist of three distinct forms—direct, relative, and indirect.

(i) Direct addressing: Direct program memorymessing stores both the segment
and the offset address where the control has to be transferred with the opcode, as
shown in Fig. 4.1.

This instruction is equivalent to JMP 32000H. When it is executed, the 16-bit
offset value 2000H is loaded in the IP register and the 16-bit segment value 3000H
is loaded in CS. When the microprocessor calculates the memory address from
Where it has to fetch an instruction using the relation CS x 10H + IP, the address
32000H is obtained using the given CS and IP values. v

This type of jump is known as inter-segment jump, using which the
microprocessor can jump to any memory location within the memory system (i.e.,
within 1 MB). It is also known as far jump. The inter-segment or FAR CALL

P :

OD
23 ~—(a) JMP SHORT OVER

4
€
6:»
<

“(a) JIMP FAR PTR COMPUTE

(] I

84 Microprocessors and Interfacing

00H 20H 00H 300
EAH (IP—Lower- (IP—Higher- (CS—Lower- (CS—Higher-
(Opcode) order byte) order byte) order byte) order byte)

Fig.4.1 Format of JMP instruction (direct addressing)

instruction also uses direct program memory addressing. While using the assembler
to develop the 8086 program, the assembler directive FAR PTR is sometimes used
to indicate the inter-segment jump instruction. .
: Tar 2B Sods
Example: | nemv 1§ by LB]
& WAy
(b) IMP FAR PTR SIMULATE
In these examples, COMPUTE and SIMULATE are the labels of memory

locations that are present in code segments other than the ones in which these
instructions are present.

(i) Relative addressing: The term relative here means relative to the instruction
pointer (IP). Relative JMP and CALL instructions contain either an 8-bit or a
16-bit signed displacement, which is added to the current instruction pointer.
Based on the new value of IP thus obtained, the address of the next instruction to
be executed is calculated using the relation CS x 10H + IP,

The 8-bit or 16-bit signed displacement allows a forward or a reverse memory
reference, depending on the sign of the displacement. If the displacement is positive,
PC s incremented by the displacement value and if it is negative, PC is decremented
by the magnitude of the displacement value. A one-byte displacement is used in the
short jump and call instructions, and a two-byte displacement is used in the near
jump and call instructions. Both types are considered intra-segment jumps, since the
program control is transferred anywhere within the current code segment.

An 8-bit displacement has a Jjump range between +127 and —128 bytes from the
next instruction, while a 16-bit displacement has a jump range between —32,768
and +32,767 bytes from the instruction following the jump instruction in the
program. The opcode of the relative short jump and near jump instructions are
EBH and E9H, respectively.

While using an assembler to develop the 8086 program, the assembler
directives SHORT and NEAR PTR are used to indicate the sho:

c rt jump and near
jump instructions, respectively. Sherk 2 4, /

Example: renle #f by +

v . N
¥ S hé
b) JMP NEAR PTR FIND y ¥h&!
In these examples, OVER and FIND are the labels of memory locations that
are present in the same code segment in which these instructions are present.

(ii) Indirect addressing: The indirect jump or CALL instructions use a 16-bit
register (AX, BX, CX, DX, SP, BP, SI, or DI), a relative register ([BP], [BX],
[DI], or [SI]), or a relative register with displacement. The opcode of the indirect
Jjump instruction is FFH. It can be either an inter-segment indirect jump or an
intra-segment indirect jump.

Addressing Modes, Instruction Set,and Programming of 8086 85

If a 16-bit register holds the jump address in an indirect JMP instruction, the
operation is a near jump. If the CX register contains 2000H and the JMP CX
instruction present in a code segment is executed, the microprocessor jumps to the
offset address 2000H in the current code segment to take the next instruction for
execution (this is done by loading the IP with the content of CX, without changing
the content of CS).

When the instruction JMP [DI] is executed, the microprocessor first reads a
word in the current data segment from the offset address specified by DI and places
that word in the IP register. Now, with this new value of IP, the 8086 calculates the
address of the memory location to which it has to jump, using the relation CS x
10H +IP.

Example:

Let us assume that the registers DS, DI, and CS have the values 1000H, 2000H,
and 3000H, respectively. When JMP [DI], present at the offset address 1500H
in the code segment 3000H is executed, the microprocessor reads a word from
the address given by DS x 10H + DI (= 12000H) in the memory, and loads
it in the instruction pointer (IP). Let us assume that the word that is stored
in the address 12000H is 4000H. Hence, the program counter will be loaded
with the value 4000H. Now, the microprocessor fetches the next instruction for
execution from the address given by CS x 10H + IP (= 3000H x 10H + 4000H
= 34000H).

4.1.5 Stack Memory Addressing Mode

The stack is used to hold data temporarily during program execution and also store
the return address for procedures and interrupt service routines. The stack memory
is a last-in, first-out (LIFO) memory. Data are placed into the stack using the
PUSH instruction and taken out using the POP instruction. The CALL instruction
uses the stack to hold the return address for procedures and the RET instruction is
used to remove the return address from the stack.

The stack segment is maintained by two registers—the stack pointer (SP) and
the stack segment (SS) register. Data is pushed into or popped from the stack as
words (16-bit data), since bytes (8-bit data) cannot be used with the PUSH and
POP instructions. Whenever a word of data is pushed into the stack, the higher-
order eight bits of the word are placed in the memory location specified by SP — 1
(i.€., at the address SS x 10H + SP — 1) and the lqwer -order eight bits of the word
are placed in the memory location specified by SP 2 in the current stack segment
(i.e., at the address SS x 10H + SP — 2). SP is then decremented by 2! The data
pushed into the stack may be the content of a 16-bit register, a segment register, or
a 16-bit data in the memory. N

Since SP gets decremented for every push operation, the stack segment is said
to be growing downwards, as for successive push operations, data are stored in the
lower memory addresses in the stack segment. Due to this, SP is initialized with
the highest offset address, according to the user’s requirement, at the beginning of
the program.

86 Microprocessors and Interfacing

Example:
(a) PUSH AX ; Push the content of AX into the stack.
(b) PUSH DS ; Push the content of DS into the stack.

(c) PUSH [BX] ; Push the content of the memory location at
the offset address specified by BX in the
current data segment, into the stack.

The PUSHF instruction is used to push the flag register’s content into the
stack.

Whenever a word is popped from the stack, the lower-order eight bits of the
word are removed from the memory location specified by SP and the higher-order
eight bits of the word are removed from the memory location specified by SP + 1
in the current stack segment. SP is then incremented by two.

Example:
(a) POP BX ; Pop the content of BX from the stack.
(b) pPopP ES 5 Pop the content of ES from the stack.

(c) PoP [BP] 5 Pop the content of the memory location at
the offset address specified by BP in the
current stack segment, from the stack.

The POPF instruction is used to pop a word stored in the stack and move it to
the flag register.

4.2 SEGMENT OVERRIDE PREFIX

The segment override prefix, which can be added to almost any instruction in
any memory related addressing mode, allows the programmer to deviate from
the default segment and offset register mechanism. The segment override prefix
is an additional byte that appears in at the beginning of an instruction, to select an
alternative segment register. The JMP and CALL instructions cannot be prefixed
with the segment override prefix, since they use only the code segment (CS)
register for address generation.

Example:
The MOV AX, [BP] instruction accesses data within the stack segment by default,
since BP is the offset register for the stack segment. However, if the programmer
wants to get data from the data segment usmg BP as the offset reglster 1n this
instruction, the instruction should be modified as MOV AX, DS: [BP].

Table 4.2 shows the instructions that address memory segments other than the
default ones.

Table 4.2 Instructions that include the segment override prefix

Instruction Default segment A d seg
MOV BX, ES:[BP] Ss ES
MOV BX, SS:[DI] DS SS
MOV CX, ES:[BX] DS ES

(Contd)

Addressing Modes, Instruction Set, and Programming of 8086 87

Table 4.2 Instructions that include the segment override prefix (Contd)

Instruction Default segment Accessed segment
MOV CX, ES:[SI] DS ES
MOV AX, CS:[BX] DS CS

4.3 INSTRUCTION FORMAT OF 8086

The inistruction format, which is the representation of an instruction in machine
language, has one or more fields associated with it. The first field is called opcode
or operation code field, which indicates the type of the operation to be performed by
the 8086. The other fields in the instruction format are known as operand ficlds. The
8086 executes the instruction using the information present in these fields. There are
six general instruction formats in the 8086. The length of an instruction may vary
from one byte to six bytes. The instruction formats of the 8086 are explained here:

4.3.1 One-byte Instruction

This format is only one byte long, and it may have implied register or data
operands. The least significant three bits of the opcode are used to specify the
register operand, if any. Otherwise, all the eight bits in the instruction form an
opcode and the operands are implied.

4.3.2 Register to Register

This format is two bytes long. The first byte of the code specifies the opcode. The
width of the operand is specified by the W bit. The second byte of the instruction
indicates the register operand and R/M (register/memory) field, as given here:

D7... D3 D2 DI DO D7 D6 D5 D4 D3 D2 DI DO
Opcode | D | w l I MOD ! REG ‘ RM l
<«——— Firstbyte Second byte ———>

The register represented by the REG field is one of the operands and is given in
Table 4.3. When the MOD field’s bits (i.e., bits D7 and D6) are 1, the R/M field
is also treated as a REG field. The direction (D) bit indicates whether the data is
transferred from the register (if D = 0) or to the register (if D = 1).

Table 4.3 Assignment of codes for different registers in the 8086

W bit Register code Register W bit Register code Register
0 000 AL 0 010 DL

0 001 CL 0 011 BL

0 100 AH 1 010 DX

0 101 CH 1 011 BX

0 110 DH 1 100 SP

(Contd)

88 Microprocessors and Interfacing

Table 4.3 Assignment of codes for different registers in the 8086 (Contd)

W bit Register code Register W bit Register code Register
0 111 BH 1 101 BP

1 000 AX 1 110 SI

1 001 CcX 1 111 DI
Register code Register Register code Register

00 ES 10 SS

01 CS 11 DS

4.3.3 Register to/from Memory with No Displacement

This format is two bytes long. The MOD field indicates the mode of addressing.
The MOD, REG, R/M, and W fields are decided as per Table 4.4.

Table 4.4 MOD, REG, R/M,and W fields for different addressing modes

Memory operand e
Operands No 8-bit 16-bit Snsand
b Displ i Displ i
e o0 o1 10 ﬁ
000 BX)+(SD | BX)+(SD+D8 | BX)+(Sn+Dl6l AX AL
001 | BX)+(DI) | BX)+([DD+D8 | (BX)+(DH+DI6| CX CL
010 | BP+(SD | (BP+(SD+D8 | (BP)+(SD+Dl6 | DX DL
011 (BP)+(DI) (BP)+(DI)+D8 (BP)+(DI)+D16 BX BL
100 | (ST) (S +D8 (S + D16 | SP AH
o | op | ©n+ps | on+pi6 | BP CH
110 | D6 | (BP)+D8 | (BP)+DI6 | SI DH

o e | @X+Ds | (BX)+DIs | DI BH

In Table 4.4, D16 and D8 represent 16-bit and 8-bit displacements, respectively.
The instruction format is given here:

D7... D3 D2 DI DO D7 D6 D5 D4 D3 D2 D1 DO
Opcode [D ’ w t MOD ‘ REG) RM J

First byte Second byte ——>

Addressing Modes, Instruction Set, and Programming of 8086 89

4.3.4 Register to/from Memory with Displacement

This type of instruction format contains two bytes as in the previous instruction
format and one or two additional bytes for displacement, namely, DISP-LOW
(third byte) and DISP-HIGH (fourth byte), which are the lower-order and higher-
order bytes of displacement, respectively.

4.3.5 Immediate Operand to Register
In this format, the first byte and the bits D3-D5 in the second byte are used for
opcode. It also contains one or two bytes of immediate data as shown here:

D7 DO D7 D0 D7 DO

D7 DO
OPCODE ‘ ‘ 11 | OPCODE‘ R/MJ ’:ATALOU DATA-HIGH }

DATA-LOW and DATA-HIGH are the lower-order and higher-order bytes of data,
respectively.

4.3.6 Immediate Operand to Memory with [6-Bit Displacement

This instruction format is five or six bytes long. The first two bytes contain the
opcode, MOD, and R/M fields. Then two bytes of displacement and two bytes of
data are present as shown here:

D7 DO 0 D7 Do D7 DO

D7 Di
LOPCODE l MOD]OPCODE‘R/MJ l DISP-LOW ‘ | DISP-HIGH)

D7 DO

D7 DO
DATA-LOW 1 DATA-HIGH

The opcode usually appears in the first byte of an instruction. However, in a few
instructions, a register destination is present in the first byte, and in few other
instructions, their 3 bits of opcode is present in the second byte. The opcodes have
different single-bit indicators, which are as follows:
(i) W bit—This bit indicates whether the instruction operates on 8-bit data for
which W = 0 or 16-bit data for which W =1.

(i) D bit—This bit is present in double operand instructions. One of the
operands in the instruction must be a register specified by the REG field,
which will be the source operand if D = 0. Otherwise, it is a destination
operand for which D = 1. D bit is also called direction bit.

(i) S bit—This bit is the sync-extension bit. S bit is always used with the W bit

to show the different types of operations as given here:

(a) When S =W = 0, it indicates 8-bit operation with an 8-bit immediate
data.

(b) When S = 0 and W = 1, it indicates 16-bit operation with a 16-bit
immediate data.

(c) WhenS=1and W= 1, itindicates 16-bit operation with a sign-extended
immediate data.

90 Microprocessors and Interfacing

(iv) V bit—This bit is used in shift and rotate instructions. It is set to 0 if shift
count is 1 and to 1 if the CL register contains the shift count.

(v) Z bit—This bit is used by the REP instruction to control the loop. If the Z
bit is 1, the string instruction with REP prefix is executed until the zero flag
matches the Z bit.

The following examples give the machine language coding of a few instructions
in the 8086:

Example 4.1
Find the machine language code for the instruction MOV AX, BX.

Solution:

This instruction will move a word from the BX register to the AX register. The
6-bit opcode for the MOV instruction is 100010. Since a word is moved, W =
1. The D bit for this instruction code is made either 0 or 1, depending on how
we interpret the instruction. If we think of the instruction as moving a word to
AX, then make D = 1 and put 000 in the REG field to represent the AX register.
The MOD field is made 11 to represent register addressing mode. The R/M field
is made 011 to represent BX register. The resultant code for the MOV AX, BX
instruction will be as follows:

Opcode D W MOD REG RM

|100010j1|1|11‘000}011‘

If we change the D bit to 0 and swap the codes in the REG and R/M fields, we will
get 10001001 11011000, which is another equally valid code for the MOV AX,
BX instruction. Here we think of moving the data from the BX register.

Example 4.2
Find the machine language code for the instruction MOV DL, [BX].

Solution:

The opcode of the MOV instruction is 100010. The bit D is made 1 'because the
data is being moved to DL. The W bit is made 0, because a byte is moved into DL.
Next the 3-bit code for the DL register, which is 010, is put in the REG field of the
second byte of the instruction code. The MOD and R/M fields are filled with bits
00 and 111, respectively. Assembling all these bits together, the machine language
code of the MOV DL, [BX] instruction is obtained as follows:

Opcode D w MOD REG R/M

‘ 100010 I 1 I 0 | 00 ‘ 010 l 1114‘
Example 4.3

Find the machine language code for the instruction MOV [SI + 50H], CL.

Solution:

The opcode of the MOV instruction is 100010. The value 001 is put in the REG
field to represent the CL register. D is made 0 because we are moving data from
the CL register. W is made 0 since we are moving a byte. The R/M and MOD fields

Addressing Modes, Instruction Set, and Programming of 8086 91

are set to 100 and 01, respectively, since the addressing mode is of the general
form [SI + D8). Putting all these bits together, we get the first two bytes of the
instruction, as follows:

Opcode D w MOD REG RM

l 100010 I 0 ‘ 0 l 01 | 001 ’ 100]

The displacement 50H is inserted after these two bytes, as the third byte of the
instruction.

Example 4.4
Find the machine language code for the instruction MOV CS: [BX], AL.

Solution:

This instruction moves the data in the AL register to the memory location whose
address is given by CS X 10H + BX. The CS: in the instruction is called a segment
override prefix. When an instruction containing a segment override prefix is coded,
an 8-bit code for the segment override prefix is put before the code for the rest of
the instruction. The code byte for the segment override prefix is 001XX110, in
which we insert a 2-bit code in place of the X’s to indicate which segment base has
to be added to the effective address. As given in Table 4.3, the 2-bit codes are as
follows: ES =00, CS =01, SS = 10, and DS = 11. The segment override prefix for
CS: is then 00101110. This is the first byte of the instruction. The remaining two
bytes of the instruction are given here, which are obtained based on the concepts
explained in the previous examples.

Opcode D W MOD REG RM

{100010|0l0|00‘000|111‘

4.4 INSTRUCTION SET OF 8086

The instructions of the 8086 are classified as data transfer, arithmetic, logical,
flag manipulation, control transfer, shift/rotate, string, and machine control
instructions.

4.4.1 Data Transfer Instructions

The data transfer instructions include MOV, PUSH, POP, XCHG, XLAT, IN,
OUT, LEA, LDS, LES, LSS, LAHF, and SAHF. These instructions are discussed
here in detail:

(i) MOV: The MOV instruction copies a word or byte of data from a specified
source to a specified destination. The destination can be a register or a memory
location. The source can be a register, a memory location, or an immediate number.
The general format of the MOV instruction is MOV destination, source.

Example:
(@) Mov BL, 5eH ; Move immediate data 5@H to BL.
(b)Mov cx, [BX] ; Copy the word from the memory at [BX] to CX.

(c)Mov AX, CX ; Copy the contents of CX to AX.

92 Microprocessors and Interfacing

Note: [BX] indicates the memo:

ry location at the offset address specified by BX in
the data segment.

(i) PUSH: The PUSH instruction is us
memory location into the stack,
decremented by two after the ex

ed to store the word in a register or a
as explained in the stack addressing mode. SP is

ecution of PUSH.
Example: .
(a) PUSH Cx 5 PUSH the content of CX into the stack.
(b) PUSH Ds

5 PUSH the content of DS into the stack.

5 PUSH the word in the memory at [BX] into
the stack.

(iii) POP: The POP instruction co;
specified in the instruction, The
segment register, or a memory |

(c)PUSH [BX]

pies the top word from the stack to a destination
destination can be a general-purpose register, a

ocation. After the word s copied to the specified
destination, SP is incremented by two.
Example:
(a) POP BX

5 Pop the content of BX from the stack.
5 Pop the content of DS from the stack.
5 Pop a word from the stack and store it in

the memory at [s1].
Note: [SI] indicates the memory location in the data segment at the offset address
specified by SI.

(b) POP Ds
(c) PoP [sI]

(iv) XCHG: The XCHG instruction exchanges the contents of a register with the
contents of a memory location, It cannot exchange the contents of two memory
locations directly. The source and destinaﬁqn_ must both be either words or bytes.
The segment registers cannot be used in this instruction,

Example:

~(a) XcHG AL, BL 5 Exchanges the content of AL and BL.

(b) XxCHG CX, BX 5 Exchanges the content of CX and Bx.
) XCHG AX, [BX]

5 Exchanges the content of AX with the content

of the memory at [BX].

“~(¥) XLAT: The XLAT instruction is used to translate a byte in AL from one code to
another code. The instruction replaces a byte in the AL register with a byte in the
memory at [BX], which is one of the data items present in a look-up table.

Before XLAT is executed, the look-up table containing the desired codes must
be put in the data segment and the offset address of the starting location of the

(vi) IN: The IN instruction copies
8-bit port is read, the data is store
stored in AX. The IN instrt

data from a port to the AL or AX register. If an
d in AL and if a 16-bit port is read, the data is
iction has two formats—fixed port and variable port.

Addressing Modes, Instruction Set, and Programming of 8086 93

In the fixed port type IN instruction, the 8-bit address of a port is specified
directly in the instruction. With this form, any one of 256 possible ports can be
addressed.

Example:

IN AL, 8eH 5 Input a byte from the port with address 8eH to AL.

IN AX, 40H 5 Input a word from the port with address 40H to AX.
For the variable port type IN instruction, the port address is loaded into the DX

register before the IN instruction. Since DX is a 16-bit register, the port address

can be any number between 0000H and FFFFH. Hence, we will be able to address

up to 65,536 ports in this mode. The following example shows a part of a program

having the IN instruction. The operations done when the instructions are executed

are given in the corresponding comment fields.

Example:

MOV DX, OFES5eH ; Initialize DX with the port address FES@H.

IN AL, DX ; Input a byte from the 8-bit port with port
address FES50H into AL.

IN AX, DX 5 Input a word from the 16-bit port with port

address FES50H into AX.

The drawback of the fixed port type IN instruction is that the port address
cannot be changed once the program is stored in the ROM. The variable port type
IN instruction has the advantage that the port address can be computed in the
program during execution, and by loading it in DX, the corresponding port can be
accessed using the IN instruction.

(vii) OUT: The OUT instruction transfers a byte from AL or a word from AX
to the specified port. Similar to the IN instruction, the OUT instruction has two
forms—fixed port and variable port.

Examples for fixed port OUT instruction:

(a) ouT 48H, AL ; Sends the content of AL to the port with
address 48H.
(b)ouT eFeH, AX ; Sends the content of AX to the port with

address FOH.

Examples for variable port OUT instruction:

The following example shows a part of a program having the OUT instruction.

MOV DX, 1234H ; Load the port address 1234H in DX.

OUT DX, AL ; Send the content of AL to the port with address
1234H.

; Send the content of AX to the port with address
1234H.

OUT DX, AX

(viii) LEA (load effective address): The general format of the LEA instruction is
LEA register, source. This instruction determines the offset address of the variable
or memory location called the source and puts this offset address in the indicated
16-bit register.

94 Microprocessors and Interfacing

Example: Cab /::

(a) LEA BX, COST ; Load BX with the offset address of COST in the
\\ data segment, where COST is the name assigned
] to a memory location in the data segment.

(b)LEA CX, [BX + SI] ; Load CX with the value equal to (BX) + (sI),
—_—

where (BX) and (SI) represent the content of
BX and SI, respectively.

(ix) LDS: This instruction loads the register and DS with words from the memory.
The general form of this instruction is LDS register, memory address of first
word.

The LDS instruction copies a word from the memory location specified in the
instruction into the register, and then copies a word from the next memory location
into the DS register. LDS is useful in initializing the SI and DS registers to point
to the start of a string before using one of the string instructions.

Example:
LDS SI, [2000H] 5 Copy the content of the memory at the
MV 5 Tr offset address 2000H in the data segment to

4 2ooo ‘“3’ the lower-order byte of SI, and the content

of 2001H to the higher-order byte of SI. Copy
the content at the offset address 2002H in
M 68 (AY 1 the data segment to the lower-order byte of

£ A DS and the content of 2003H to the higher-
order byte of DS.

MN

Ax 266 24

(x) LES and LSS: The LES and LSS instructions are similar to the LDS instruction,
except that instead of the DS register, the ES and SS registers, respectively, are

loaded, along with the register specified in the iastruction.
G1e0r

(xi) LAHF: This instruction copie;&l;’lo“;er-order byte of the flag register into
AH.

/ (xii) SAHF: This instruction stores the content of AH in the lower-order byte of
the flag register.

Except the SAHF and POPF instructions, no other data transfer instruction
affects the flag register.
\4.4.2 Arithmetic Instructions
The arithmetic instructions in the 8086 are used to perform addition, addition
with carry, subtraction, subtraction with borrow, increment, decrement, negation
(changing sign), comparison, multiplication, division, decimal-adjust after
addition, decimal-adjust after subtraction, and processing of ASCII data. Let us
\) now discuss each instruction in detail.
(i) ADD: The general format of the ADD instruction is ADD destination, source.
The data from the source and destination are added and the result is placed in

the destination. The source may be an immediate number, a register, or a memory
location. The destination can be a register or a memory location. However, the

Addressing Modes, Instruction Set, and Programming of 8086 95

source and destination cannot both be memory locations. The data from the source
and destination must be of the same type (either bytes or words).

Example:

(a) ADD BL, 8@H Add the immediate data 80H to BL.

(b)ADD CX, 12BeH ; Add the immediate data 12B@H to CX.

(c) ADD AX, CX Add the content of AX and CX and store the
result in AX.

e

-

(d)AbD AL, [BX] ; Add the content of AL and the byte from the
memory at [BX] and store the result in AL.

(e) ADD CX, [SI] ; Add the content of CX and the word from the
memory at [SI] and store the result in CX.

(f) ADD [BX], DL ; Add the content of DL with the byte from the

memory at [BX] and store the result in the

memory at [BX].
The flags AF, CF, OF, PF, SF and ZF are affected by the execution of the ADD

instruction. /é\ ,":) 0, b Cadr
\(ﬂ),,L This ,mstmm‘.mp adds the data in the source and destination with the

flag and stores the result in the destination. The general format
of this instruction is ADC destination, source.
All the rules specified for ADD are applicable to the ADC instruction.

\ﬁii) SUB: The general form of the subtract (SUB) instruction is SUB destination,
source. It subtracts the number in the source from the number in the destination
and stores the result in the destination. Like the ADD instruction, the source may
be an immediate number, a register, or a memory location. The destination can be
a register or a memory location. However, the source and destination cannot both
be memory locations. The data from the source and destination must be of the
same type (either bytes or words).

For subtraction, the carry flag (CF) functions as the borrow flag. If the result is
negative after subtraction, CF is set. Otherwise, it is reset. The flags AF, CF, OF,
PF, SF, and ZF are affected by the SUB instruction.

Example:

(a) suB AL, BL ; Subtract BL from AL and store the result in
AL.

(b)suB cx, BX ; Subtract BX from CX and store the result in
CX.

(c)suB BX, [DI] ; Subtract the word in the memory at [DI]
from BX and store the result in BX.

(d)sus [BP], DL ; Subtract DL from the byte in the memory at
[BP] and store the result in the memory at
[BP].

Niv) SBB: Subtract with borrow—The general form of this instruction is SBB
destination, source. The SBB instruction subtracts the content of the source
and the carry flag from the content of the destination and stores the result in the

96 Microprocessors and Interfacing

destination. The rules for the source and the destination are same ag that for the

,\:UB instruction. AF, CF, OF, PF, SF, and ZF are affected by this instruction.

V) INC: The increment (INC) instruction adds 1 to the content of a specified
register or a memory location.

The data incremented may be a byte or word. While
the carry flag is not affected by this instruction, the flags AF, OF, PF, SF, and ZF
are affected.

Example:
(a) INC cL
(b) INC AX

..

Increment the content of CL by@

Increment the content of Ax byf:.
(c) INC BYTE PTR [BX] Increment the byte in the memory at [BX] by 15
(d) INC wWorD PTR [SI] ; Increment the word in the memory at [SI] by 1)

In these examples, the terms BYTE PTR and WORD PTR are assembler
directives, which are used

to specify the type of data (byte or word) to be
\ incremented in the memory.
== (Vi)DEC: The decrement (DEC) instruction subtracts 1 from the content of a specified
7 register or memory location. The data decremented may be a byte or a word. CF is
<. notaffected, but AF, OF, PF, SF, and ZF flags are

affected by this instruction.

=) &ii) NEG: The negate (NEG) instruction re
: register or memory location by its 2’s co;
data). The CF, AF, SF, PF, ZF, and OF fla

-

>

places the byte or word in the specified
mplement (i.c., changes the sign of the
gs are affected by this instruction.

Example:

(a) NEG AL 5 Take 2’s complement of the data in AL and
store it in AL.

(b) NEG X 5 Take 2°s

complement of the data in CX and

store it in cx.

(C) NEG BYTE PTR [BX] ; Take 2°s complement of the b
at [BX] and store the resul
place.

5 Take 27

yte in the memory
t in the same

(d)NEG WORD PTR [Ss1] S complement of the word in the memory

at [SI] and store the result in the same place.
\ (viii) CMP: The general form of the comp:

source. This instruction compares a byt
in the destination and affects only the

destination. The AF, OF, SF, ZF, PF, and CF flags are affected b

rules for the source and destination are the same as those for the SUB instruction.
Example:
After the instruction C

MP AX, DX is executed, the status of CF, ZF, and SF will
be as follows: -

CF ZF SF
IfAX = DX 0 1 0

Addressing Modes, Instruction Set, and Programming of 8086 97

IfAX >DX 0 0 0
IfAX <DX 1 0 1

1) M_Iﬂ,;ﬂemdﬁply-(MUL)»msmCtion is used for multiplying two unsigned
bytes or words. The general form of the MUL instruction is MUL source. The
source can be a byte or a word from a register or memory location, which is
considered as the multiplier. The multiplicand is taken by default from AL and AX
for byte and word type data, respectively. The result of multiplication is stored in
AX and DX-AX (i.e., the most significant word of the result in DX and the least
significant word of the result in AX) for byte and word type data, respectively.
(Note: Multiplying two 8-bit data gives a 16-bit result and multiplying two 16-bit
data gives a 32-bit result.)

Example:

(a)MuL CcH ; Multiply AL and CH and store the result in
AX.

(b)muL BX ; Multiply AX and BX and store the result in
DX—AX.

(c)MUL BYTE PTR [BX] ; Multiply AL with the byte in the memory at
[BX] and store the result in AX.

If the most significant byte of the 16-bit result is 00H or the most significant
word of a 32-bit result is 0000H, both CF and OF will be 0. Checking these flags
allows us to decide whether the leading Os in the result have to be discarded or
not. The AF, PF, SF, and ZF flags are undefined (i.¢., a random number is stored in
these bits) after the execution of the MUL instruction.

(x) IMUL: The IMUL instruction is used for multiplying the signed byte or word
in a:rag’istc.tm ‘memory location with AL or AX, and store the result in AX or
DX-AX, respectively. If the magnitude of the result does not require all the bits of
the destination, the unused bits are filled with copies of the sign bit.

If the upper byte of a 16-bit result or the upper word of a 32-bit result contains
only copies of the sign bit (all 0s or all 1s), CF and OF will both be 0. Otherwise,
both will be 1. AF, PF, SF, and ZF are undefined after IMUL.

To multiply a signed byte by a signed word, the byte is moved into a word
location and the upper byte of the word is filled with copies of the sign bit. If the
byte is moved into AL, using the CBW (convert byte to word) instruction, the sign
bit in AL is extended into all the bits of AH. Thus, AX contains the 16-bit sign-
extended word.

Example:

(a) IMUL BL ; Multiply AL with BL and store the
result in AX.

(b) IMUL AX ; Multiply AX and AX and store the
result in DX-AX.

(c) IMUL BYTE PTR [BX] ; Multiply AL with the byte from the

memory at [BX] and store the result in
AX.

98 Microprocessors and Interfacing

\(d)IMUL WORD PTR [SI] 5 Multiply AX with the word from the
memory at [SI] and store the result in
DX—AX.

w: The divide (DIV) instruction is used for dividing unsigned data. The

general form of the DIV instruction is DIV source, where ‘source’ is the divisor.
It can be a byte or word in a register or memory location. The dividend is taken by
default from AX and DX-AX for byte and word type data division, respectively.
Table 4.5 shows the complete details of the DIV instruction.

Table 4.5 Details of DIV instruction

Dividend (bits) Divisor (bits) Quotient (bits) Remainder (bits)
AX (16) Source (8) AL (8) AH (8)
DX-AX (32) Source (16) AX (16) DX (16)

If an attempt is made to divide by 0 or if the quotient is too large to fit in AL or AX
(i.e., if the result is greater than FFH in 8-bit division or FFFFH in 16-bit division),
the 8086 automatically generates a type 0 interrupt. All flags are undefined after a

DIV instruction.

Example:

(a) DIV DL ; Divide the word in AX by the byte in DL.
The quotient is stored in AL and the remainder-
in AH.

(b)DIV CX ; Divide the double word (32 bits) in DX-AX by

the word in CX. The quotient is stored in AX
and the remainder in DX.

(c) DIV BYTE PTR [BX] ; Divide the word in AX by the byte from the
memory at [BX]. The quotient is stored in AL
and the remainder in AH.

\(xii) IDIV: The IDIV instruction is used for dividing signed data. The general form
and the rules for the IDIV instruction are same as those for the DIV instruction.
The quotient is a signed number and the sign of the remainder is the same as the
sign of the dividend.

To divide a signed byte by a signed byte, the dividend byte is put in AL and
using the CBW (convert byte to word) instruction, the sign bit of the data in AL
is extended to AH. Thus, the byte in AL is converted to a signed word in AX. To
divide a signed word by a signed word, the dividend byte is put in AX and using
the CWD (convert word to double word) instruction, the sign bit of the data in AX
is extended to DX. Thus, the word in AX is converted to a signed double word in
DX-AX.

If an attempt is made to divide by 0 or if the quotient is too large or too small
to fit in AL and AX for 8- and 16-bit division, respectively (i.e., either the result is
greater than the decimal value +127 in 8-bit division or the decimal value +32,767
in 16-bit division, or the result is less than the decimal value —128 in 8-bit division

Addressing Modes, Instruction Set, and Programming of 8086 99

or the decimal value —32,767 in 16-bit division), the 8086 automatically generates
[atype 0 interrupt. All flags are undefined after a DIV instruction.

| m—mm————— e T
| (xiii) DAA: Decimal adjust AL after BCD addition—This instruction is used to
/ m of addition of two packed BCD numbers (in a packed BCD number,

two decimal digits are represented as eight bits) as a BCD number. The result of
addition must be in AL for DAA to work correctly. If the lower nibble (four bits) in
AL is greater than 9 after addition or if the AF flag is set by the addition, the DAA
instruction adds 6 to the lower nibble in AL. If the result in the upper nibble of AL
is now greater than 9 or if the carry flag is set by the addition, the DAA instruction
adds 60H to AL.

Example: s

(a) Let AL = 01011000 = 58 BCD i AP
CL=00110101=35BCD TRl

Consider the execution of the following instructions:

ADD AL, CL ; AL = 10001101 = 8DH and AF = @ after execution

DAA ; Add 0110 (decimal 6) to AL, since lower nibble in AL
is greater than 9

; AL = 10010011 = 93 BCD and CF = ©

>

Therefore, the result of addition is 93 BCD. At o

(b) Let AL = 10001000 = 88 BCD fal ', g
CL=01001001 = 49 BCD ANEE

Consider the execution of the following instructions: Z

ADD AL, CL ; AL = 11010001 and AF =1 after execution

DAA ; Add 0110 (decimal 6) to AL

; AL = 11010111 = D7H

>

; Upper nibble 1101 > 9. So add 60H (0110 0000) to AL.

>

; AL = ee1l @111 = 37 BCD and CF = 1

The final result is 137 BCD, taking into account the carry generated. The DAA
instruction affects AF, CF, PF, and ZF. OF is undefined after the DAA instruction

is executed.

“fxiv) DAS: Decimal adjust after BCD subtraction—DAS is used to get the result
in packed BCD form after subtracting two packed BCD numbers. The result of
the subtraction must be in AL for DAS to work correctly. If the lower nibble in
AL after a subtraction is greater than 9 or if the AF is set by subtraction, the DAS
instruction subtracts 6 from the lower nibble of AL. If the result in the upper nibble
is now greater than 9 or if the carry flag is set, the DAS instruction subtracts 60H
from AL.

Example:
(a) Let AL =86 BCD = 10000110
CH=57BCD=01010111
Consider the execution of the following instructions:
SUB AL, CH ; AL = 00101111 = 2FH and CF = @ after execution

100 Microprocessors and Interfacing

t is 1111. So DAS subtracts

DAS ; Lower nibble of the resul
= 29 BCD and CF =

@6H from AL to make AL = 00101001
@ to indicate that there is no borrow.
The result is 29 BCD.
(b)Let AL =49 BCD = 01001001
CH=72BCD=01110010
Consider the execution of the following instructions:

SUB AL, CH ; AL = 1101 @111 = D7H and CF = 1 since result is
negative \
DAS ; Subtract 0110 0000 (6@H) from AL because upper nibble

in AL is greater than 9. This makes AL = 01110111 =
77 BCD and CF = 1, indicating that a borrow is
needed.
The answer is 77 BCD as 149 BCD — 72 BCD =77 BCD. The value 149 BCD
is mentioned here, considering the borrow that is generated after the subtraction.
There are four arithmetic instructions that are used to perform operations
on unpacked BCD numbers. In an unpacked BCD number, one decimal digit is
represented as an 8-bit number in which the upper four bits are always zero. For
example, the decimal digit 3 is represented as 03H in unpacked BCD form.

v) AAA: The AAA (ASCII adjust after addition) instruction must always follow
the addition of two unpacked BCD operands in AL. When AAA is executed, the
content of AL is changed to a valid unpacked BCD number; the upper four bits of
AL are cleared. CF is set and AH is incremented if a decimal carry-out from AL
is generated.

Example:
Let AL = 05 (decimal) = 00000101
BH = 06 (decimal) = 00000110
AH = 00H \ e
Consider the execution of the following instructions:
ADD AL, BH ; AL = 11 (decimal) and CF = @
AAA ; AL = 01 and AH = @1 and CF = 1
Addition of 5 and 6 gives a decimal result of 11, which is equal to 0101H in
unpacked BCD form. It is stored in AX. When this result is to be sent to the printer,
the ASCII code of each decimal digit is easily found by adding 30H to each byte.

/ngi) AAS: ASCII adjust after subtraction—This instruction always follows the
ubtraction of one unpacked BCD operand from another in AL, It changes the
content of AL to a valid unpacked BCD number and clears the top four bits of AL
CF is set and AH is decremented if a decimal borrow occurs, -

Example:

(a) Let AL =09 BCD = 00001001
CL =05 BCD = 00000101
AH = 00H

Addressing Modes, Instruction Set, and Programming of 8086 101

Consider the execution of the following instructions:

suB AL, CL ; AL = 04 BCD
AAS 5 AL = 04 BCD and CF = @
5 AH = @0H
(b)Let AL =05 BCD
CL=09BCD
AH=00H

Consider the execution of the following instructions:
SsuB AL, CL ; AL = -4 BCD (in 2’s complement form AL = FCH) and
CF =1
AAS ; AL = @4 BCD
; CF = 1 indicating that a borrow is needed and
AH = FFH = 2’s complement of —1
AAA and AAS affect the AF and CF flags and OF, PF, SF, and ZF are left
undefined. Another salient feature of these two instructions is that it is possible
to take input data in the ASCII form of the unpacked decimal number, obtain
the result as an unpacked decimal number, and then convert it to ASCII form by
adding 30H to it.
/X:Iii) AAD: ASCII-adjust before the division instruction modifies the dividend in
and AL, to prepare for the division of two valid unpacked BCD operands. After
the execution of AAD, AH is cleared and AL contains the binary equivalent of the
original unpacked two-digit numbers. Initially, AH contains the most significant
unpacked digit and AL contains the least significant unpacked digit.

Example:

To perform the operation 32 (decimal)/08 (decimal)

Let AH=03H ; Upper decimal digit in the dividend
AL=02H ;Lower decimal digit in the dividend
CL=08H ; Divisor

Consider the execution of the following instructions:

AAD ; AX = @020H (binary equivalent of the decimal value
32 in 16-bit form)

DIV cL ; Divide AX by CL. AL contains the quotient and AH the
remainder.

AAD affects the PF, SF, and ZF flags. AF, CF, and OF are undefined after
execution of AAD.

(xviii) AAM: The AAM (ASCII adjust AX after multiplication) instruction corrects
the value obtained by multiplication of two valid unpacked decimal numbers. The
higher-order digit is placed in AH and the lower-order digit in AL.

Example:

Let AL = 05 (decimal)

CL = 09 (decimal)

Consider the execution of the following instructions:
MUL CH ; AX = @02DH = 45 (decimal)

102 Microprocessors and Interfacing

AAM 5 AH = @4 and AL = @5 (unpacked BCD form of the decimal
number 45)

OR AX, 3030H ; To get the ASCII code of the result in AH and AL
(Note: This instruction is used only when the result
is needed in ASCII form.)

AAM affects the same flags as AAD.

4.4.3 Logical Instructions
The logical instructions in the 8086 include AND, OR, XOR, NOT, and TEST.
Let us now discuss each instruction in detail.

“~(i) AND: The AND instruction performs a logical AND operation between the
corresponding bits in the source and destination and stores the result in the
destination. The source and the destination can be either bytes or words. The
general form of the AND instruction is AND destination, source.

The rules for the destination and source for the AND instruction are the same
as those for the ADD instruction. CF and OF are both 0, and PF, SF, and ZF are
updated after the AND instruction is executed. AF is undefined. PF is affected only
when the AND operation is performed on an 8-bit operand.

\(ii)) OR: The OR instruction performs a logical OR operation between
the corresponding bits in the source and destination and stores the result in the
destination. The source and the destination can be either bytes or words. The
general form of the OR instruction is OR destination, source.

The rules for the source and destination and the way flags are affected are the
same as the AND instruction.

(iii) XOR: The XOR instruction performs a logical XOR operation between
the corresponding bits in the source and destination and stores the result in the
destination. The source and the destination can be either bytes or words. The
general form of the XOR instruction is XOR destination, source.

The rules for the source and destination and the way flags are affected are the
same as the AND instruction.

(iv) NOT: The NOT instruction inverts each bit (i.e., performs 1’s complement) of
the byte or word at a specified destination. The destination can be a register or a
memory location. The NOT instruction does not affect any flags.

Example:

(a) NOT AL ; Take 1’s complement of AL.

(b)NoT BX ; Take 1’s complement of BX.

(c) NoT [SI] ; Take 1’s complement of the data in the memory

at [sI].

Xv) TEST: This instruction ANDs the content of a source byte or word with the
content of the specified destination byte or word. The flags are updated, but
neither operand is changed. The TEST instruction is often used to set flags before
a conditional jump instruction. The general form of TEST instruction is TEST

Addressing Modes, Instruction Set, and Programming of 8086 103

destination, source. The rules for the source and destination and the way flags are
affected are the same as the AND instruction.

Example:
LetAL=0111 1111 =7FH
TEST AL, 8@H ; AL = 7FH (unchanged)

ZF =1 since (AL) AND (80H) = 00H; SF = 0; PF =1

The 8086 has a few mstructxons exclusnvely for performing operations on the
flags in the flag register. They are used to set or clear specific flags in the flag
register, to push or pop the flag register content into or from the stack, and to
transfer the lower-order byte of the flag register to the AH register and vice versa.
Table 4.6 indicates the function of the different flag manipulation instructions
in the 8086.

Table 4.6 Flag manipulation instructions

Mnemonics Function bl
LAHF Load the lower-order byte of the flag register in AH
- SAHF _____ StoreAHin the lower-order byte of the flag register
;PI{S_I—EF 77777 o P;sh tﬁe flag reglster s content onto the stack
POPF P@_the top w word of the stack onto the flag register
CcMC Complement the carry flag (CF = complement of CF)
CLC. s s Clear the carry flag (CF = 0)
STC 7 Set the carry flag (CF = 1)
CLD Clear the direction ﬂag (DF=0)
—————

Set the direction ﬂag (DF=1)
" Clear the mterrupt ﬂag (F=0)
" Setthe mverrupt flag (IF = 1)

4.4.5 Control Transfer Instructions

The control transfer instructions of the 8086 are used to call a subroutine, return
from a subroutine, and branch conditionally or unconditionally in a program. In
conditional branching, there are two categories depending on whether unsigned or
signed data is involved. The terms ‘above’ and ‘below’ are used when referring
to the magnitude of unsigned numbers. The binary number 10000000 (= 128 in
decimal form) is above the binary number 01000000 (= 64 in decimal form). The
terms ‘greater’ and ‘lesser’ are used when referring to the relationship between
two signed numbers. ‘Greater’ means more positive. The signed binary number
00001111 (= +15 in decimal form) is greater than the signed binary number
10000001 (= —127 in decimal form). The control transfer instructions of the 8086
are given in Table 4.7.

104 Microprocessors and Interfacing

Table 4.7 Control transfer instructions

Mnemonics

JMP addr
~_CALL addr
T\ RET

JA addr
JAE addr
JB addr
JBE addr
JC addr
JCXZ addr
JE addr
JG addr
JGE addr
JL addr
JLE addr

JNA addr
JNAE addr
JNB addr
JNBE addr
JNC addr
JNE addr
JNG addr
JNGE addr
JNL addr
JNLE addr

JNO addr
JNP addr
JNS addr
JNZ addr

(Unconditional transfers _/
‘.I\dfiiﬁ‘\?x‘fc‘():h:aitionally to addr

Call the procedure or subroutine starting at addr

Conditional transfers "

Jump if above to addr (qump if CF = ZF = 0)

Jump if above or equal to addr (jump if CF = 0)
Jump if below to addr (jump if CF = 1)

Jump if below or equal to addr (jump if CF = 1 or ZF = 1)
Jump if carry to addr (jump if CF = 1)

Jump if CX = 0 to addr

Jump if equal to addr (jump if ZF = 1)

Jump if greater to addr (Jump if ZF = 0 and SF = OF)
Jump if greater or equal to addr (Jump if SF = OF)
Jump if lesser to addr (Jump if SF # OF)

Jump if lesser or equal to addr (Jump if ZF = 1 or
SF # OF)

Jump if not above to addr (Jump if CF = 1 or ZF = 1)
Jump if not above or equal to addr (Jump if CF = 1)
Jump if not below to addr (Jump if CF = 0)

Jump if not below or equal to addr (Jump if CF = ZF = 0)
Jump if no carry to addr (Jump if CF = 0)

Jump if not equal to addr (Gump if ZF = 0)

Jump if not greater to addr (jump if ZF = 1 or SF # OF)
Jump if not greater or equal to addr (jump if SF # OF)
Jump if not lesser to addr (Jump if SF = OF)

Jump if not lesser or equal to addr (Jump if ZF = 0 and
SF = OF)

Jump if no overflow to addr (Jump if OF = 0)
Jump if no parity to addr (Jump if PF = 0)
Jump if no sign to addr (jump if SF = 0)
Jump if no zero to addr (jump if ZF = 0)

(Contd)

Addressing Modes, Instruction Set, and Programming of 8086 105

Table 4.7 Control transfer instructions (Contd)

‘Mnemonics Description

JO addr Jump if overflow to addr (jump if OF = 1)

JP addr Jump if parity to addr (jump if PF = 1)

JPE addr Jump if parity is even to addr (jump if PF = 1)
JPO addr Jump if parity is odd to addr (jump if PF = 0)
JS addr Jump if sign to addr (jump if SF = 1)

JZ addr Jump if zero to addr (jump if ZF = 1)

In this table, ‘addr’ is the target address in the memory, to which the 8086 has
to jump, if the condition is satisfied while executing conditional jump instructions.
‘addr’ is also the target address to which the 8086 has to jump while executing
unconditional jump instructions. In the CALL instruction, ‘addr’ indicates the
address where the subroutine is located. In the case of conditional jump instructions,
the target address must be located at a relative address, which is in the range of
+127 bytes to —128 bytes from the instruction following the conditional jump
instruction.

Some of the conditional jump instructions have identical effects as follows:

JE—IZ INE—INZ JL—INGE INL—IGE
JG—INLE ING—IJLE JB—INAE INB—JAE
JA—INBE JNA—JBE JP—JPE JNP—IJPO

 There are a few instructions in the 8086 that are used to implement loops.
These are given in Table 4.8. .

Table 4.8 Loop instructions

‘Mnemonics Description ’ ¢
LOOP addr Decrement CX. Go to addr if CX # 0.
~ LOOPE addr Loop while equal (Decrement CX. Go to addr if CX # 0 and

_ ZF=1)
LI;OQLZ_ addr Same as LOOPE
—~LOOPNE addr Loop while not equal (Decrement CX. Go to addr if CX # 0 and
- ZF=0) T

-

~ LOOPNZ addr Same as LOOPNE

In this table, ‘addr’ is the target address, which must be located at a relative
address in the range of +127 bytes to —128 bytes from the instruction following the
LOOP instruction.

The use of the LOOP instruction in a program is explained here with an
example:

MOV CX, 100
AGAIN : MOV AL, BL

106 Microprocessors and Interfacing

Decrement CX and if CX # @, g0 to AGAIN.

LOOP AGAIN ;
s AGAIN is repeated 100

In this example, the loop starting from the addres
times, since CX is initialized to 100.

Finally, the software interrupt-related instruc
be used to cause the 8086 to jump to another pla
interrupt service routine for a particular interrup
return the control from the interrupt service routine to the main program.

tions (given in Table 4.9) can also
ce in the memory and execute the
t. The IRET instruction is used to

/'IEBTe 4.9 Interrupt-related instructions

Mnemonics Description™ ——
INT n Software interrupt instruction where
any number between 00H and FFH. T]
to execute the interrupt service routine

1 is the interrupt type. n can be
his instruction causes the 8086
(ISR) of interrupt type n.

INTO This instruction interrupts the 8086 if there is an overflow (i€,
OF =1).
IRET This instruction returns the control from the interrupt service routine to

/2 of? /) 2 the main program.

Y~ s
The 8086 interrupts are disgg§§§_@_i{1@etail in Chapter 5.

—

™ 4.4.6 Shift/Rotate Instructions
The shift/rotate instructions perform logical left-shift and right-shift, and arithmetic
left-shift and right-shift operations. The arithmetic left-shift (SAL) and logical
left-shift (SHL) have the same function, but the former is used on signed data,
whereas the latter is used on unsigned data.
i) SAL/SHL: The general format of the SAL/SHL instruction is SAL/SHL
destination, count. The destination can be a register or a memory location and a
byte or a word. This instruction shifts each bit in the destination a specified number
of bit positions to the left. As a bit is shifted out of the LSB position, a 0 is placed
in the LSB position. The MSB is shifted into the carry flag (CF) as follows:
CF<— MSB <—— LSB<—0
If the number of shifts to be done is 1, it can be directly specified in the
instruction, with a count value equal to 1. For shifts of more than one bit position,
the desired number of shifts is loaded into the CL register and CL is placed in
the count position of the instruction. CF, SF, and ZF are affected according to the
result. PF has meaning only when AL is used as the destination. The SAL and
SHL instructions can be used to multiply a signed number and unsigned number,
by a power of 2. Shifting a number left by one bit and two bits

respectively,

multiplies the number by two and four, respectively, and so on.

Example:

(a) SAL AX, 1 ; shift left the content of AX by one
bit.

(b)SAL BL, 1 ; shift left the content of BL by one

bit.

Addressing Modes, Instruction Set, and Programming of 8086 107

(c) SAL BYTE PTR [SI], 1 ; Shift left the byte content of the
memory at [SI] by one bit.
(d)SAL WORD PTR [BX], 1 ; Shift left the word content of the

memory at [BX] by one bit.
(e)Mov CL, @5

SAL AX, CL Shift left the content of AX by five

bits.

.

(H) Mov CL, @3
SAL BYTE PTR [SI], CL ; Shift left the byte content of the
memory at [SI] by three bits.

i) SAR: The general format of the SAR instruction is SAR destination, count.
The destination can be a register or a memory location and a byte or a word. This
instruction shifts each bit in the destination a specified number of bit positions to
the right. As a bit is shifted out of the MSB position, a copy of the old MSB is put
in the MSB position (i.e., the sign bit is copied into the MSB). The LSB will be

shifted into the carry flag (CF) as follows:
MSB —> MSB —> LSB —> CF

The rules for the count value in the instruction are the same as those for the SAL
instruction. CF, SF, and ZF are affected according to the result. PF has meaning
only when AL is used as the destination.

\(iii) SHR: The general format of the SHR instruction is SHR destination, count.
The destination can be a register or a memory location and a byte or a word. This
instruction shifts each bit in the destination a specified number of bit positions
to the right. As a bit is shifted out of the MSB position, a 0 is placed in the MSB
position. The LSB is shifted into the carry flag (CF) as follows:

0 —>»MSB ——>LSB ——> CF

The rules for the count value in the instruction are same as those for the SHL
instruction. CF, SF, and ZF are affected according to the result. PF has meaning
only when an 8-bit destination is used.

iv) ROR: This instruction rotates all the bits of the specified byte or word by
a specified number of bit positions to the right. The operation done when ROR is

executed is as follows:

CF MSB —— LSB

b V

The general format of the ROR instruction is ROR destination, count. The data
bit moved out of the LSB is copied into CF. ROR affects only CF and OF. In the
single-bit rotate operation, if the sign bit (i.e., the MSB) changes after the execution
of ROR, OF is set. This is applicable only for the single-bit rotate operation. ROR
is used to swap nibbles in a byte and to swap bytes in a word. It can also be used to
rotate a bit in a byte/word into CF, where it can be checked and acted upon by the
JC and JNC instructions. CF contains the bit most recently rotated out of the LSB,

108 Microprocessors and Interfacing

in the case of a multiple bit rotate operation. The rules for the count value are same
as those for the shift instruction.

Example:

(a) ROR CH, 1 Rotate right the byte in CH by one bit
position.

Rotate right the word in BX by the

number of bit positions given by CL.

-

(b)ROR BX, CL

e

(C) ROR BYTE PTR [SI], 1 ; Rotate right the byte in the memory at
offset [SI] by one bit position.
(d)ROR WORD PTR [BX], CL ; Rotate right the word in the memory at

offset [BX] by the number of bit
positions given by CL.

\(v) ROL: ROL rotates all the bits in a byte or word in the destination to the left, by
one or more bit positions, using CL, as follows:

CF<—MSB «——LSB

The data bit moved out of the MSB is copied into CF. ROL affects only CF
and OF. In the single-bit rotate operation, if the sign bit (i.e., the MSB) changes
after the execution of ROL, OF is set. This is applicable only for the single-bit
rotate operation. ROL is used to swap nibbles in a byte or swap bytes in a word.
It can also be used to rotate a bit in a byte/word into CF, where it can be checked
and acted upon by the JC and JNC instructions. CF contains the bit most recently
rotated out of the LSB, in the case of the multiple bit rotate operation.

(vi) RCR: RCR rotates the byte or word in the destination right, through the carry
flag (CF), either by one bit position or by the number of bit positions given by CL,
as follows:

CF ——> MSB ——» LSB

The flags affected are the same as those affected during the execution of
ROR.
(vii) RCL: RCL rotates the byte or word in the destination left through the carry
flag (CF), either by one bit position or by the number of bit positions given by CL,
as follows:

CF «—MSB «——LSB

l A

The flags affected are the same as those affected during the execution of
ROL.

Addressing Modes, Instruction Set, and Programming of 8086 109

4.4.7 String Instructions

The 8086 string manipulation instructions are given in Table 4.10. The string
instructions operate on elements of strings, bytes, or words. The register SI
contains the offset address of an element (byte or word) in the source string,
which is present in the data segment. The register DI contains the offset address
of an element (byte or word) in the destination string, which is present in the extra
segment. The source string is in the data segment at the offset address given by
SI; the destination string is in the extra segment at the offset address given by
DI. After each string operation, SI and/or DI are automatically incremented or
decremented by 1 or 2 (for byte or word operation), according to the D flag in the
flag register. If D = 0, SI and/or DI are automatically incremented and if D = 1, SI
and/or DI are automatically decremented.

Table 4.10 String instructions in the 8086

Mnemonics ~ Function
.MOMSQ\ / Move the string byte from DS:[SI] to ES:[DI].
MOVSW,~ Move the string word from DS:[SI] to ES:[DI].
_6}\—4;8-5— Compare string bytes (done by subtracting the byte at ES: [DI]

from the byte at DS: [SI]). Only flags are affected; the content
of the bytes compared is unaffected.

CMPSW Compare string words (done by subtracting the word at
ES: [DI] from the word at DS: [SI]). Only flags are affected;
the content of the words compared is unaffected.

LODSB Load the string byte at DS:[SI] into AL.

LODSW Load the string word at DS:[SI] into AX.

STOSB Store the string byte in AL at ES:[DI].

STOSW Store the string word in AX at ES:[DI].

SCASB Compare string bytes (done by subtracting the byte at ES: [DI]

from the byte at AL). Only flags are affected; the content of the
bytes compared is unaffected.

SCASW Compare string words (done by subtracting the word at ES:
[DI] from the byte at AX). Only flags are affected; the content
of the words compared is unaffected.

REP Decrement CX and repeat the following string operation if
CX #0.
REPE or REPZ Decrement CX and repeat the following string operation if

= CX#0and ZF = 1.

REPNE or REPNZ Decrement CX and repeat the following string operation if
CX#0and ZF =0.

The REP (repeat) prefix placed before a string instruction causes the string
instruction to be executed CX times.

110 Microprocessors and Interfacing

Example:
MOV CX, 32H ; Load 32H (= decimal 50) in CX.
REP MOVSW ; Execute MOVSW instruction 50 times.

Execution of these two instructions causes the moving of a string having 50
words from the data segment to the extra segment.

4.4.8 Machine or Processor Control Instructions

The machine/processor control instructions in the 8086 include HLT, LOCK, NOP,
ESC, and WAIT. Let us discuss each instruction in detail.

@

(@ii)

(iii)
(iv)

)

the_p/rocessor in the halt state_|An 1nterrupt or a Reset signal causes the
processor to resume execution from the halt state.

LOCK The lock instruction provides the processor an exclusive hold on
the use of the system bus“)[t activates an external locking signal (LOCK)
of the processor and is placed as a prefix to the instruction for which a
lock is to be asserted. The lock functions only with the XCHG, ADD, OR,
ADC, SBB, AND, SUB, XOR, NOT, NEG, INC, and DEC instructions,
when they involve a memory operand. An undefined opcode trap interrupt
is generated, if a LOCK prefix is used with any instruction not listed here.
NOP: No operation—This instruction is used to insert a delay in software
delay y programs.

HLT: The halt instruction sto?s the execution of all instructions and places

ESC: This instruction is used to pass instructions to a coprocessor such as

the 8087, which shares the address and data bus with an 8086. Instructions
for the coprocessor are represented by a 6-bit code embedded in the escape
instruction.

As the 8086 fetches instruction bytes from the memory, the Ccoprocessor
catches these bytes from the data bus and puts them in a queue. However, the
coprocessor treats all the normal 8086 instructions as NOP instructions. When
the 8086 fetches an ESC instruction, the coprocessor decodes the instruction
and carries out the action specified by the 6-bit code specified in the instruction.
WAIT: When this instruction is executed, the 8086 checks the status of its
TEST i mput pin and if the TEST input is high, it enters an idle condition
during which it ‘does not do any processing.\The 8086 remains in this
“state until the 8086’s TEST input pin is made low or an interrupt signal
is received on the INTR or NMI pins. If a valid interrupt occurs while the
8086 is in this idle state, it returns to the idle state after the interrupt service
routine is executed. The WAIT instruction does not affect flags. It is used to
synchronize the 8086 with external hardware such as the 8087 coprocessor.

4.5 8086 ASSEMBLY LANGUAGE PROGRAMMING

A large number of assembly language programming examples for the 8086 have
been provided in this section. These programs can be converted into machine
language programs either by manually finding the opcode for each instruction in the
program, or by using an assembler, and executing in an 8086-based system. Since
manually finding the opcode of each instruction of the 8086 is time consuming,

Addressing Modes, Instruction Set, and Programming of 8086 111

the line assembler or assembler is normally used in converting assembly language
programs into machine language programs. The line assembler converts each
mnemonic of an instruction immediately into an opcode as it is entered into the
system, and is used in microprocessor trainer kits. The line assembler is stored in
any one of the ROM-type memories in the trainer kit. The assembler is a software
that needs a personal computer for generating the opcodes of an assembly language
program. The generated opcodes can be downloaded to the microprocessor-based
system such as the microprocessor trainer kit or the microprocessor-based prototype
hardware, through the serial or parallel port of the computer.

Many assemblers, such as Microsoft Macro Assembler (MASM), Turbo
assembler (TASM), and DOS assembler, are used to convert the 8086 assembly
language programs into machine language programs. While using these assemblers,
the assembly language program is written using assembler directives. Assembler
directives are commands to the assembler to indicate the size of a variable (either
byte or word), number of bytes or words to be reserved in the memory, value of
a constant, name of a segment, etc., in a program. Assembler directives are not
converted into opcode, but are used to generate the proper opcode of an instruction.
The use of Microsoft’s assembler is discussed in this section.

The immediate data given in the instruction ends with ‘H’ for hexadecimal
data, ‘B’ for binary data, and ‘D’ for decimal data. In some assemblers, immediate
data without any of these alphabets is treated as decimal data. For hexadecimal
data that begins with the alphabets A-F, a zero must be placed before the data
(e.g., OF5H).

4.5.1 Writing Programs using Line Assembler

The following examples illustrate the writing of 8086 assembly language programs
using a line assembler, which is used in the 8086-based trainer kits for executing
8086 assembly language programs.

Example 4.5

Write a program to add a word-type data, located at the offset 0800H (least
significant byte, LSB) and 0801H (most significant byte, MSB) in the segment
address 3000H, to another word-type data located at the offset 0700H (LSB) and
0701H (MSB) in the same segment. Store the result at offset 0900H and 0901H in
the same segment. Store the carry generated in the addition in the same segment
at offset 0902H.

Flowchart:
The flowchart for this problem is shown in Fig. 4.2.

Program:
MOV AX, 3000H ; Load the value 3000H in AX.
MOV DS, AX ; Initialize DS with the value 3000H.

MOV AX, [80@H] ; Move the first data word to AX.

ADD AX, [70@0H] ; Add AX with the second data word.
MOV [90@H], AX ; Store AX at the offset 900H and 901H.
JC CARRY ;5 If carry = 1, jump to CARRY.

112 Microprocessors and Interfacing

| Initialize DS register J

v

[LoadaworddaainAX |

I Add another word data with AX I

| Store the result in AX in the memory J

!

Store 00H in the Yes
memory location used
for storing carry

Store 01H in the memory
location used for storing carry

F|g 4.2 Flowcharf for adding two word-type data

MOV [902H], @0H ; If there is no carry, store @0H at the offset
902H.
JMP END 5 Jump to END.
CARRY: MOV [902H], @1H ; Store @1H at the offset 902H.
END: HLT Terminate program execution.

Note:

(i) To initialize a segment register with a value, the value is first loaded in one
of the general-purpose registers such as AX or BX. It is then moved to the
segment register. In this example, AX is used to load 3000H into DS.

(ii) Instead of the AX register, any other 16-bit general purpose register (BX,
CX, etc.) can be used for performing addition.

(iii) Sometimes, instead of using the HLT instruction at the end, the software
interrupt instruction (INT) may be used to return control to the monitor
program after execution of the program.

—Example 4.6
Write a program to add a byte-type data located at the offset address 0800H in
the segment address 3000H to another byte-type data located at the offset address

Addressing Modes, Instruction Set, and Programming of 8086 113

0700H in the same segment. Store the result and the carry generated in the offset
addresses 0900H and 0901H in the same segment, respectively.

Flowchart:
The flowchart for this problem is the same as in Fig. 4.2, except that instead of
word-type data, byte-type data is used. Hence, instead of AX, AL can be used.

Program:
MOV AX, 3000H ; Load the value 3000H in AX.
MOV DS, AX ; Initialize DS with the value 3000H.

MOV AL, [80@H]
ADD AL, [70@H]
MOV [9@@H], AL

Move the first data byte to AL.
Add AL with the second data byte.
Store AL at the offset address 900H.

. .

JC CARRY ; If carry = 1, jump to CARRY.

MOV [901H], @@H ; If there is no carry, store ©@H.

JMP END 5 Jump to END.
CARRY: MOV [901H], @1H ; Store @1H at the offset address 90@1H.
END: HLT ; Terminate program execution.

Note: Instead of the AL register, any other 8-bit general purpose register (BL, BH,
CL, etc.) can be used in the program.

Example 4.7

Write a program to subtract the byte content of the memory location 3000H: 4000H
from the byte content of the memory location 4000H:5000H, and store the result
at the location 2000H: 3000H. Assume that the input data is signed data and the
negative numbers are represented in 2’s complement form. (Note: 3000H: 4000H
represents the segment address of 3000H and the offset 4000H in that segment.)

Flowchart:
The flowchart for this problem is shown in Fig. 4.3.

l Initialize DS register with 3000H '

l Load the subtrahend byte in CL l

[Load the minuend byte in AL J

] AL~—AL-CL] i

| Initialize DS register with 2000H]

IStore the content of AL in the memoryf

o e Ay T

Fig.4.3 Flowchart for subtracting one byte-type data from another

e T

114 Microprocessors and Interfacing

Program:
MOV BX, 3000H ; Load the value 3000H in BX.
MOV DS, BX ; Initialize DS with the segment address 3000H.

MOV CL, [4008H]
MOV BX, 4000H

Get the subtrahend from the offset 4000H.
Load the value 4000H in BX.

MOV DS, BX ; Initialize DS with the segment address 4000H.
MOV AL, [5000H] ; Move the minuend at the offset 5000H to AL.
SUB AL, CL ; AL = AL - CL

MOV BX, 2000H ; Load the value 2000H in BX.

MOV DS, BX ; Initialize DS with the segment address 2000H.

MOV [300@H], AL ; Store AL at the offset 3000H.

HLT Terminate program execution.

Note: The result is also signed data and the negative result will be in 2’s complement
form. If the result is positive, the MSB of the result will be 0, and if the result is
negative, the MSB will be 1.

“Example 4.8
Write a program to add the multi-byte data F2354687H with C545689FH and
store the result starting from the address 1000H: 2000H in the memory, with the
lower-order byte of the result stored first.

Flowchart:
The flowchart for this problem is given in Fig. 4.4.

Add the lower-order word of augend (= 4687H)
with the lower-order word of addend (= 639FH)
and store the resultant word in the memory

Add the higher-order word of augend (= F235H)
with the higher-order word of addend (= C545H)
along with carry and store the resultant word in the memory

Y

Store 00H in the final
memory location

Store 01H in the final
memory location

Fig.4.4 Flowchart for adding multi-byte data

Addressing Modes, Instruction Set, and Programming of 8086 115

Program:
MOV AX, 4687H
ADD AX, 689FH
MOV BX, 1000H

Move the word 4687H to AX.

Add AX with the word 689FH.

Initialize BX with the value 1000H.

MOV DS, BX Move the content of BX to DS.

MOV BX, 2000H Move the offset address 2000H to BX.

MOV [BX], AX ; Store the result in AX in the memory

MOV AX, @F235H ; Move the word F235H to AX.

ADC AX, @C545H ; Add the word C545H to AX along with previous
carry.

MOV [BX +2], AX ; Store the result in AX in the memory at

offset [BX + 2].

. e wui W

.o

JC CARRY ; If CF = 1, go to the place CARRY.
MOV [BX + 4], @@H ; Store @0H in the offset [BX + 4] since
carry is 0.
JMP END ; Jump to the place END.
CARRY: MOV [BX + 4], @1H ; Store ©@1H in the offset [BX + 4] since
carry is 1.
END: HLT ; Terminate program execution.
Example 4.9

Write a program to subtract the multi-byte data 2035A21CH from the multi-byte
data 10F3C2B6H, and store the result starting from the address 2000H:3000H in
the memory with the lower-order byte of the result stored first. Assume that the
data is signed data.

Flowchart:

The flowchart for this problem is given in Fig. 4.5. If the result is positive, the
VISB of the result will be 0, and if the result is negative, the MSB of the result will
e 1, and the result will be in 2’s complement form.

Subtract the lower-order word of subtrahend
(= A21CH) from the lower-order word of minuend
(= C2B6H) and store the resultant word in the memory

!

Subtract the higher-order word of subtrahend
(= 2035H) from the higher-order word of minuend
(= 10F3H) including the previous borrow and store
the resultant word in the memory

Cen) . |

Eie A R Flawerhart for subtractine one multi-byte data from another

S R R T e e

et

116 Microprocessors and Interfacing

Program:
MOV AX, ©C2B6H ; Move the word C2B6H to AX.

SUB AX, ©A21CH ; Subtract the word A21CH from AX.

MOV BX, 2000H ; Move the segment address 2000H to BX.

MOV DS, BX ; Move the content of BX to DS.

MOV BX, 3000H ; Move the offset address 3000H to BX.

mov [BX], AX Store the result in AX in the memory at offset [BX].
MOV AX, 1OF3H Move the word 1@F3H to AX.

SBB AX, 2035H Subtract the word 2035H from AX with previous

.

borrow.
MOV [BX + 2], AX ; Store the result in AX in the memory at offset
[BX + 2].
HLT ; Terminate program execution.
" Example 4.10

Write a program to add one hundred byte-type data stored in an array starting from
the address 1000H:2000H in the memory. The result has to be stored at the offset
address 2100H in the same segment.

Flowchart:
The flowchart for this problem is given in Fig. 4.6.

{ Initialize DS and SI with 1000H and 2000H, respectivelL\

Y
r Initialize CX with 100 decimal to act as a counter

r Clear AL (i.e., AL 0) and AH (i.e., AH 0)
Y

Add AL with the byte at DS: [SI] in the memory

[Store AX in the memory at the offset address 2100H J

EEEE—

Fig. 4.6 Flowchart for adding hundred byte-type data

Addressing Modes, Instruction Set, and Programming of 8086 117

Program:

MOV BX, 1000H A

MOV DS, BX
MOV SI, 2000l
MOV CX, 100
XOR AX, AX

AGAIN: ADD AL, [SI]
JINC NO_CARRY
INC AH

NO_CARRY: INC SI

LOOP AGAIN
MOV [21@@H],

HLT

Example 4.11

..

H

N

e

B

[

AX

<.

Initialize DS with 1000H.
Move the content of BX to DS
Initialize SI with 2000H.

Initialize CX with decimal 100 (= 64H).

Clear AX (i.e., AH = AL = @) and carry
flag.

Add byte at [SI] in the memory with AL.

If CF = @, go to the place NO_CARRY.
Increment AH when CF = 1.

Increment SI by 1 to access the next
byte in the memory.

Repeat the loop AGAIN CX times.
Store the result in AX at the offset
address 2100H in the memory.
Terminate program execution.

Write a program to move one hundred bytes of data from the offset address 2000H
to the offset address 3000H in the segment 4000H.

Flowchart:

The flowchart for this problem is shown in Fig. 4.7.

Initialize segment register (DS),
counter register (CX), and pointer
registers (SI and DI)

2]

Move the byte in the memory location
pointed by SI to the memory location

pointed by DI

!

Increment SI and DI, decrement CX J

T A A 8 N P S

Fig.4.7 Flowchart for moving hundred bytes of data

Program:
MOV AX, 400@H
MOV DS, AX

; Initialize DS with 4000H.
; Move the content of AX to DS.

118 Microprocessors and Interfacing

MOV SI, 2000H ; Initialize SI with 2000H.

MOV DI, 300@H ; Initialize DI with 3000H.

MOV CX, 64H ; Initialize CX with 64H (= 100D).
AGAIN: MOV AL, [SI] ; Move data from offset [SI] to AL.

MOV [DI], AL ; Store data in AL at offset [DI].

INC ST 5 Increment SI.

INC DI Increment DI.

LOOP AGAIN ; Repeat the loop AGAIN CX times.

HLT Terminate program execution.
Note: This program can also be written using MOVSB or MOVSW instruction and
also be written in such a way that 50 word-type data is moved from one place to
another place in the memory, since two bytes constitute one word. The following
example indicates the use of string instruction for moving data from one place to
another place in the memory.

Example 4.12
Write a program to move one hundred word-type data from the offset address 1000H
to the offset address 3000H in the segment 5000H using MOVSW instruction.

Flowchart:
The flowchart for this problem is shown in Fig. 4.8.

Initialize DS and ES with segment i
address 5000H

and DI with the offset address 3000H

¥

Move CX with the value 100 (i.e., number of words)
and clear D flag

Move the data from offset DS: [SI]
to offset ES: [DI] using MOVSW

ﬂ Repeat execution of MOVSW, CX times |

Initialize SI with the offset address 1000H ’

P e e E— ———

Fig.4.8 Flowchart for moving hundred word-type data

Program:

MOV AX, 5000H ; Store the segment address 5000H in AX.

MOV DS, AX Initialize DS with the segment address 5000H.

MOV ES, AX Initialize ES with the segment address 5000H.

MOV SI, 1000H ; Initialize SI with the offset of the source’s starting
address.

MOV DI, 3000H ;

MOV CX, 100 5

CLD 5
REP MOVSW ;
HLT

Addressing Modes, Instruction Set, and Programming of 8086 119

Initialize DI with the offset of the destination
address.

Initialize CX with the number of words in the string
(decimal value of 100 or 64H).

Clear the D flag for auto-increment mode.

Execute MOVSW instruction CX times.

; Terminate program execution.

Note: In this program the segment addresses of the source and destination are the
same, and hence DS and ES registers are loaded with the same value. If they are
different, ES and DS registers are loaded with the segment address of the destination
and source, respectively. As D is 0, every time MOVSW is executed, the SI and DI
registers are incremented by 2 to point to the next word in the string.

~Example 4.13

Write a program to find the smallest word in an array of 100 words stored
sequentially in the memory, starting at the offset 1000H in the segment address
5000H. Store the result at the offset 2000H in the same segment.

Flowchart:

The flowchart for the problem is given in Fig. 4.9.

Initialize counter CX with the number of

comparisons to be made (=100 — 1 =99) E

¥ %

Initialize DS with the segment address S000H

and SI with the offset address 1000H |

¥ !

l Move the word from [SI] to AX l ig
. |

Increment SI by 2 to point to the next word I

TR

[Replace the word in AX with the word at [SI] in the memory I
>

Decrement CX by 1 |

Yes

Store the word in AX at the offset address 2000H in the memoryJ

L

e

Fig.4.9 Flowchart for finding the smallest word in an array of 100 words

120 Microprocessors and Interfacing

Program:
MOV CX, 99

MOV AX, 5000H
MOV DS, AX

MOV SI, 10@@H
MOV AX, [SI]
START: ADD SI,02

CMP AX, [SI]

JC REPEAT
MOV AX, [SI]

REPEAT: LOOP START

Initialize CX with the number of comparisons
(= 100 - 1).

5 Store the segment address 5000H in AX.
Initialize DS with the segment address
5000H.

; Initialize SI with the offset 1000H.
Move the first word to AX.

; Increment SI twice to point the next
word.

Compare the next word with the word in
AX.

If AX is smaller, jump to REPEAT.
Replace the word in AX with the smaller
word.

; Repeat the loop START, CX times.

s

MOV [2000H], AX ; Store the smallest number in AX at the

HLT

Example 4.14

offset 2000H.
Terminate program execution.

Write a program to find the number of positive and negative data items in an array
of 100 bytes of signed data stored from the memory location 3000H: 4000H. Store
the result in the offset addresses 1000H and 1001H in the same segment. Assume
that the negative numbers are represented in 2’s complement form.

Flowchart:

The flowchart for the problem is shown in Fig. 4.10. The basic principle used here
is that the MSB of a positive number is 0 and MSB of a negative number is 1.

Program:
MOV AX, 3000H ;
MOV DS, AX
MOV CX, 100
MOV BX, 4000H ;

MOV DH, @eH

MOV DL, @eH

[N

L2: Mmov AL, [BX]
RCL AL, 01
JC NEG

INC DH H

VP L1

=8

Store 3000H in AX.

Initialize DS with 3000H.

Move the number of data items to CX.

Move the starting offset address of the array
to BX.

Initialize DH with @@H to store the number of
positive data items.

Initialize DL with @@H to store the number of
negative data items.

Move a byte data from the array to AL.
Rotate AL left by one bit through carry flag.
If the carry flag is 1, the data is negative
So jump to NEG.

If the carry flag is 0, the data is positive
So increment DH.

Jump to L1.

Addressing Modes, Instruction Set, and Programming of 8086 121

NEG: INC DL ; Increment DL.
L1: INC BX ; Increment BX to point to the next data in the
memory .)
LOOP L2 ; Repeat loop L2 to check all data items in the
array.
MOV [1@@@H], DH ; Store the content of DH at the offset address
1000H.
MOV [1@01H], DL ; Store the content of DL at the offset address
1001H.
HLT ; Terminate program execution.

Initialize DS with the segment address 3000H and BX with the offset i
address 4000H and initialize CX with 100 (number of bytes of data)
Clear DH to store the number of positive data bytes and

clear DL to store the number of negative data bytes

>

Move a byte data at [BX] in the memory to AL and
rotate AL to left by 1 bit so that MSB of AL (sign bit) goes to carry flag £

SEr

" Increment DH Yes (Negative number) ‘

Increment DL E
Increment BX i
Decrement CX

No (Positive number)

Sy Store the result in DL and
. DH in the memory

CBnd

Fig.4.10 Flowchart for finding the number of positive and negative data items

Example 4.15

Write a program to find the seven-segment code of any one digit between 0 and F.
Assume that the seven-segment code of the digits 0 to F is stored in the memory
starting at the address 2000H: 1000H. The result must be stored at the offset
address 2000H in the same segment.

Flowchart:

The flowchart for the problem is shown in Fig. 4.11.

000H in DS and the offset address 1000H in gy

Store the segment address 2

Load AL with the value whose seven-segment code has to bc@
17

¥
Store the result in AL in the offset address 2000H

Fjsing XLAT instruction, find the seven-segment code, which is obtained in AL itse]¢

Fig.4.11 Flowchart for finding the seven-segment code of a digit
between 0 and F

Program:

MOV AX, 2000H ; Store 2000H in AX.

MOV DS, AX Initialize DS with the value 200@H.

MOV BX, 1000H ; Initialize BX with the starting offset address of
the table containing the seven-segment codes.

e

MOV AL, @3 ; Load the number (here ¢3’) whose seven-segment
code is to be found in AL.
XLAT ; Using XLAT instruction, the seven-segment code of

03 is obtained in AL.
MOV [2000H], AL ; Store the result in AL at the offset address
2000H.
HLT Terminate program execution.
Note: When the XLAT instruction is executed in this example, the content of BX
(= 1000H) is added to the content of AL (= 03H) to form an offset address =
1003H) and the data in that offset address (seven-segment code of 03H) in the data
segment is moved to AL. This technique is called look-up table technique.

..

Example 4.16

Write a program to convert the 8-bit packed BCD number stored in the memory
location 3000H:2000H into a binary number and store it in the offset address
2001H in the same segment.

The binary number corresponding to an 8-bit packed BCD number is obtained
by multiplying the decimal value 10 (= 0AH) with the upper digit of the BCD
number and adding the result with the lower digit of the BCD number. Since the
maximum 8-bit BCD number is 99 and the corresponding binary number is 63H

(=9 x 0AH +9), the result in this program is also 8 bits.

Flowchart:
The flowchart for the problem is shown in Fig. 4.12.

Addressing Modes, Instruction Set, and Programming of 8086 123

Initialize DS register with 3000H and get the BCD data in AL

and make a copy of AL in BL register

¥

AND FOH with AL to mask the lower nibble and rotate AL right four times

to bring upper BCD digit as lower digit

{ Move 0AH to BH and multiply BH with AL; the multiplied result will be in AX

‘ AND OFH with BL register to get the lower digit of the BCD number J
Y
r Add BL register and AL register and store the result in AL J
17
[Store the value in AL in the memory J f

D e

Fig.4.12 Flowchart for converting an 8-bit packed BCD number into binary form

Program:

MoV
MoV
MoV
MoV
AND
MOV
ROR

MoV
MUL
AND
ADD

AX,
DS,
AL,
BL,
AL,
CL,
AL,

BH,
BH

BL,
AL,

3000H
AX
[2000!
AL
OFeH
04H
cL

OAH

OFH
BL

>

H] ;

. e

K

..

[N

..

. e

>

>

MOV [2001H], AL ;
; Terminate program execution.

Note: Since the maximum two-digit BCD number is 99H and the corresponding
binary number is 63H (8 bits only), the AH value after MUL BH instruction is
executed will be 00H. Hence it is not considered for the next addition.

HLT

Example 4.17
Write a program to convert the given 8-bit binary number into ASCII codes. The
g-bit binary number is present in the memory location 2000H: 5000H, and the
result is to be stored at the offset address 1000H and 1001H in the same segment.

; Store 3000H in AX.

Initialize DS with 3000H.

Move the 8-bit BCD number to AL.

Store a copy of the BCD number in BL.

Mask the lower-order nibble in AL.

Move the value 04 to CL.

Rotate AL right four times, to get the upper nibble
or digit of the BCD number.

Move OAH to BH.

Multiply AL and BH and the result is stored in AX.
Mask the upper nibble or digit in BL.

; Add the contents of AL and BL.

Store the result in AL at the offset address 2001H.

124 Microprocessors and Interfacing

Flowchart:
The flowchart for the problem is shown in Fig. 4.13.

The ASCII code for the digit 0 to 9 is obtained by adding 30H with it, and for
the digit A to F, ASCII code is obtained by adding 37H with it. For example, the
ASCII code for the digit 7 is 37H (= 7 + 30H) and the ASCII code for the digit
B is 42H (= B + 37H). The ASCII code of the 8-bit binary number, say 7BH, is
obtained by first splitting the binary number into two digits, 7 and B, and then
finding the ASCII codes of 7 and B separately.

[nitialize DS register with 2000H and get the binary data in AL and make a copy of ALin BL |

Main program:

AND FOH with AL to mask the lower nibble and rotate AL right four times
to bring upper nibble as lower nibble

I Call ASCII subroutine
17

Store the result in AL at the offset address 1000H

¥

Get the data in BL again in AL. AND OFH with AL to mask the upper nibble in AL
¥

Call ASCII subroutine)

Store the result in AL at the offset address 1001H J

y

(a)

l Compare AL with 0AH J

— o —

Subroutine:

Add 07H with AL
’ Add 30H with AL

(b)

Fig.4.13 Flowchart for converting an 8-bit binary number into ASCII code
(a) Main program (b) Subroutine

Addressing Modes, Instruction Set, and Programming of 8086

Program:

MOV AX, 2000H ; Store 2000H in AX.
Initialize DS with 2000H.

MOV DS, AX

e

MOV AL, [500@H] ; Move the binary data to AL.

MOV BL, AL ; Save a copy of AL in BL.

AND AL, OFOH ; Mask the lower nibble in AL.

MOV CL, 04

ROR AL, CL ; Rotate AL right four times, to get the
upper nibble.

CALL ASCII ; Call the subroutine ASCII.

MOV [1@@@H], AL ; Store the result in AL in the memory.

MOV AL, BL ; Move the binary data again to AL.

AND AL, OFH ; Mask the upper nibble in AL.

CALL ASCII ; Call the subroutine ASCII.

MOV [1@01H], AL ; Store the result in AL in the memory.

JMP L1 Jump to L1.

..

..

ASCII: CMP AL, @AH

e

Subroutine ASCII
Compare AL with the value ©AH.

o L2 ; If AL is lesser than ©AH, go to L2.
ADD AL, O7H ; Add @7H with AL.
L2: ADD AL, 30H ; Add 3@H with AL.
RET ; Return to the main program.
L1 HLT ; Terminate program execution.
Example 4.18

125

Write a program to add the two BCD data 87H and 98H and store the result in
BCD form in the memory locations 2000H: 3000H and 2000H: 3001H.

Flowchart:

The flowchart for this problem is given in Fig. 4.14.

[Move the data §7H to AL. Add the data 98H 0AL _|

rExecute DAA to convert the result in AL to BCD data

Initialize DS register with segment address 2000H
and store AL content at the offset address 3000H

address 3001H

[Store 00H at the offset address 3001H

i

e

P e

Fig.4.14 Flowchart for adding two BCD data and storing the result in BCD form

v T T

Store 01H at the offset

126 Microprocessors and Interfacing

Program.
MOV AL, 87H ; Move the first BCD data to AL.
ADD AL, 98H ; Add the second BCD data with AL.
DAA 5 Decimal-adjust AL to get the result in BCD form.
MOV BX, 2000H ; Store 2000H in BX.
MoV DS, BX 3 Initialize DS with 2000H.
which is the lower

Store the content of AL,
byte of the result in the memory.
jc L1 ; If the carry flag is 1, go to L1.
MoV [3001H], ooH ; Store ©€H in the memory, which is the higher
byte of the result.
T aMp L2 ; Go to L2.
L1: MOV [3001H], o1H ; Store O1H in the memory,
byte of the result.

Terminate program execution.

Mov [3e@eH], AL

which is the higher

L2: HLT

Wﬁxample 4.19
Write a program to convert
result is to be stored at the memory locat

the 8-bit binary number FFH into a BCD number. The
tions 3000H: 2000H and 3000H: 2001H.

Flowchart:

The flowchart for this problem is given in Fig. 4.15. The 8-bit binary number is
converted into a BCD number by first dividing the binary number by decimal 100
to get the number of hundreds in it. Then the remainder obtained in the first division
is divided by decimal 10 to get the number of tens in it. The reminder in the second
division is the number of ones in the binary number. The number of tens and ones
can be concatenated by proper shifting and performing OR operation.

Move the data FFH to AX and the data 100 decimal to BL

\e

der will be in AH

Divide AX by BL; the quotient will be in AL and the r

Store the value in AL in DL (i.e., number of 100s)

Move the remainder in AH to AL and clear AH

\\

Move the value 10 decimal into BL and divide AX by BL

Rotate the content of AL Teft by 4 bits to place number of tens in upper nibble of AL

Perform OR operation between AL and AH to concatenate the number of tens and ones

Tnitialize DS with the segment address 3000H

|

ddress 2000H and AL content at the offset address 2001H

¢ for converting an 8-bit binary numbel

Store the DL content at the offset a

Fig 415 Flowchar ¥imto BCD form

Addressing Modes, Instruction Set,and Programming of 8086 127

Program:

MOV AX, @@FFH ; Move the data @OFFH to AX.

MOV BL, 100 ; Store the decimal value 100 (or 64H) in BL.

DIV BL ; Divide AX by BL to find the number of hundreds in
the binary number.

MoV DL, AL ; Move the quotient in AL (number of hundreds) to
DL.

MOV AL, AH ; Move the remainder in AH to AL.

MOV AH, @@ ; Clear AH.

MOV BL, 10 ; Store the decimal value 10 (or ©AH) in BL.

DIV BL ; Divide AX by BL to find the number of tens in the
binary number.

; AH has the remainder, which is the number of ones

in the binary number.

MOV CL,04

ROL AL, CL ; Rotate the content of AL left four times to make the
lower nibble the upper nibble.

OR AL, AH ; Perform OR operation on AL and AH to concatenate

the number of tens and ones.
MOV BX, 3000H ; Store 300@H in BX.
MOV DS, BX ; Initialize DS with 3000H.
MOV [20@0H], DL ; Move the value of DL to the memory.
MOV [20@1H], AL ; Move the value of AL to the memory.
HLT ; Terminate program execution.
Note: The binary number FFH when converted to BCD gives the result 255, as
there are two hundreds, five tens, and five ones in it. In this program, 02H is stored
in the offset address 2000H, and 55H is stored in the offset address 2001H in the

data segment.

—4.5.2 Writing Time Delay Programs
Every instruction in the 8086 requires a definite number of clock cycles for its
execution. The amount of time for execution of an instruction is obtained by
multiplying the number of clock cycles required for the execution of the instruction,
with the clock period at which the 8086 is running. The time duration needed
for the execution of an instruction can be used to derive the required time delay.
When sequences of instructions are executed by the 8086, the total time needed

to execute them is obtained by adding the individual time durations required for

execution of each instruction. In a program loop, the number of instructions in the
loop count, which is the number

1oop may be less but the 8086 depends on the
e delay programs are used in

of times the program loop has to be executed. Tim
stepper motor control and square wave generation, to turn on and off equipment

with specified delay, etc.
The steps for writing a time delay program are as follows:
uired for the given application.

(i) . Find the exact time delay (¢) req . .
(ii) Select the instructions to be included in the time delay program. While

128 Microprocessors and Interfacing

selecting the instructions and registers to be used in the delay program, care
must be taken that the execution of these instructions does not affect the
main program execution. That is, any memory location or register used by
the main program must not be altered by the time delay program.

If a register used in the main program is needed in the delay program, the
content of that register is pushed into a stack before executing the time delay
program. At the end of the execution of the time delay program, its original
value will be popped from the stack and then control will be transferred to
the main program.

(iii) Find the period of the clock at which the microprocessor is running by
taking the reciprocal of the 8086’s clock frequency. 7'is the duration of one
clock period or clock state.

(iv) Find the number of clock states required for the execution of each of the
instructions in the time delay program. Then find the number of clock states
(m) needed to execute the loop in the delay program once, by adding the
clock states required for each instruction in the delay program.

(v) Find the number of times (i.e., count #) the loop in the delay program has
to be executed by dividing the required time delay (z,) by the time taken to
execute the loop once, which is m x T.

Count (n) =t/ (m x T)
The time delay obtained using this method is sufficiently accurate to
be used in many problems. When more accurate delays are required, the
programmable timer IC 8253 or the 8254 can be used.

Example 4.20
Write a time delay program to generate a delay of 120 ms in an 8086-based system
that runs on a 10 MHz frequency clock.

Solution:
The time delay program is as follows:
Instruction T-states for execution
MOV BX, Count 4
L1: DECBX e
NOP 3 \
INZ L1 L 16
RET 8

In this program, the instructions DEC BX, NOP, and JNZ LI form the loop as
they are executed repeatedly until BX becomes zero. Once BX becomes zero, the
8086 returns to the main program.

Number of clock cycles for execution of the loop once (m) =2 +3 + 16 =21

Time required for the execution of the loop once =m x T'=21 x 1/(10 x 109)

P =21ps

Count =¢'t‘}A((n x T)=120 x 1073/(2.1 x 107%)

4 =57143 = DF37H

By loading DF37H in BX, the time taken to execute the delay program is

approximately 120 ms. The NOP included in the delay program is to increase the

Addressing Modes, Instruction Set,and Programming of 8086 129

execution time of the loop. To get more delay, the number of NOP instructions in
the delay loop can be increased. The exact delay obtained using this time delay
subroutine can be calculated as shown here. The MOV BX, Count and RET
instructions in the delay program are executed only once. The JNZ instruction
takes 16 T-states when the condition is satisfied (i.e., Z = 0) and four T-states when
the condition is not satisfied, which occurs only once.
Exact delay = [4 x 0.1 +(2+3) x 57143 x 0.1 + 16 x 57142 x 0.1 +4 x 0.1 +
8 x0.1] ps
=0.4+28571.5+91427.2 + 0.4+ 0.8
=120000.3 ps =120.0003 ms
The error in the previous calculation is very less as the exact delay is also very

close to 120 ms. When the 16-bit count register is used in the delay program,
the maximum count value that can be loaded in it is FFFFH. This may put a
limitation on the maximum time delay that can be generated using the above delay
subroutine. Whenever large time delays are required, more than one count register
may be used in the time delay subroutine. Example 4.21 illustrates this.

Example 4.21
Write a delay program to create a time delay of five minutes. Assume that a 10
MHz clock is used with the 8086.

Instruction T-states for execution
MOV AX, COUNT1 4
L2: MOV BX, COUNT2 4
Ll: NOP 3
DEC BX |2
JNZL1 w16
DEC AX 2
INZ L2 16
RET 8

Here there are two nested counter loops for decrementing the two counter
registers. Let the value of COUNT2 be FFFFH, which is equal to 65535 decimal.

Let the execution time for inner loop be #,.

t, =[0.1%4+(2+3+16) x 65535 x0.1] us

=0.137605 s

Let the execution time of outer loop once be z,.

t, =;+(16+2)x 0.1 x 107

=0.1376068 s

Required delay = #;=5 x 60 =300's

COUNT1 = t4/t, = 300/0.1376068 = 2180 = 884H

4.5.3 8086 Assembler Directives

An assembler is a program that is used to convert an assembly language program
into an equivalent machine language program. The assembler finds the address of
each label and substitutes the value of each constant and variable in the assembly
language program during the assembly process, to generate the machine language
code. While performing these operations, the assembler may find syntax errors.

130 Microprocessors and Interfacing

They are reported to the programmer at the end of the assembly process. The
logical and other programming errors are not found by the assembler.

For completing these tasks, an assembler needs some commands from the
programmer—the required storage class for a particular constant or a variable
such as byte, word, or double word, the logical name of the segments such as
CODE, STACK, or DATA, the type of procedures or routines such as FAR,
NEAR, PUBLIC, or EXTRN, the end of a segment, etc. These types of commands
are given to the assembler using predefined alphabetical strings called assembler
directives, which help the assembler to correctly generate the machine codes for
the assembly language program.

In addition, there are a few operators that perform the addition or subtraction
operation on constants or labels. The assembler directives commonly used in
Microsoft Macro Assembler or Turbo Assembler are as follows:

4.5.3.1 Assembler Directives for Variable and Constant Definition

The assember directives for variable and constant definition are as follows:

(i) DB, DW, DD, DQ, and DT: The directives DB (define byte), DW (define word),
DD (define double word), DQ (define quad word), and DT (define ten bytes) are
used to reserve one byte, one word (i.e., 2 bytes), one double word (i.e., 2 words),

one quad word (i.e., 4 words), and ten bytes in the memory, respectively, for
storing constants, variables, or strings.

Example:

(a) DATA1 DB 20H ; Reserve one byte for storing
DATA1 and assign the value 20H
to it.

(b) ARRAY1 DB 1@H, 2@H, 3eH

..

Reserve three bytes for storing
ARRAY1 and initialize it with
the values 10H, 20H, and 3@H.
(c) CITY DB “MADURAI” ; Store the ASCII code of the
characters specified within
double quotes in the array or
list named CITY.

Reserve one word for storing
DATA2 and assign the value
1020H to it.

(d) DATA2 DW 1020H

(e) ARRAY2 DW 1030H, 2000H,
3000H, 4000H Reserve four words for storing
ARRAY2 and initialize them with
the specified values.
Initialize DATA3 as a double
word with 1234ABCDH.
(g8) DATA4 DQ 1234ABCD5678EFBBH ; Initialize DATA4 as a quad word
with 1234ABCD5678EFBBH.
(h) DATA5 DT 123456789ABCDEF12345H ; Initialize DATAS as a series
of 10 bytes having the value
123456789ABCDEF12345H.

-

(f) DATA3 DD 1234ABCDH

..

Addressing Modes, Instruction Set, and Programming of 8086 131

The directive DUP (duplicate) is used to reserve a series of bytes, words,
double words, or ten bytes and is used with DB, DW, DD, and DT, respectively.
The reserved area can be either filled with a specific value or left uninitialized.

Example:

(a) Array DB 20 DUP (©) ; Reserves 20 bytes in the memory
for the array named ARRAY and
initializes all the elements
of the array to @ (due to the
presence of @ within the
bracket near the DUP
directive).

(b) ARRAY1 DB 25 DUP (?) ; Reserves 25 bytes in the memory
for the array named ARRAY1 and
keeps all the elements of array
uninitialized (due to the
question mark present within
the bracket near the DUP
directive).

(c) ARRAY2 DB 50 DUP (64H) ; Reserves 50 bytes in the memory
for the array named ARRAY2 and
initializes all the elements
of the array to 64H.

(ii) EQU: The directive EQU (equivalent) is used to assign a value to a data name.

Example:
(a) NUMBER EQU 5@H ; Assign the value 5@H to NUMBER.
(b) NAME EQU “RAMESH” ; Assign the string “RAMESH” to NAME.

4.5.3.2 Assembler Directives Related to Code (Program) Location

The assember directives related to code location are as follows:

(i) ORG: The ORG (origin) di directive directs the assembler to start the memory
allocation for a partlcular segment (data, code, or stack) from the declared offset
address in the ORG statement. While starting the assembly process for a memory
segment, the assembler initializes a location counter (LC) to keep track of the
allotted offset addresses for the segment. When the ORG directive is not mentioned
at the beginning of the segment, LC is initialized with the offset address 0000H.
When the ORG directive is mentioned at the beginning of the segment, LC is
initialized with the offset address specified in the ORG directive.

Example:

ORG 100H

When this directive is placed at the beginning of the code segment, the location
counter is initialized with 0100H and the first instruction is stored from the offset
address 0100H within the code segment. If it is placed in the data segment, the
next data storage starts from the offset address 0100H within the data segment.

132 Microprocessors and Interfacing

\(ii) EVEN: The EVEN directive updates the location counter to the next even

address, if the current location counter content is not an even number.

Example:
EVEN
ARRAY2 DW 20 DUP (@)

These statements in a segment declare an array named ARRAY?2 having 20
words, starting at an even address. The advantage of storing an array of words
starting at an even address is that the 8086 takes just one memory read/write cycle
to read/write the entire word, if the word is stored starting at an even address.
Otherwise, the 8086 takes two memory read/write cycles to read/write the word.

Example:

The EVEN directive can also be used at the beginning of a procedure, so that the
instructions in it can be fetched quickly by the 8086 during execution.

EVEN

RESULT PROC NEAR

5 Instructions in the RESULT procedure

RESULT ENDP
Here the procedure RESULT, which is of type NEAR, is stored starting at an
even address in the code segment. The ENDP directive indicates the end of the
RESULT procedure.

(iii) LENGTH: This directive is used to determine the length of an array or string
in bytes.

Example:
MOV CX, LENGTH ARRAY
CX is loaded with the number of bytes in the ARRAY.

(iv) OFFSET: This operator is used to determine the offset of a data item in a
segment containing it.

Example:

MOV BX, OFFSET TABLE

If the data item named TABLE is present in the data segment, this statement places
the offset address of TABLE, in the BX register.

(v) LABEL: The LABEL directive is used to assign a name to the current value
in the location counter. It is used to specify the destination of the branch-related
instructions such as jump and call. When LABEL is used to specify the destination,
it is necessary to specify whether it is NEAR or FAR. When the destination is in
the same segment, the label is specified as NEAR and when the destination is in
another segment, it is specified as FAR.

Example:
REPEAT LABEL NEAR
CALCULATE LABEL FAR

Addressing Modes, Instruction Set, and Programming of 8086 133

LABEL can also be used to specify a data item. When it is used to specify a
data item, the type of the data item must be specified. The data may have the type
—byte or word.

Example:

A stack segment having 100 words of data is defined using the following
statements:

STACK SEGMENT

DW 100 DUP (©) ; Reserve 100 words for stack

STACK_TOP LABEL WORD

STACK ENDS

The second statement reserves 100 words in the stack segment and fills them
with 0. The third statement assigns the name STACK_TOP to the location present
just after the hundredth word. The offset address of this label can then be assigned
to the stack pointer in the code segment using the following statement:

MOV SP, OFFSET STACK_TOP

4.5.3.3 Assembler Directives for Segment Declaration

The assember directives for segment declaration are as follows:

(i) SEGMENT and ENDS: The SEGMENT and ENDS directives indicate the start
and end of a segment, respectively. In some cases, the segment may be assigned a
type such as PUBLIC (i.e., it can be used by other modules of the program while
linking) or GLOBAL (i.e., it can be accessed by any other module).

Large assembly language programs are usually developed as separate assembly
modules. Each assembly module is individually assembled, tested, and debugged.
When all the assembly modules are working correctly, their object code files are
linked together to form the complete program. For the modules to link together
correctly, any segment, label, or variable name referred to in other modules must be
declared PUBLIC in the module in which it is defined. For example, the statement
DATA1 SEGMENT WORD PUBLIC makes the segment named DATA1 available
to other assembly modules. Here, the term WORD is used to inform the linker to
locate the segment in the first available even address. Similarly, the statement
PUBLIC X1, X2 makes the two variables X1 and X2 available to other assembly
modules. If an instruction in an assembly module refers to a variable or label
which is present in another assembly module, the assembler must be told that it is
external, using the EXTRN directive.

The GLOBAL directive can be used in place of the PUBLIC or EXTRN
directive. For a symbol or name defined in the current assembly module, the
GLOBAL directive is used to make that symbol or name available to other
assembly modules. For example, the statement GLOBAL MULTIPLIER makes
the variable MULTIPLIER public so that it can be accessed from other assembly
modules. The statement GLOBAL MULTIPLIER: WORD informs the assembler
that MULTIPLIER is a variable of type ‘word’, which is in another assembly
module.

134 Microprocessors and Interfacing

Example:
CODE1 SEGMENT

5 Instructions of CODE 1 segment
CODE1 ENDS

This example indicates the declaration of a code segment named CODE].,

(i1)) ASSUME: The ASSUME directive is used to inform the assembler, the name of
the logical segments to be assumed for different segments used in the program.
Example:

ASSUME CS: CODE1, DS: DATA1

This statement informs the assembler that the segment address where the logical
segments CODE1 and DATA1 are loaded in memory during execution is to be
stored in the CS and DS registers, respectively.

(iii) GROUP: This directive is used to form a logical group of segments with a
similar purpose. The assembler passes information to the linker/loader to form
the code, such that the group declared segments or operands lie within a 64 KB
memory segment. All such segments can be addressed using the same segment
address.

Example:

PROGRAM1 GROUP CODE1, DATA1, STACK1

This statement directs the loader/linker to prepare an executable (EXE) file such
that the CODE], DATA1, and STACKI segments lie within a 64 KB memory
segment that is named PROGRAM]. Now, for the ASSUME statement, we can use
the label PROGRAM 1 rather than CODE1, DATAL1, and STACK1, as follows:
ASSUME CS: PROGRAM], DS: PROGRAM]I, SS: PROGRAM1

(iv) SEG: The segment operator is used to decide the segment address of the label,
variable, or procedure and substitute the segment address in place of the SEG
label.

Example:

MOV AX, SEG ARRAY1 5 Load the segment address in which ARRAY1 is

present, in AX.

MOV DS, AX 5 Move the content of AX to DS.

4.5.3.4 Assembler Directives for Declaring Procedures
The assember directives for declaring procedures are as follows:

i) PROC: The PROC directive indicates the start of a named procedure. The
NEAR and FAR directives specify the type of the procedure.

Example:
SQUARE_ROOT PROC NEAR

This statement indicates the beginning of a procedure named SQUARE_ROOT,
which is to be called by a program located in the same segment. The FAR directive
is used for the procedures to be called by the programs present in code segments
other than the one in which this procedure is present. For example, SALARY
PROC FAR indicates the beginning of a FAR type procedure named SALARY.

Addressing Modes, Instruction Set, and Programming of 8086 135

e is used to indicate the end of a procedure. To mark

= (ii) ENDP: The ENDP directiv
ar as a prefix

the end of a particular procedure, the name of the procedure may appe
with the directive ENDP.

Example:
SALARY PROC NEAR
. Code of SALARY procedure

>

SALARY ENDP

(iif) EXTRN and PUBLIC: The directive EXTRN (external) informs the assembler
that the procedures, label/labels, and names declared after this directive has/have
already been defined in some other segments and in the segments where they
actually appear, they must be declared public, using the PUBLIC directive.

Example:

MODULE1 SEGMENT
PUBLIC SQUARE_ROOT
SQUARE_ROOT PROC FAR
; Code of SQUARE_ROOT procedure

SQUARE_ROOT ENDP
MODULE1 ENDS

MODULE2 SEGMENT
EXTRN SQUARE_ROOT FAR
. Code of MODULE2

>

CALL SQUARE_ROOT

MODULE2 ENDS

If one wants to call the procedure named SQUARE_ROOT appearing in

MODULE! from MODULE?2, it must be declared public using the statement
PUBLIC SQUARE_ROOT in MODULE] and it must be declared external using
ROOT in MODULE2. If a jump or call address

the statement EXTRN SQUARE _
is external, it must be represented as NEAR or FAR. If data are defined as external,
their size must be represented as BYTE, WORD, or DWORD.

4.5.3.5 Other Assembler Directives
(i) PTR: The PTR (pointer) operator is used to declare the type of a label, variable,
or memory operand. The operator PTR is prefixed by either BYTE or WORD. If
the prefix is BYTE, the particular label, variable, or memory operand is treated as
an 8-bit quantity, while if the prefix is WORD, it is treated as a 16-bit quantity.

Example:

(a) INC BYTE PTR [SI] ; Increment the byte contents of the
memory location addressed by SI.

(b) INC WORD PTR [BX] ; Increment the word contents of the

memory location addressed by BX.
abel either as FAR or NEAR type.

The PTR directive is also used to declare al
bler that the label following FAR

The FAR PTR directive indicates to the assem

136 Microprocessors and Interfacing

PTR is not available within the same segment and the address of the label is of size
32 bits (2 bytes offset, followed by 2 bytes segment address).

Example:
(a) IMP FAR PTR DIVIDE
(b) CALL FAR PTR CONVERT

where DIVIDE and CONVERT are the names of a label and procedure,
respectively.

The NEAR PTR directive indicates that the label following NEAR PTR is in
the same segment and needs only 16 bits (2 bytes offset) to address it.

(ii) GLOBAL: The labels, variables, constants, or procedures declared GLOBAL
may be used by the other modules of the program.

Example:
The following statement declares the procedure ROOT as a GLOBAL label.
ROOT PROC GLOBAL

Example:

The following statement declares the variables DATA1, DATA2, and ARRAY 1 as
GLOBAL variables.

GLOBAL DATA1l, DATA2, ARRAY1l

(iii) LOCAL: The label, variables, constants, or procedures declared LOCAL in
a module are to be used only by that particular module. After some time, some
other module may declare a particular data type LOCAL, which was previously
declared as LOCAL by another module or modules. Thus, the same label may serve
different purposes for different modules of a program. With a single declaration
statement, a number of variables can be declared LOCAL as follows:

LOCAL DATA1, DATA2, ARRAY1l, Al, A2

(iv) NAME: The NAME directive is used to assign a name to an assembly language
program module. The module may now be referred to by its declared name. The
names, if selected properly, may indicate the function of the different modules,
and hence help in good documentation.

(v) SHORT: The SHORT operator indicates to the assembler that only one byte is
required to code the displacement for a jump (i.e., the displacement is within —128
to +127 bytes from the address of the byte present next to the JMP instruction). This
method of specifying the jump address saves memory. Otherwise, the assembler
may reserve 2 bytes for the displacement in the jump instructions.

Example:
JMP SHORT MULTIPLY
where MULTIPLY is a label.

(vi) TYPE: The TYPE operator directs the assembler to decide the data type of
the specified label and replaces the TYPE label with the decided data type. For the
word type variable, the data type is 2. For the double word type, it is 4, and for the
byte type, it is 1.

Addressing Modes, Instruction Set, and Programming of 8086 137

Example:
If DATAL is an array having word type data, the instruction MOV BX, TYPE DATA1
moves the value 0002H to BX.

~{vii) MACRO and ENDM: Suppose a number of instructions occur repeatedly
in the main program, the program listing becomes lengthy. In such a situation,
a macro definition, i.e., a label, is assigned with the repeatedly appearing string
of instructions. The process of assigning a label or macro name to the repeatedly
appearing string of instructions is called macro definition. The macro name is then
used throughout the main program to refer to that string of instructions.

The difference between a macro and a subroutine is that in the macro, the
complete code of the instructions in the macro is inserted at each place where the
macro name appears during the assembly process. Hence, the length of the EXE
file is larger and the macro does not utilize the service of the stack. However, a
subroutine is present only in one place in a program and the control of execution
is transferred to the subroutine by calling that subroutine whenever necessary.
Hence, the length of the EXE file is smaller while using subroutines. A subroutine
uses the stack for storing the return address when it is called. The drawback
with subroutines is the overhead time needed to push the return address into the
stack, while calling the subroutine, and to retrieve the same from the stack, while
returning from the subroutine to the main program.

- Defining a MACRO A MACRO can be defined anywhere in a program, using
the directives MACRO and ENDM. The label prior to the MACRO is the macro
name, which is used in the main program wherever needed. The ENDM directive
marks the end of the instructions or statements assigned to the macro name.

Example:

CALCULATE MACRO

MOV AX, [BX]

ADD AX, [BX + 2]

MOV [SI], AX

ENDM

In this example, CALCULATE is the macro name and the macro is used to add

two successive data in the memory, whose offset address is present in BX and the
result is stored in the memory at the offset address present in SI. In the program,
which uses the above macro definition, wherever the instructions defined in the
above macro are repeating, we can simply use the macro name (CALCULATE)
instead of those instructions and this is called macro reference. When that program
is assembled using the assembler, the assembler replaces each macro reference by
the corresponding string of instructions defined in the macro and finds the opcode
of each instruction. This is called macro expansion.

Passing parameters to a MACRO Using parameters in a macro definition, the
programmer specifies the parameters of the macro that are likely to be changed
each time the macro is called. The macro given here (CALCULATE) can be
modified to calculate the result for different sets of data and store it in different

138 Microprocessors and Interfacing

memory locations as follows:

CALCULATE MACRO OPERAND, RESULT

MOV BX, OFFSET OPERAND

MOV AX, [BX]

ADD AX, [BX + 2]

MOV SI, OFFSET RESULT

MOV [SI], AX

ENDM

The parameters OPERAND and RESULT can be replaced by OPERANDI,
RESULT1 and OPERAND2, RESULT?2 while calling the macro, as follows:

CALCULATE OPERAND1, RESULT1

CALCULATE OPERAND2, RESULT2

4.5.4 Writing Assembly Language Programs using MASM

MASM (Microsoft Macro Assembler) is one of the assemblers commonly used
along with the LINK (linker) program to structure the machine codes generated by
MASM in the form of an executable (EXE) file. The MASM reads the assembly
language program, which is called source program and produces an object file as
output. The LINK program accepts the object file produced by MASM along with
library files if needed, and produces an EXE file.

While writing a program for MASM, the program listing is first typed using
a text editor in the computer, such as Norton’s Editor (NE) and Turbo C editor.
After the program editing is done, it is saved with the extension .ASM. For
example, MSL.ASM is a valid file name that can be assigned to an assembly
language program. The programmers have to ensure that all the files—the editor,
MASM.EXE (MASM assembler), and LINK.EXE (linker)—are available in the
same directory. After editing, the assembling of the program has to be done using
MASM. If all the above mentioned software is present in the root directory of the
C drive in the computer, to assemble the file MSI.ASM, the programmer has to
type the following at the DOS prompt in the computer:

C:\> MASM MSLASM or C:\ > MASM MSI

After entering this command, the assembler asks for the names of the following
types of files, which it generates after the assembly process:

Object file name [.OBJ]:

List file name [NUL.LST]:

Cross reference [NUL.CRF]:

The programmer can type a name against every file name and press the enter
key after each name. If no name is entered against the file name before pressing
the enter key, all the three files will have the same name as the source file. The
OBJ (object) file contains the machine codes of the program that is assembled.
The .LST (list) file contains the total offset map of the source file, including labels,
opcodes, offset addresses, memory allotment for different labels, and directives.

Addressing Modes, Instruction Set, and Programming of 8086 139

The cross reference (.CRF) file is used for debugging the source program, as it
contains information such as size of the file in bytes, list of labels, number of
labels, and routines to be called in the source program.

After the cross reference file name is entered, the assembly process starts. If the
program contains syntax errors, they are displayed using the error code number
and the corresponding line numbers at which the errors have occurred. Once
these errors are corrected by the programmer, the assembly process is completed
successfully.

The DOS linking program LINK.EXE is used to link the different object
modules of a source program and the function library routines to produce an
integrated executable code for the source program. The linker is invoked using the
following command:

C :\> LINK MSI.OBJ

After entering this command, the linker asks for the name of the following
files:

Run file [.LEXE]:
List files [NUL.MAP]:
Libraries [LIB]:

If no file names are entered for these files, by default, the source file name is
considered. The optional input ‘Libraries’ expects the name of a special library (if
any) from which the functions were used by the source program. The output of the
linker program is an executable file with either the file name entered by the user or
the default file name, and .EXE extension. The executable file name can be entered
at the DOS prompt to execute the file as follows:

C > MSLEXE

In the advanced version of MASM, both assembling and linking are combined
under a single menu-invokable compile function.

DEBUG.com is a DOS utility program that is used for debugging and
troubleshooting 8086 assembly language programs. The DEBUG utility enables
us to have control over the hardware resources and the memory in the computer
(PC) up to a certain extent, as the PC uses one of the INTEL processors (80486,
Pentium, etc.) as the CPU. DEBUG enables us to use the PC as a low-level
8086 microprocessor kit. Typing the DEBUG command at the DOS prompt and
pressing the enter key invokes the debugging facility. A ‘-’ (dash) appears DEBUG
is successfully invoked, as follows:

C :\> DEBUG

Now, by typing ‘R’ at the ‘-’ line and pressing the enter key, we can see
the content of the different registers and flags present in the CPU of the PC, as
follows:

-R
AX = 0000H BX = 0005H CX = ©0eDH DX = S@0eH
SP = 8500H BP = 9800H SI = 2000H DI = 7000H
DS = S@eeH ES = 3000H SS = 4000H CS = 2000H
IP = 2000H FLAGS = 0024H

140 Microprocessors and Interfacing

Table 4.11 shows the list of
their syntax, in alphabetical order.

S. No.

11

Table 4.11

generally used DEBUG commands, along with

Generally used DEBUG commands

Command
character

-a

-a

-C

-€

-€

-f

-m

-n

Format(s)

<ENTER>
SEG:OFFSET
<ENTER>
SEG:OFFSETI
OFFSET2 N
<ENTER>
<ENTER>

SEG: OFFSETI
OFFSET2
<ENTER>

<ENTER>

SEG: OFFSETI
<ENTER>

SEG: OFFSET1
OFFSET2 BYTE
<ENTER>

SEG: OFFSET1
OFFSET2
BYTEL, BYTE2,
BYTE3, BYTEA4,
etc. <ENTER>
<ENTER>

= OFFSET
<ENTER>

<ENTER>

SEG: OFFSET1
OFFSET2 N
<ENTER>
FNAME.EXE
<ENTER>

Function

Assemble from the current CS:IP.

Assemble the entered instruction from
SEG:OFFSET address.

Copy N bytes from OFFSET1 to OFFSET2
in segment SEG.

Display 128 memory locations of RAM,
starting from the current CS:IP address.

Display memory contents in segment SEG
from OFFSET1 to OFFSET?2.

Enter Hex data at current display pointer
SEG:OFFSET.

Enter Hex data at SEG:OFFSETI byte by
byte by pressing the space key for giving
each data one by one. The data entry is to
be completed by pressing the enter key.

Fill the memory area starting from SEG:
OFFSETI to OFFSET2 with the byte given.

Fill the memory area starting from SEG:
OFFSET1 to OFFSET2 with the byte
sequence BYTE1, BYTE2, BYTE3,
BYTEA4, etc.

Execute from current CS:IP, By modifying
CS and IP using R command, this can be
used for execution from any address.
Execute from the OFFSET in the current
Cs.

Load the file FNAME.EXE as set by the -n
command in the RAM and set the CS:IP at
the address at which the file is loaded.

Move N bytes from OFFSET1 to OFF SET2
in segment SEG.

Set filename pointer to FNAME. Here
FNAME represents an executable file name.

(Contd)

Addressing Modes, Instruction Set, and Programming of 8086 141

Table 4.11 Generally used DEBUG commands (Contd)

S.No. Command Format(s) Function

character

15. -q <ENTER> Quit the DEBUG and return to DOS.

16. T <ENTER> Display all registers and flags.

17. b reg <ENTER> Display specified register ‘reg’ content and
Old content:New modify it with the entered new content.
content

18. -s SEG: OFFSET1 Searches a byte or string of bytes separated
OFFSET2 by *,’ in the memory region from SEG:
BYTE/BYTES OFFSET! to OFFSET2 and displays all the
<ENTER> offsets at which the byte or string of bytes

is found.

19. -t SEG: OFFSET Trace the program execution by single
<ENTER> stepping starting from the address SEG:

OFFSET.

20. -u <ENTER> Unassemble from the current CS:IP.

21. -u SEG: OFFSET Unassemble from the address SEG:
<ENTER> OFFSET.

28 -? <ENTER> List all the commands in DEBUG.

The remaining DEBUG commands can be referred to from any book that
discusses assembly language programming in personal computers. In this section,
a few examples for writing 8086 assembly language programs while using an
assembler are given.

Example 4.22
Write a program to add two 8-bit data (FOH and 50H) in the 8086 and store the

result in the memory, when MASM assembler is used.

Program:
ASSUME CS: CODE, DS: DATA
DATA SEGMENT ; Beginning of data segment
OPER1 DB OF@H ; Store the first operand.
OPER2 DB 5@H ; Store the second operand.
RESULT DB @1 DUP (@); Reserve a byte of memory for the
result.
CARRY DB 01 DUP (@) ; Reserve a byte for storing the
carry.
DATA ENDS ; End of data segment
CODE SEGMENT ; Beginning of code segment
START: MOV AX, DATA ; Load AX with the segment address of
DATA.

MOV DS, AX ; Move the content of AX to DS.

142 Microprocessors and Interfacing

MOV BX, OFFSET OPER1 ; Move the offset address of OPER1 to

BX.

MOV AL, [BX] ; Move the first operand to AL.

ADD AL, [BX+1] ; Add the second operand to AL.

MOV SI, OFFSET RESULT ; Store the offset address of RESULT
in SI.

Store the content of AL in the
location RESULT.

MOV [SI], AL

INC SI ; Increment SI to point to the location
of carry.
JC CAR ; If carry = 1, jump to CAR.

MOV BYTE PTR [SI], @@H ; Store @@H in the location CARRY.
JMP LOC1 Jump to LOC1.
CAR: MOV BYTE PTR [SI], @1H ; Store @1H in the location CARRY.
LOC1: MOV AH, 4CH

INT 21H ; Return to DOS prompt.

CODE ENDS ; End of code segment

END START 5 Program ends.
Example 4.23

Write a program to subtract the word 2350H from the word 1ACFH and store the
result in the memory, when MASM assembler is used. Assume that the data is
signed data.

Program:
ASSUME CS: CODE, DS: DATA

DATA SEGMENT Beginning of data segment

..

OPR1 DW 235@H 5 Store the subtrahend.

OPR2 DW 1ACFH ; Store the minuend.

RESULT DW @1 DUP (?) ; Reserve a word of the memory for the
result.

DATA ENDS ; End of data segment

CODE SEGMENT Beginning of data segment

[

START: MOV AX, DATA ; Load AX with the segment address of
DATA.
MOV DS, AX 5 Move the content of AX to DS.
MOV AX, OPR2 5 Move minuend to AX.
SUB AX, OPR1 5 Subtract subtrahend from minuend.

MOV RESULT, AX Store content of AX in location

RESULT.
MOV AH, 4CH 5 Return to DOS prompt.
INT 21H
CODE ENDS ; End of code segment

END START ; Program ends.
Note: In this program, if the result is positive, its MSB will be 0. If the result is
negative, its MSB will be 1 and the result will be in 2’s complement form.

Addressing Modes, Instruction Set, and Programming of 8086 143

Example 4.24
Write a program to add two hundred words of data when MASM assembler is
used.
Program:
ASSUME CS: CODE, DS: DATA
DATA SEGMENT ; Data segment starts.
NUMBERS DW 1234H, 5CDS5H, 4BE@H, ..
; Array of 200 words
COUNT EQU 200 ; COUNT is assigned the value 200
decimal.
RESULT_HW DW @1 DUP (?) ; Reserve a word for storing
higher word of the result.
RESULT_LW DW @1 DUP (?) ; Reserve a word for storing lower
word of the result.
DATA ENDS ; Data segment ends.
CODE SEGMENT ; Code segment starts.
START: XOR AX, AX ; Clear AX and carry flag.
MOV BX, ©000H ; Clear BX.
MOV CX, COUNT ; Load count (= 200) in CX.
MOV SI, OFFSET NUMBERS ; Move offset address of NUMBERS
in SI.
L2: ADD AX, [SI] ; Add one word data at [SI] with
AX.
JINC NO_CARRY ; If CF = @, go to NO_CARRY
INC BX ; If CF = 1, increment BX.
NO_CARRY: INC SI ; Increment SI by 2 to point to
next word.
INC SI
LOOP L2 ; Repeat loop L2 CX times.
MOV RESULT_HW, BX ; Move data in BX to RESULT_HW.
MOV RESULT_LW, AX ; Move data in AX to RESULT_LW.
MOV AH, 4CH ; Return to DOS prompt.
INT 21H
CODE ENDS ; End of code segment
END START ; Program ends.
Example 4.25

Write a program to find whether the byte FFH is present in the given string. In
addition, find the relative address of that byte from the starting location of the
string. If the byte FFH is not present, store 00H in DL, and if it is present, store
01H in DL. Assume that MASM assembler is used.

Program:
ASSUME CS: CODE, DS: DATA
DATA SEGMENT ; Data segment starts
COUNT EQU 08H ; No. of characters i~ the string

144 Microprocessors and Interfacing

STRING DB 30H, 35H, 32H, 34H, OFFH, 43H, 46H, 21H

LOCAT DB @1 DUP (?) ;

SEARCH_BYTE DB OFFH ;

DATA ENDS H
CODE SEGMENT H
START: MOV AX, DATA g
MOV DS, AX s
MOV ES, AX 5
MOV CX, COUNT ;
MOV DI, OFFSET STRING ;
MOV DH, @@H ;

MOV AL, SEARCH_BYTE ;

MOV DL, @@H 5

cLp
CHECK: SCASB

..

..

JZ FOUND

..

INC DH 5

LOOP CHECK
IMP L1

FOUND: MOV DL, @1H ;
MOV LOCAT, DH 7

L1: MOV AH, 4CH ;
INT 21H
CODE ENDS
END START

..

..

String for searching

Storage for location of the search
byte FFH in the string

Search byte is FFH.

Data segment ends.

Code segment starts.

Move segment address of DATA to AX.
Move content of AX to DS.

Move content of AX to ES.

Move COUNT to CX.

Move offset of STRING to DI.

Move @0H to DH to find the location
of FFH.

Move FFH to AL.

Move @0H to DL.

Clear D flag.

Compare AL content with the content
of ES: [DI].

If Z = 1, which indicates a match, go
to FOUND.

Increment DH to point to the next
relative address.

Go to CHECK CX times.

Jump to location to L1.

Move ©1H to DL as FFH is found.
Move value in DH to LOCAT.

Go to DOS prompt.

: End of the code segment

; Program ends.

Note: In this program, the result stored in LOCAT will be equal to 04H after
execution, since the relative address is 00H for the first byte in the string.

Example 4.26

Write a program to find the parity of a given word-type data. If the parity is even,
store 00H in BL register, and if the parity is odd, store 01H in BL register. Assume

that MASM assembler is used.

Program:
ASSUME CS: CODE, DS: DATA

DATA SEGMENT ; Data segment starts.

NUMBER DW 526@H; Store the number for which parity is to be
found.

COUNT EQU 16 ; Assign COUNT to the number of the bits in 2

word.

Addressing Modes, Instruction Set, and Programming of 8086 145

DATA ENDS ; Data segment ends.
CODE SEGMENT ~ ; Code segment starts.
START: MOV AX, DATA ; Move segment address of DATA to AX.
MOV Ds, Ax 5 Move the content of AX to Ds.
MOV CX, COUNT ; Load COUNT in CX.
MOV AX, NUMBER ; Move NUMBER to AX.

CLR DL ; Clear DL, which is used to find number of
1s in the NUMBER.
L1: RCR AX, 1 ; Rotate AX right through carry by 1 bit.
INC NO_CAR ; If CF = @, go to NO_CAR.
"INC DL 5 Increment DL as a 1 is encountered in the

number.
NO_CAR: LOOP L1 Execute loop L1, CX times.
MOV AL, DL Move DL to AL to perform division.
MOV AH, @@oH ; Clear AH to perform division.

..

..

MOV BL, @2H ; Move @2H to BL, which is divider.

DIV BL ; Divide AX by BL; if the reminder is 0,
number is even parity. ’

CMP AH, ©@eH ; Compare AH, which is having remainder, with
O0oH.

JZ EVEN ; If Z = 1, go to location EVEN.

MOV BL, @1H ; Move @1H to BL to indicate odd parity.

JMP L2 ; Go to location L2.
EVEN: MOV BL, @@H ; Move @@H to BL to indicate even parity.
L2: MOV AH, 4CH ; Return to DOS prompt.

INT 21H

CODE ENDS ; End of the code segment.

END START ; Program ends.

Note: Parity indicates number of 1s in a data. If the number of 1s is even, the
number is said to be even parity number, and if the number of 1s is odd, the

- number is said to be odd parity number. In this program, the number of 1s in the
number is found by rotating that number through the carry flag one bit at a time
and checking whether the carry flag and hence a particular bit in the number is 0 or
1. If the bit is 1, a register (here DL) is incremented, which is initially loaded with
00H, and if the bit is 0, the same register is not incremented. After testing all bits in
the number, if the value in DL is even, the number is said to be even-parity number,
which is checked by dividing the DL content by 2 and seeing the remainder. If the
remainder is 0, the value in DL is even and the number has even parity. Otherwise,
the number has odd parity.

Example 4.27

Write a program to find the sum of two 2 x 2 matrices whose elements are byte-
type data and store the result in the memory. Assume that MASM assembler is
used.

146 Microprocessors and Interfacing
Flowchart:
Let the two matrices be A and B and their elements as follows:

a a by b
n o ap o Op
A= and B=
2y ap by by

Let us assume that the data and the result are stored in the memory as follows:

Data 1 Data 2 Result
Ay by 1
) by, 12
21 by 1
) b, L)

Let the resultant matrix obtained by adding A and B be C, whose elements are as
follows:

C c;
11 ‘2
C=
Ca Cn
Program:

ASSUME CS: CODE, DS: DATA
DATA SEGMENT Data segment starts.
DATA1 DB 56H, 40H, 30H, 20H ; Store the elements of matrix A.
DATA2 DB 40H, 20H, 80H, 76H ; Store the elements of matrix B.
RESULT DB @4 DUP (@) Reserve four bytes for storing
resultant matrix C.

.

.

COUNT EQU 04 5 COUNT is equal to 4 as there are
four elements in each matrix.

DATA ENDS ; Data segment ends.

CODE SEGMENT ; Code segment starts.

START: MOV AX, DATA ; Segment address of DATA is

moved to DS.

MOV DS, AX ; Move the content of AX to DS.

MOV CX, COUNT ; Load COUNT in CX.

MOV BX, OFFSET DATA1 ; Move the offset address of
DATA1 to BX.

MOV SI, OFFSET DATA2 ; Move the offset address of
DATA2 to SI.

Move the offset address of
RESULT to DI.

Move one element of matrix A
to AL.

Add AL with corresponding
element of matrix B.

MOV DI, OFFSET RESULT

..

.

AGAIN: MOV AL, [BX]

ADD AL, [SI]

e

Addressing Modes, Instruction Set, and Programming of 8086 147

MOV [DI], AL ; Store the result in the
memory.
INC BX 5 Increment BX to point to the

next element of A.

INC SI 5 Increment SI to point to the
next element of B.

INC DI 5 Increment DI to point to the
next location to store the
result.

LOOP AGAIN ; Repeat the loop CX times.

MOV AH, 4CH 5 Return to DOS prompt.

INT 21H

CODE ENDS ; Code segment ends.

END START ; Program ends.

Note: In this program, the elements for matrices A and B are chosen such that the
sum of the corresponding elements of A and B is also 8-bit data (i.e., byte). If it is
more than 8 bits, two bytes must be reserved for storing each element of resultant
matrix C, thus totally requiring 8 bytes for storing all elements of matrix C. The
carry generated in the addition is stored as the MSB for each of the elements in
matrix C. It is left to the reader to write the program for the same.

Example 4.28
Write a program to find the smallest word in the given array having three word-

type data. Assume that MASM assembler is used.

Program:
ASSUME CS: CODE, DS:DATA
DATA SEGMENT ; Data segment starts.
ARRAY DW 2500H, 1600H, ©0032H
; Three words of data in ARRAY
COUNT EQU @3H ; Assign @3 to COUNT, as three words
are compared.
SMALLEST DW @1 DUP (@) ; Reserve one word to store the
smallest word.
DATA ENDS ; Data segment ends.
CODE SEGMENT ; Code segment starts.
START: MOV AX, DATA ; Move the segment address of DATA to
DS.
MOV DS, AX ; Move the content of AX to DS.
MOV SI, OFFSET ARRAY ; Move the offset of the array to SI.
MOV CX, COUNT ; Load COUNT in CX.
DEC CX ; Decrement CX as the number of
comparisons is one less than COUNT.
MOV AX, [SI] ; Move the first word to AX.
AGAIN: ADD SI, 2 ; Add 2 to SI to point the next word.

Compare the word in AX with the
word at [SI].

.

CMP AX, [SI]

148 Microprocessors and Interfacing

JC NEXT
MOV AX,

[s1]

NEXT: LOOP AGAIN
MOV SMALLEST, AX

MOV AH,
INT 21H

4CH

CODE ENDS
END START

Example 4.29

.

If AX is small, go to NEXT.

5 Move the small word in [SI] to AX.
Repeat the loop AGAIN, CX times.

5 Store AX in the location SMALLEST.

.

Return to the DOS prompt.
End of code segment
Program ends.

e

Write a program to find the number of even and odd data bytes present in the given
array having five byte-type data. Assume that MASM assembler is used.

In this program, the array has five bytes of data (40H, 31H, 23H, 52H, 39H).

Program:

ASSUME CS: CODE, DS: DATA
DATA SEGMENT
ARRAY DB 40H,31H,23H,52H, 39H

COUNT EQU @5H

EVEN_NOS DB @@H

ODD_NOS DB @eH

DATA ENDS
CODE SEGMENT

START: MOV AX,
MOV DS,
MOV BL,
MOV DL,

MOV CX,
MOV SI,

AGAIN: MOV AL,
RCR AL,

JC oDD

INC BL

JMP L1
0oDD: INC DL

DATA
AX
00H

00H

COUNT
OFFSET ARRAY

[s1]
1

; Data segment starts.

; Enter all data in the array here.

; Initialize COUNT with @5, which is the

number of data.

Reserve a byte for storing number

of even data.

; Reserve a byte for storing number

of odd data.

Data segment ends.

Code segment starts.

; Move segment address of DATA to DS.

Move the content of AX to DS.

Initialize BL with @@H, to store

the number of even data.

Initialize DL with @@H, to store

the number of odd data.

; Initialize CX with COUNT.

; Move the offset address of ARRAY to
SI.

; Move one byte from ARRAY to AL.

Rotate AL right through the carry

by 1 bit.

; If carry = 1, the number is odd. So go

to ODD.

Otherwise, the number is even;

increment BL.

Jump to L1.

Increment DL by 1 as the number is

odd.

.

..

e

Addressing Modes, Instruction Set, and Programming of 8086

L1: INC SI

LOOP AGAIN

MOV EVEN_NOS, BL
MOV ODD_NOS, DL
MOV AH, 4CH

INT 21H

CODE ENDS

END START

Example 4.30

..

e

e Lve

[

149

Increment SI to point to the next
data.

Go to LOOP AGAIN, CX times.

Store the content of BL in EVEN_NOS.
Store the content of DL in ODD_NOS.

Return to the DOS prompt.
End of code segment
Program ends.

Write a program to arrange the given array having four word-type data in ascending
order. Assume that MASM assembler is used.

Program:
ASSUME CS: CODE, DS: DATA
DATA SEGMENT

>

; Data segment starts.

ARRAY DW 3200H, 4F35H, 2350H, 1FC2H

COUNT EQU ©4H
DATA ENDS

CODE SEGMENT

START: MOV AX, DATA

MOV DS, AX
MOV CL, COUNT

DEC CL

NEXT_PASS: MOV BL,

MOV SI, OFFSET ARRAY

COMPARE: MOV AX, [SI]

CMP AX, [SI+2]
i L1

XCHG AX, [SI+2]

XCHG AX, [SI]

o e .o we

.

-

e

("N

.

Store the elements of ARRAY here.
COUNT is initialized with the
number of data items.

Data segment ends.

Code segment starts.

Move segment address of DATA
to DS.

Move the content of AX to DS.
Load the number of data items
in CX.

Decrement CX as the number of
passes is one less than the
number of data.

Initialize BL with the number
of comparisons to be done in
each pass.

Move the offset address of
ARRAY to SI register.

Move one data word from array
to AX.

Compare AX with the next word
in the array.

If the first data is lesser
than the second, go to L1.
otherwise, exchange the data
in AX and the memory at [SI+2].
Exchange the content of AX
(smaller data) and the data in
the memory at [SI].

150 Microprocessors and Interfacing

ADD SI, 02 5 Increment SI by 2 to compare
the next data with AX.
L1: DEC BL 5 Decrement the number of

comparisons in BL by 1.
If BL is not @, go to COMPARE
for the next comparison.
If BL is @, go to NEXT_PASS.

JINZ COMPARE

LOOP NEXT_PASS

MOV AH, 4CH

INT 21H ; Return to the DOS prompt.
CODE ENDS ; End of segment

END START ; Program ends.

The algorithm used here is explained with the following simple example. Let us
consider arranging four words stored in an array in ascending order. Since there
are 4 (=N) words, 3 (=N — 1) passes have to be done. In the first pass, 3 (=N~ 1)
comparisons are made and the highest number is brought to the end of the array. In
the second pass, 2 (= N — 2) comparisons are made since only the top three words
of the array need to be compared, and in the third pass, only one comparison is
needed to compare the first two data in the array.
Let us assume that the data in the array is as follows:

3200H

4F35H

2350H

1FC2H

The comparisons done in each pass and the exchange of data for arranging them
in ascending order are shown here:

PASS I:
3200H 3200H 3200H 3200H
4F35H } 4F35H } 2350H 2350H
2350H 2350H 4F35H 1FC2H
1FC2H 1FC2H 1FC2H 4F35H
PASS II:

3200H 2356H 2350H

2350H 3200H :]_) 1FC2H

1FC2H 1FC2H 3200H

4F35H 4F35H 4F35H

PASS III:

2350H 1FC2H

1FC2H 2350H

3200H 3200H

4F35H 4F35H

Sorted array

Addressing Modes, Instruction Set, and Programming of 8086 151

Example 4.31
Write a program to find the average of 100 byte-type data stored in an array in data
segment. Assume that MASM assembler is used.

Program:
ASSUME CS: CODE1, DS: DATAl1l
DATA1 SEGMENT ; Data segment starts.
ARRAY DB 10H, 20H, 30H; 100 bytes are stored.
COUNT EQU 100 ; COUNT is the number of bytes in the
array.
AVERAGE DB @1 DUP (@) ; Reserve one byte to store the
result.
DATA1 ENDS ; Data segment ends.
CODE1 SEGMENT ; Code segment starts.
START: MOV AX, DATAl ; Segment address of DATA1l is moved
to AX.

..

MOV DS, AX Move AX content to DS.
MOV SI, OFFSET ARRAY ; Move offset address of ARRAY to SI.
XOR AX, AX Clear AX and carry flag.
MOV BX, ©000H ; Clear BX.
MOV CX, COUNT Move COUNT to CX.
L1: MOV BL, [SI] ; Move one byte from array into BL.

e

-

ADD AX, BX ; Add AX and BX.

INC SI ; Increment SI to point to the next
byte.

LOOP L1 ; Repeat Loop L1 CX times.

MOV DH, COUNT ; Move COUNT to DH.

DIV DH ; Divide AX by DH.

MOV AVERAGE, AL ; Store AL content in AVERAGE.

MOV AH, 4CH ; Return to DOS prompt.
INT 21H

CODE1 ENDS ; Code segment ends.
END START ; Program ends.

Note: In this program, even though the array contains byte-type data, registers AX
and BX are used. They are cleared initially, to keep the contents of AH and BH at
00H. The content of BH is not changed throughout the program execution. The
byte to be added is first moved to BL and then BX is added with AX. The use of
AX and BX results in storing the carry generated in the byte addition automatically
in AH, when ADD AX, BX instruction is executed.

Example 4.32

Write a program to find the sum of many multi-byte numbers. Let us assume that
we want to add four multi-byte numbers, each having four bytes. Let the numbers
to be added be FOBOC010H, 203050C0H, 40453080H, and 807060BOH. The
numbers are stored in the memory as shown, starting from the LSB of the first
number. To store the result, five bytes are reserved, since the addition of these

152 Microprocessors and Interfacing

numbers will generate carry, which will be stored in the fifth byte (e, Msp)
Initially, the five bytes in the result are cleared (i.e., made 00H). Assume tha.t
MASM assembler is used.

Data in the memory (in Hex)
10 (LSB)
2 Number 1
BO
FO (MSB)
Co (LSB)
ki Number 2
30
20 (MSB)
80 (LSB)
$? Number 3
45
40 (MSB)
BO (LSB)
& Number 4
70
80 (MSB)
00H
00H (LSB)
00H
Result
00H
00H (MSB)
_Program:
ASSUME CS: CODE1, DS: DATA1l
DATA1 SEGMENT ; Data segment starts.
BYTES EQU @4H 5 BYTES indicates number of bYtes
in a multi-byte number. 1t
NUMBER EQU @4H ; NUMBER indicates number of ™
byte numbers.
NUM_LIST DB 10H, @C@H, @BOH, OFQH, @CeH, 5eH, - e
; Store the data in the multi-®
numb in the memory-
ers in core the

RESULT DB @5 DUP (@) ; Reserve five bytes to

result.
DATA1 ENDS ; Data segment ends.

-

Addressing Modes, Instruction Set, and Programming of 8086 153

CODE1 SEGMENT Code segment starts.

..

START: MOV AX, DATA1l ; Segment address of DATA1l is moved
to DS.
MOV DS, AX ; Move the content of AX to DS.
MOV SI, OFFSET NUM_LIST ; Load SI with offset address of
NUM_LIST.
MOV CX, NUMBER ; Load CX with the value of NUMBER
(= 4).
L3: MOV BL, BYTES ; Load BL with the value of BYTES
(= 4).
MOV DI, OFFSET RESULT ; Load DI with the offset address
of RESULT.
XOR AL, AL ; Clear AL and the carry flag.
L1: MOV AL, [SI] ; Move the byte at [SI] to AL.
ADC AL, [DI] ; Add with carry, the byte at [DI]
and AL.
MOV [DI], AL ; Store the result in AL at [DI].
INC SI ; Increment SI to point to the next
byte.
INC DI ; Increment DI to point to the next
byte.
DEC BL ; Decrement BL as one byte is
added.
INZ L1 ; If BL # @, go to L1 to perform
addition of next bytes.
INC L2 ; If final carry is 0, go to L2.
INC BYTE PTR [DI] ; Otherwise increment data at
[DI].
L2: LOOP L3 ; Repeat loop L3, CX times.
MOV AH, 4CH 5 Return to DOS prompt.
INT 21H
CODE1 ENDS ; Code segment ends.
END START ; Program ends.

Note: In this program, the first multi-byte number and the multi-byte data in the
location RESULT (which initially has 00H in all bytes) are added, and the result
is stored in the location RESULT itself. The final carry generated in the addition
is stored in the MSB of the result. Then the next multi-byte number is added with
the multi-byte number stored in RESULT, and the result of that addition is stored
in RESULT again. This is repeated until all multi-byte numbers are added.

Example 4.33
Write a program to perform subtraction of two BCD data (say 80H — 17H). Assume
that MASM assembler is used.

Program:
ASSUME CS: CODE, DS: DATA
DATA SEGMENT ; Data segment starts.

154 Microprocessors and Interfacing

MINU DB 80H Sort the minuend.

SUBT DB 17H Store the subtrahend.

RESULT DB @1 DUP (@) ; Reserve one byte for storing the
result.

BORROW DB @1 DUP (@) ; Reserve one byte for storing borrow.

.

“

DATA ENDS ; Data segment ends.
CODE SEGMENT ; Code segment starts.
START: MOV AX, DATA ; Move segment address of DATA to DS.
MOV DS, AX ; Move the content of AX to DS.
XOR AL, AL ; Clear AL and carry flag.

MOV AL, MINU Move minuend to AL.

MOV BL, SUBT ; Move subtrahend to BL.

SuB AL, BL Subtract BL from AL.

DAS Decimal-adjust AL after subtraction
to get the result in BCD form.
Store the content of AL in RESULT.
If borrow = @, go to NO_CAR.

Move @1H in BORROW.

Return DOS prompt.

.

b

MOV RESULT, AL

INC NO_CAR

MOV BORROW, @1H
NO_CAR: MOV AH, 4CH

INT 21H
CODE ENDS ; Code segment ends.
END START ; Program ends.

Note: The data at RESULT and BORROW will be 63H and 00H, respectively,
after execution of the program.

Example 4.34

Write a program to multiply two 8-bit data, namely, operand 1 and operand 2,
and to divide the same two data (i.e., operand 1/operand 2). Assume that MASM
assembler is used.

Program:

ASSUME CS: CODE, DS: DATA
DATA SEGMENT Data segment starts.

OPR1 DB 40H Operand 1 is stored.

OPR2 DB 20H Operand 2 is stored.

PRODUCT DW @1 DUP (@) ; Product is stored here.

QUOTIENT DB @1 DUP (@) ; Quotient is stored here.

REMAINDER DB @1 DUP (@); Remainder is stored here.

RPN

-

DATA ENDS ; Data segment ends.
CODE SEGMENT ; Code segment starts.

START: MOV AX, DATA ; Store segment address of DATA in DS
MOV DS, AX ; Move the content of AX to DS.
XOR AX, AX ; Clear AH and AL.

Move OPR1 to AL.
Move OPR2 to BL.
Multiply AL & BL.

-

MOV AL, OPR1
MOV BL, OPR2
MUL BL

Addressing Modes, Instruction Set, and Programming of 8086 155

MOV PRODUCT, AX 5 Store AX content in PRODUCT.

XOR AX, AX 5 Clear AX and carry.
MOV AL, OPR1 5 Move OPR1 to AL.
DIV BL 5 Divide AX by BL.
MOV QUOTIENT, AL 5 Move AL content to QUOTIENT.
MOV REMAINDER, AH 5 Move AH content to REMAINDER.
MOV AH, 4CH 5 Return to DOS prompt.
INT 21H
CODE ENDS ; Code segment ends.
END START ; Program ends.
Example 4.35

Write a program to convert the given 8-bit binary number into equivalent Gray
code. Assume that MASM assembler is used.

Solution:
The equivalent Gray code of a binary number is obtained using the following
relation:

Let the bits in the binary number be represented as follows:

B7 B6 BS B4 B3 B2 B1 BO

(MsB) (LSB)
Let the bits in the equivalent Gray code be represented as follows:

G7 G6 G5 G4 G3 G2 Gl Go

(MSB) (LSB)
The bits in the Gray code are obtained by the following relations:

G7 = B7

and Gi = Bi XOR (Bi + 1), where i = 0 to 6
The algorithm used in this program is as follows:
(i) Move the binary number to AL, BL, and CL registers.
(ii) Rotate the content of BL right by 1 bit, not through the carry. The binary
number bits in BL, after rotation, will be as follows:

BL

[Bo[B7 [B [Bs | B4 [B3 [Tz o 27|
(iii) The content in CL will be as follows:

CL

[B7] Bs [B5s | B4 | B3 [B2 [B1 | BO |
(iv) XOR the content of BL with that of CL and store the result in BL.
(v) AND 80H with the content of AL to mask all the bits except MSB in AL.
(vi) IfMSB in AL is 0, AND 7FH with BL to get Gray code. f MSB in AL is 1,

OR 80H with BL to get Gray code since the MSB in binary code and Gray

code are the same.

Program:
ASSUME CS: CODE, DS: DATA
DATA SEGMENT ; Data segment starts.

156 Microprocessors and Interfacing

BINARY DB 4BH ; Sort the binary data.
GRAY DB @1 DUP (@) ; Reserve 1 byte for Gray code.
DATA ENDS ; Data segment ends.
CODE SEGMENT ; Code segment starts.
START: MOV AX, DATA ; Move segment address of DATA to Ds.
MOV DS, AX ; Move the content of AX to DS.
MOV AL, BINARY ; Move binary number to AL.
MOV BL, AL ; Move AL to BL.
MOV CL, AL 5 Move AL to CL.
ROR BL, 1 ; Rotate right BL content by 1 bit.

XOR BL, CL ; XOR BL and CL content, the result
stored in BL.
AND AL, 8H ; AND AL with 80H to mask the lower bits
except MSB.
CMP AL, 86H ; Compare AL with 80H to test the MSB.
JZ 11 ; If MSB in AL is 1, go to L1.
AND BL, 7FH 5 AND 7FH with BL content to make MSB in
BL ©.
JMP L2 5 Go to L2. .
[£+ OR BL, 86H 5 OR 80H with BL content to make MSB in
BL to 1.
L2: MOV GRAY, BL 5 Move BL content to GRAY.
MOV AH, 4CH 5 Return to DOS prompt.
INT 21H
CODE ENDS 5 Code segment ends.
END START 5 Program ends.
Example 4.36

Write a program to find the square root of the given byte-type data. Assume that
the byte-type data is a perfect square. Assume that MASM assembler is used.

Algorithm:
Three registers can be used to find the square root of the number. Let the number
whose square root is to be found be stored in the CL register, and the data 00H and

01H be stored in registers AL and DL, respectively. The algorithm used to find the
square root is as follows:

(i) Check the content of CL, if CL = 0. Go to step (v).

(i) Subtract the value in DL from the value in CL and store the result in CL-
(iii) Increment AL.

(iv) Add 2 with the content of DL and 80 to step (i).
(v) Store the value in AL in the location RESULT as AL contains the squar®
root of the number.
Let the number for which square root has to be found be 09H. The value in different
registers at the end of each iteration, during the execution of the program, is show?
in Table 4.12:

Addressing Modes, Instruction Set, and Programming of 8086 157

Table 4.12 Values in different registers at the end of each iteration

Iteration CL AL DL
0 09H 00H 01H
1 08H 01H 03H

Iteration CL AL DL
2 05H 02H 05H
3 00H 03H 07H

Since CL becomes 0 at the end of the third iteration, the value in AL at the end of
the third iteration (which is the result) is 03H, and is stored in the memory.

Program:

ASSUME CS: CODE, DS: DATA
DATA SEGMENT
NUMBER DB @9H 5

-

RESULT DB @1 DUP (@) ;

Data segment starts.

Store the number whose square root
has to be found.

Reserve 1 byte for the result.

DATA ENDS ; Data segment ends.
CODE SEGMENT ; Code segment starts.
START: MOV AX, DATA ; Move segment address of DATA to DS.
MOV DS, AX ; Move the content of AX to DS.
MOV CL, NUMBER ; Move NUMBER to CL.
MOV DL, ©1H ; Move ©@1H to DL.
MOV AL, @@H ; Move @0H to AL.
REPEAT: CMP CL, ©@H ; Compare CL with @eH.
JZ STORE ; IfZ=1 (i.e., CL = @0H), go to STORE.
SUB CL, DL ; Subtract DL from CL and store the
result in CL.
INC AL 5 Increment AL.
ADD DL, ©2H ; Add 02H to DL.
N JMP REPEAT ; Go to REPEAT.
STORE: MOV RESULT, AL ; Store the value in AL at RESULT.
MOV AH, 4CH 5 RESULT to DOS prompt.
INT 21H -
CODE ENDS ; Code segment ends.
END START ; Program ends.
Example 4.37
Write a program to multiply two 2 x 2 matrices whose elements are byte-type
data,
Let the matrices to be multiplied be A and B and their elements as shown here:
A= 4, ap and B= b, by,
a4 Ay by by
AxB = ay by +apby ayby, taby, - XY

a,by tayby ayb, +ayby, z W

158 Microprocessors and Interfacing

Let all the elements of the two matrices be stored in 'the memory as shown. The
labels have been mentioned for different memory logatlons. Let the elements X Y,
Z, and W of the resultant matrix all be 16-bit data (i.e., word data).

1 byte { a;;

b FC_B

o | o
5]

2 bytes {

a;; % by

a;, Xby,

a; xby,

a3, %by
2y X by
2y, X by,
) X by,

3y % by
2 bytes { X

Y
Z
w

Program:

ASSUME CS: CODE, DS: DATA, SS: STACK

DATA SEGMENT
FR_A DB @1H, 02H

SR_A DB @3H, @4H
FC_B DB @5H, @6H
SC_B DB 04H, 02H
PAR_RES DW 08 DUP (@)

RESULT DW @4 DUP (o)

FR A

Sz SR_A

SC B

PAR_RES

RESULT

-

[

.

e

; Reserve four words fO

Data segment starts.
Store the first-row elements
of A.

Store the second-row elements
of A.

Store the first-colum
of B.

Store the second-column
elements of B.
Reserve eight word
the partial result.

n elements

s for storiné

r storint

the final result.

START:

Addressing Modes, Instruction Set, and Programming of 8086 159

DATA ENDS
STACK SEGMENT
STORE DW DUP 100 (9)

STACK_TOP LABEL WORD

STACK ENDS
CODE SEGMENT
MOV AX, DATA

MoV
MoV

MoV
MoV

MoV

MoV

MoV
MoV

DS,
Ax)

Ss,
SP,

sI,

DI,

cL,
BX,

AX
STACK

AX
OFFSET

OFFSET

OFFSET

02
OFFSET

CALL PAR_PROD
MOV SI, OFFSET

MOV DI, OFFSET

MOV CL, @2
CALL PAR_PROD
MOV SI, OFFSET

MOV DI, OFFSET

MoV CL, 2
CALL PAR_PROD
MOV SI, OFFSET

MOV DI, OFFSET

MoV CL, 02
CALL PAR_PROD
MOV BX, OFFSET

Mov DI, OFFSET

STACK_TOP

FR_A

FC_B

PAR_RES

FR_A

sC_B

SR_A

FC_B

SR_A

SC_B

PAR_RES

RESULT

..

..

..

..

. e

>

..

..

e

K

..

..

e

..

.. ..

. e

>

1)

Stack segment starts.

Reserve 100 words for

storage.

Give the label STACK_TOP to the
top of the stack.

Store the segment address of
DATA in DS.

Move the content of AX to DS.
Store the segment address of
STACK in AX.

Move the content of AX to SS.
Load offset of STACK_TOP in
SPP.

Move offset address of FR_A to
ST.3

Move offset address of FC_B to
DI.

Move 02 to CL.

Move offset address of PAR_RES
to BX.

Call PAR_PROD subroutine.

Move offset address of FR_A to
SI.

Move offset address of SC_B to
DI.

Move @02 to CL.

Call PAR_PROD subroutine.

Move offset address of SR_A to
SI.

Move offset address of FC_B to
DI.

Move 02 to CL.

Call PAR_PROD subroutine.

Move offset address of SR_A to
SI.

Move offset address of SC_B to
DI.

Move 02 to CL.

Call PAR_PROD subroutine.

Move offset address of PAR_RES
to BX.

Move offset address of RESULT
to DI.

160 Microprocessors and Interfacing

MOV CX, 04 ; Move 04 to CX.

L3: MOV AX, [BX] ; Move word at [BX] to AX.

ADD BX, @2 ; Increment BX by 2 to point to
the next word.

ADD AX, [BX] ; Add AX and the word at [BX].

MOV [DI], AX ; Move the content of AX to
[DI].

ADD BX, 02 ; Add 02 to BX to point to the
next word, for addition.

ADD DI, @2 ; Add @2 to DI to point to the
next word, for storage.

LOOP L3 ; Repeat loop L3, CX times.

JMP L4 5 Go to L4.

PAR_PROD: XOR AX, AX ; Clear AX and carry flag.

MOV BP, SI ; Move the content of SI to BP
for use in multiplication of
the next column.

(5 MOV AL, [SI] 5 Move byte at [SI] to AL.

MUL BYTE PTR [DI] 5 Multiply AL and the byte at
[DI].

MoV [BX], AX ; Store the content of AX at [BX]

INC SI 5 Increment SI.

INC DI 5 Increment DI.

ADD BX, 02 5 Add @2 with BX to point to the
next word.

MOV AH, @eH ; Clear AH for the next
multiplication.

DEC CL ; Decrement CL.

INZ L1 ;5 If CL # @, go to L1.

L2: RET ;5 Return from subroutine.
La: MOV AH, 4CH ; Return to DOS prompt.

INT 21H

CODE" ENDS ;5 Code segment ends.

END START

Program ends.

Note: In this program, the partial products a Xby;,a, xb,, a,xb,,, anda;, *
b,, are found by loading SI, DI, and BX registers with the correct offset address
and calling the PAR_PROD subroutine, CL s loaded with 02 since two partial
products belonging to a row of matrix A have to be found each time the PAR_
PROD subroutine is called. Then the partial products ay X by, a5 X by, B X
b,,, and a,, x b,, are found out by loading SI, DI, and CL1 with“the correct values
and calling the PAR_PROD subroutine again to find the four partial products for

the second row of matrix A in a similar manner. Finally, the two adjacent partid
products are added in sequence to obtai

in the words X; Y, Z, and W, which ¢
stored from the location RESULT in the

..

memory.

Addressing Modes, Instruction Set, and Programming of 8086 161

[Example 4.38
Write a program to add a profit of 50 to the purchase cost of ten items stored in an
array. The purchase cost of each item does not exceed ¥250. Find the selling price
of each item. Assume that the MASM assembler is used.

Solution:

Since the maximum purchase cost of each item is less than 255, byte-type data is
enough to store the purchase cost of the items. But when the profit is added, the
selling price may exceed ¥255, and hence word-type array is used to store the
selling price of the items.

ASSUME CS: CODE, DS: DATA

START:

AGAIN:

DATA SEGMENT

PUR_COST DB F@H, 34H, 50H, ..

PROFIT DB 50
SELL_PRICE DW 10 DUP (0)
COUNT EQU 10

DATA ENDS
CODE SEGMENT
MOV AX, DATA

MOV DS, AX
MOV SI, OFFSET PUR_COST
MOV DI, OFFSET SELL_PRICE
MOV CX, COUNT

MOV AX, ©000H
MOV BX, ©@00H
MOV AL, [SI]
MOV BL, PROFIT
ADD AX, BX
MOV [DI], AX
INC SI

ADD DI, 02
LOOP AGAIN
MOV AH, 4CH
INT 21H

CODE ENDS
END START

-

>

..

..

fort

..

-

e

>

.o

..

e

..

..

.

Data segment starts.

Store the purchase cost of
10 items.

Store the profit.

Store the selling price.
Assign a value of 10 to
COUNT.

Data segment ends.

Code segment starts.

Move segment address of DATA
to DS.

Move the content of AX to
DS.

Move the offset address of
PUR_COST to SI.

Move the offset address of
SELL_PRICE to DI.

Move the value of COUNT to
CcX.

Clear AX.

Clear BX.

Move data in [SI] to AL.
Move value in PROFIT to BL.
Add AX and BX.

Store AX at [DI].

Increment SI to point to the
next data.

Increment DI to point to the
next storage location.
Execute the loop AGAIN, CX
times.

Return to DOS prompt.

Code segment ends.
Program ends.

162 Microprocessors and Interfacing
4.6 PROGRAM DEVELOPMENT PROCESS

Figure 4.16 illustrates the program development process. A word processor or
editor program is used to generate an ASCII file for the program module,
which is termed as a source file, for example, the source file named as (xxx)

has an extension (xxx.asm).

Command Reset mode loader l

Source file

R Executable
Q——J Editor o
Program
code

Loader

Memory
map

Fig. 4.16 Prograrﬁ developmeﬁt process

There are two types of statements in an assembly language program (ALP):
(i) Instructions: These are translated into object codes by the assembler.
(ii) Directives: These give direction to the assembler during the assembly
process, but are not converted into object codes.
The assembler program converts a source module (xxx.asm) file into an object
module, which is in hexadecimal file format (xxx.obj). Figure 4.17 depicts the

assembly operation process.

Symbol for
indentifier table
(Mnemonics)
Instruction table

Object
code

code

Location
counter

Fig.4.17 Assembly operation

Addressing Modes, Instruction Set, and Programming of 8086 163

The assembler scans the program statements one by one from left to right starting
with first statement to last statement indicated by an end statement. This process is
called a pass. Most assemblers are two-pass assemblers.

The purpose of first pass is to provide the assembler the location of labels. In
the first pass, location counter (LC) is used to construct a symbol table. During the
first pass, the assembler does the following:

(i) Passes the source code, calculating the offset for each line in the program

(ii) Makes assumptions regarding undefined values
(iii) Does elementary error checking and displays error if necessary
(iv) Generates preliminary listing of source file

The purpose of second pass is to generate codes. The symbol table allows the
second pass to use the offset of a label to generate the ‘and’ addresses. During the
second pass, the assembler does the following:

(i) Scans the source code and converts it into machine codeusing the symbol

table to insert addresses as needed
(ii) Attempts to reconcile the assumptions made in the first pass
(iii) Generates list file (if opted for)
(iv) Generates (.obj) and cross reference (.crf) files.
(v) Displays errors/warnings i

The linking process is initiated by activating LINK or TINK command. The
function of the linking process is to
(i) Combine separate object modules into one executable file
(i) Resolve the references that are unresolved after second pass (due to public,
global, or external variables)
(iii) Produce a list file showing how the object files are linked

The unresolved references after second pass are resolved with the help of the

following assembler directives:

(i) PUBLIC directive is used to declare that the labels of code, data, or
entire segments are available to other program modules. It is placed in
the opcode field.

(ii) EXTRN (external) directive is used for indicating that the labels are
external to a module. Label represents jump or data addresses. It may
represent a segment. This directive must appear both in data and code
segments to define labels as external to the segment. These statements
are used by linker to link modules together to create a program using
modular programming techniques. When segments are made public,
they are combined with other public segments that contain data with
the same segment name.

Libraries A library file stores a collection of related procedures. It is created
with the LIB command. They are collections of assembled (xxx.obj) object
files and each performs a procedure or task. They allow common procedures
to be collected in aplace so that they can be shared by the users. These files
have an extension (xxx.Lib) and are invoked when a program is linked with
the linker program.

164 Microprocessors and Interfacing

4.7 MODULAR PROGRAMMING

In a program it may be necessary to perform a particular task repeatedly. The
formulation of complex programs from numerous complex sequences, called
program modules, each of which performs a well-defined task, is referred to as
modular programming. Large programs are broken down into small segments
called modules. Each module implements a specific function and has its own code
segment (CS) and data segment.

Procedures are useful in such situations. A procedure is a group of instructions
that usually performs one task. It forms a reusable section of the software, which
is stored once in memory, but used as often as necessary. This saves memory
space and makes it easier to develop the software. A procedure is a sequence of
instructions, which can be employed repeatedly, within a longer program.

To make software development faster, it is better to develop and test in the form
of small program segments. This splitting does not cause any loss of capability to
the program. The advantages of procedures over single programs are as follows:

(i) It reduces the code length and memory requirement.

(ii) It reduces development time as the modifications in the procedures are
localized, which can be debugged and tested separately.

(iii) It supports modular programming methodology and improves the legibility
of a program as the flow of logic is well-defined.

(iv) Sinceitis possible to develop library of procedures for most commonly used
task, which can be shared by users from library, unnecessary duplication of
codes is avoided. A list of library modules may be the only requirement for
the user.

(v) Procedures provide a flexible and convenient way of exchanging information
between the application programs.

It is necessary for the programmer to define and initialize the stack area (in the
user memory) before a processor is expected to execute the procedure. Since the
stack area is used by the processor and user, an extra care is necessary while using
stack group of instructions. The data on the top of the stack can only be accessed
using stack pointer (SP). It is essential to indicate the size of the stack in terms of
number of bytes and starting address of the stack. The starting address of the stack
area is loaded in the stack segment register (SS) and address of top of the stack in
the SP.

A sample code for stack definition and initialization is as follows:

(i) STACK_SEG Define a stack segment.
STACKDW 50 DUP (@) ; Size is 50 words.
STACK_TOP LABEL WORD Variable name STACK_TOP refers
to the stack.
Define a code segment.
Initialize CS register.

..

(ii) CODE_SEG
MOV AX, CODE_SEG
MOV CS, AX
MOV AX, STACK_SEG
MOV SS, AX
LEA SP, STACK_TOP

-

.

Initialize SS register.

e

Initialize top of the stack.

[

Addressing Modes, Instruction Set, and Programming of 8086 165

Example: If stack starts at — 6000H
(SS) = (6000H) and (SP) = (0050)

In order to handle the procedures, operations required by the processor systems
are invoking or calling a procedure (called program) and returning from the
module back to the main program (calling program).

In addition, it is necessary to provide input parameters to a procedure when it
is called and to return back to the result or output parameter after execution. The
number of input/output parameters passed to and from the procedure can vary.
Even the parameters to be passed may be control/status information, which may
not have a peripheral for data transfer.

Since the main module and procedure use processor registers/RAM without
any difference, they can be used to hold the input as well as the output parameter
information. However, it is important to take care of the data before and after
calling procedural module. Original input data must be saved if the required
location is modified by the module. This method is adequate as long as the amount
of data/information to be exchanged is small. To exchange large amounts of data,
information may be stored in memory location and it is necessary to pass the
address pointer to the module. To reduce overheads, stack may also be used for
parameter passing. A procedure may be classified as follows:

(i) Intra-segment procedure (near): These procedures are in the same segment

of the main program module. They are identified by near directive.

(ii) Inter-segment procedures (far): These procedures are not in the segment of
the main program module but in some other segment. They are identified by
far directive.

(iii) Reentrant procedures: They define a procedure that can be interrupted,
used, and reentered without losing or writing over anything. They push all
the registers and flags used in the procedure and use only registers or the
stack to pass parameters.

(iv) Recursive procedures: These procedures call themselves and are often used
to work with complex data structures called trees. Recursion is a powerful
tool that allows us to express our solution elegantly and can be used as an
alternative to iteration as solutions methods for problems such as binary
search, quick sort, as well as Fibonacci series. A recursive procedure calls
itself, either directly or indirectly through another procedure.

In most cases, recursive versions tend to be inefficient as they induce more
overheads to invoke and return from procedure calls. They may require duplicate
computation. They have excessive demands for more memory or stack area.

The instructions used to handle procedures are as follows:

(i) CALL

(i) RET
(iii) RETF—return from a far procedure
(iv) RETN—return form a near procedure

4.7.1 CALL Instruction
When executed, the CALL instruction performs the following two operations:

166 Microprocessors and Interfacing

(i) Stores the return address to which the procedure will return to after
execution

(i) Modifies the contents of the instruction pointer (IP)/CS register so that it
points to the starting address of the procedure, depending upon whether it is
an intra-segment call or an inter-segment call

4.7.1.1 Direct Call

(i) Ifthe procedure is in the same segment: The processor produces the starting
address of the procedure by adding a 16-bit signed displacement contained
in the instruction to the contents of the IP. If the displacement is negative, it
is represented in 2’s complement sign-and-magnitude form.

IP < Meml6
(SP) « Return address

(ii) If'the procedure is in another segment: The IP and the CS register contents
are changed to transfer control to the procedure. The information of new
value of CS/IP is specified as bytes (4-5) and (2-3) in the instruction. It is
to be noted that as usual low byte is written first.

CS < New seg-base (Bytes 4-5)
IP « Offset (Bytes 2-3)
(SP) < Return address

4.7.1.2 Indirect Call
(i) If the procedure is in the same segment: The processor produces the starting
address of the procedure by adding a 16-bit signed value specified by any of
the general purpose register in the instruction to the contents of the IP.
IP < Meml6
(SP) « Return address
(ii)If the procedure is in another segment: It replaces the CS and the IP
registers contents with 16-bit values from memory locations whose address
is specified by MOD byte in the instruction. The first word from specified
memory location is placed in the IP, and the next word is placed in the CS
register.
Example: .
CALL DWORD PTR [DX]
CS « New seg-base address [BX+3], [BX+2]
IP « [BX+1], [BX]
(SP) «— Return address

4.7.2 RET Instruction

The RET is the last instruction in the procedure. At the end of the procedure, the
value saved in the stack is loaded back in the IP register to return execution to the
calling program so that the control is transferred to the main line program. The
assembler will automatically code a near RET for a near procedure and a far RET
for a far procedure. Two more instructions (RETF and RETN) are provided for
return from far/near procedure.

(i) RFTF at the end of the procedure copies return values from the stack back

Addressing Modes, Instruction Set, and Programming of 8086 167

into the IP, and CS registers to transfer control back to the next line in the
main program.
IP < (word from top of the stack)
CS « (word from top of the stack + 2)
It may add a 16-bit immediate number contained in the instruction code to
SP.

(ii) RETN at the end of the procedure copies a word from the top of the stack
to the IP register.
IP « (word from top of the stack)
It may add a 16-bit immediate number contained in the instruction code to
SP.

4.7.3 Macro

Amacro is a group of instructions that performs a task. It is inserted in the program
during the assembly process. Macro instructions are placed in the program by the
assembler at a point where they are invoked by using their name. A macro is a
sequence of code that needs to be written only once, butwhose basic structure can
be repeated several times within a module by giving it a name.

The code to be repeated is called the prototype code, and the prototype code
along with the statements for referencing and terminating is called the macro
definition. The procedure for using a macro is to give macro definition and then
declare it at various appropriate points within a program by placing a statement
that includes the macro’s names at these points. These statements are known as
macro calls. When a macro call is encountered by the assembler, the assembler
replaces the call with the macro’s code. It is preceded by a macro definition and
completed by a macro terminator.

The macro and endm direetives are used to define a macro sequence. The
first statement of a macro contains the name of the macro and any parameters
associated with it. It is termed as a definition. The last statement endm is
called a terminator. All the statements between name and terminator define a
macro body. When macro is to be used its name is written. This is called macro
call. The assembler replaces the call with the code. This is called macro expansion.

Example:
PUSH_ALLMACRO ; Definition
PUSH AX ; Macro body
PUSH BX
PUSH CX
PUSH DX
PUSH DI
PUSH SI
ENDM ; Terminator

Macros may contain local variables (one which is used in the macro body, but
is not available outside the macro). To define a local variable, we use the LOCAL
directive. Table 4.9 depicts a comparison of procedure and macro features.

168 Microprocessors and Interfacing

Table 4.9 Comparison of features of procedure and macro

Called during execution

Assembled and executed separately
Reduces memory requirements

May be anywhere and in any segment
Requires a special call statement
Program control is transferred.

Can be used by any assembler

Parameters are passed through register,
memory, or stack.

Machine code is put only once in
memory.

Accessed by CALL and return
mechanism during program execution

~ Macro

V Insérted during assembly process

Cannot be executed separately

No change in memory requirements

It must be defined in the same program.
Using the name is enough

Program control is not transferred.

Used if assembler has a support for
MACRO features

Parameters are passed as a part of the
statement that calls MACRO.

Machine code is generated each time
when called.

Accessed during assembly process when
aname given to it is defined

4.7.4 lllustrative Example

Write a program segment to find the LCM of two numbers using a procedure to

find the HCF/GCD of two numbers.

Solution:
Algorithm:

An algorithm for finding HCF/GCD of two numbers is as follows:
Step 1: Find remainder of the larger number divided by the smaller number

Dividend = larger number
Divisor = smaller number
Step 2: Ifrem#0
Carry out division; where
Dividend = divisor
Divisor = remainder
Go to Step 2.
Else

Stop the process; divisor is GCD or HCF.

LCM of two numbers can be found using the formula (LCM =x1 x x2/ HCF).

Program segment.
DATA
X1 DWXXXX
X2 DWYYYY

LCM DW 2 DUP (@)
HCF DW DUP(?)

ASSUME DS:
SS:

LCM:

REPT:

DIVAX_BX:

BIG_Bx:

EXIT:

Addressing Modes, Instruction Set, and Programming of 8086 169

STACK_SEG
STACK DW5@ DUP(®)

3

B

STACK_TOPLABEL WORD ;

CODE_SEG
DATA_SEG
STACK_SEG

MOV AX, CODE_SEG
MOVCS, AX

MOV AX, STACK_SEG
MOVSS, AX

LEA SP, STACK_TOP
MOV AX, DATA
MOV DS, AX
MOV AX, X1
MOVBX, X2
CALLHCF

MULBX

MOVBX, HCF
DIV BX

MOV LCM, AX
MOV LCM+2, DX
END LCM
HCFPROCNEAR
PUSH AX

PUSH BX

CMP AX, BX

JE EXIT

JB BIG-BX
MOV DX, @@@eH
DIV BX

CMP DX, @@0@H
JE EXIT

MOV AX, DX
JMPREPT

XCHG AX, BX
JMPDIVAX_BX
MOVHCF, BX
POP BX

POP AX

RET

HCF ENDP

>

B

..

Define a stack segment.

; Size is 50 words.

Top of the stack can be referred
using variable name STACK_TOP.
Define a code segment.

; Initialize CS register.

; Initialize top of the stack.

Initialize code segment register.

Find HCF of two numbers (x1 and x2)

Save lower word of LCM.
Save upper word of LCM.

Define a procedure with a name (HCF).

; Indicates end of a procedure

170 Microprocessors and Interfacing

POINTS TO REMEMBER

e The addressing modes in the 8086 are classified as register, immediate, data
memory, stack memory, and program memory addressing modes.

e The data memory addressing modes are classified as direct, base, index, base plus
indexed, base-relative, index-relative, and base-relative plus index addressing modes.

e The program memory addressing modes are classified as direct, relative, and
indirect addressing modes.

= The 8086 instructions are classified as data transfer, arithmetic, logical, shift/rotate,

flag manipulation, control transfer, string, and machine control instructions.

The assembly language programming of the 8086 can be done with a line assembler

or an assembler.

= Assembler directives are used while writing an assembly language program that is
to be assembled by using an assembler.

e The formulation of complex programs from numerous complex sequences, called

program modules, each of which performs a well-defined task, is referred to as modular

programming.

It is possible to develop a library of procedures for most commonly used tasks, which

can be shared by users from library.

® Procedures provide a flexible and convenient way of exchanging information between

the application programs.

It is necessary for the programmer to define and initialize the stack area in the user

memory area before a processor is expected to execute the procedure. Since the stack

area is used by the processor and user, extra care is necessary while using stack group

of instructions.

The assembler automatically codes a near RET for a near procedure and a far RET for

a far procedure.

A macro is a group of instructions that performs a task which is inserted in the program

during the assembly process.

KEY TERMS

Addressing mode This mode is the way in which the microprocessor addresses the
operands while fetching data during the execution of an instruction or the way in which
the microprocessor calculates the memory address from where the next instruction to
be executed is taken, in the case of jump or call instructions.

Assembler It is a software that is used to convert assembly language programs into
machine language programs.

Assembler directives These are commands to the assembler, which give various
details in a program such as the required storage class for a particular constant or
variable (byte, word, or double word), logical name of the segments (CODE, STACK,
or DATA segment), type of procedures or routines (FAR, NEAR, PUBLIC, or EXTRN),
end of a segment (ENDS), and macro definition (MACRO, ENDM).

Inter-segment jump This refers to the operation of jumping from one code segment
to another.

Intra-segment jump This refers to the operation of jumping within the same code
segment.

Library It is a collection of object files created with the LIB command and has
extension .lib.

Addressing Modes, Instruction Set, and Programming of 8086 171

Line assembler It converts each line in an assembly language program into the
corresponding machine language program, as soon as it is entered in the system.
Macro A macro is a sequence of code that needs to be written only once, but whose
basic structure can be repeated several times within a module by giving it a name.
Procedure A procedure is a group of instructions that usually performs one task,
which is stored once in memory, but used as often as necessary.

REVIEW QUESTIONS

1. What is the function of segment override prefix? Give two examples.
2. What is the difference between inter-segment and intra-segment jumps in the
80867
3. What is the difference between short and near jumps in the 8086?
4. What is the function of the assembler directives FAR PTR, NEAR PTR, and
SHORT PTR?
5. Write the different steps performed by the 8086 when it executes the instructions
PUSH CX and PUSH [SI].
6. What are the different uses of stack in a microprocessor?
7. Write the different steps performed by the 8086 when it executes the instructions
POP CX and POP [BX].
8. Write the operation performed by the 8086 when it executes the XLAT instruction.
What is the use of XLAT?
9. What is the difference between fixed port and variable port addressing in the
8086?
10. Which instructions of the 8086 are used to communicate with the I/O devices in
the I/O-mapped I/O scheme?
11. Write the function of the assembler directives BYTE PTR and WORD PTR.
12. What is the difference between the MUL and IMUL instructions in the 80867
13. What is the difference between the DIV and IDIV instructions in the 80867
14. What are the default operand and result locations for 8- and 16-bit data
multiplication instructions in the 8086? s
15. What are the default operand and result locations for 8- and 16-bit data division
instructions in the 8086?
16. What is the function of the DAA instruction in the 8086?
17. Write the operations performed when the instruction AAD is executed in the
8086.
18. Which instructions of the 8086 are used to set and reset the D and I flags?
19. What is the range of the relative address that is used in the conditional jump
instructions? .
20. What is the function of the INT n instruction? Which instruction of the 8086 is
used to return from the interrupt service routine to the main program?
21. What are the operations performed when the instructions LOOP and LOOPNE are
executed in the 8086?
22. What is the function of the D and I flags in the 80867
23. Which registers are used as offset registers and segment registers for pointing to
the source and destination during the execution of the string instructions in the
8086?
24. What is the function of the REP and REPE prefixes used with string instructions
in the 80867

172 Microprocessors and Interfacing

25.
26.
2L
28.
29.
30.
31.

32.

33.
34.

33,

W

36.
37.

38.

39.

40.

41.

—

N

What iS the ﬁlﬂCtiOH of the LOCK prefix used with an 8086 instruction?

What is the funct}on of the assembler and assembler directives?

What is the function of the assembler directives ORG and DB?

‘What is a macro? Give an example.

What is the difference between a macro and a subroutine?

What is the need for passing parameters to a macro?

Describe the different data memory addressing modes in the 8086 giving an
example for each.

Describe the different program memory addressing modes in the 8086 giving an
example for each.

Explain the stack memory addressing modes in the 8086 giving examples.
Explain the different data transfer instructions in the 8086 giving examples for
each.

Explain the different arithmetic instructions in the 8086 giving examples for
each.

Describe the different logical instructions in the 8086 giving examples for each.
Write the function of assembler directives that are used to define variables and
constant data with an example for each.

What are the assembler directives that are related to segment declaration? Explain
with examples.

Write the function of assembler directives that are related to code location, with
an example for each.

What are the assembler directives that are related to procedure declaration?
Explain with examples.

Explain the function of the assembler directives PTR, TYPE, SHORT, GLOBAL,
and LOCAL with an example for each.

PROGRAMMING EXERCISES

. Write an 8086 assembly language program to find the sum of 100 words present

in an array stored from the address 3000H: 1000H in the data segment and store
the result from the address 3000H: 2000H.

. Write an 8086 assembly language program to find the prime numbers among

100 bytes of data in an array stored from the address 4000H: 1000H in the data
segment and store the result from the address 4000H: 3000H.

. Write an 8086 assembly language program to find the number of occurrences of

the character ‘A’ among 50 characters of a string-type data stored from the address
5000H: 1000H in the data segment and store the result in the address 2000H:
5000H. \

. Write an 8086 assembly language program to check whether the two strings, one

stored from the address 2000H: 1000H in the data segment and the other stored
from the address 2000H: 3000H, are equal or not. If they are equal, store the value
00H in AL. Otherwise, store the value 01H in AL.

. Write an 8086 assembly language program to find the number of bytes that have

the hexadecimal digit ‘F’ in their upper nibble among 100 bytes of data in an array
stored from the address 8000H: 1000H in the data segment. Store the result in the
address 8000H: 3000H.

. Write an 8086 assembly language program to complement the lower nibble of

Addressing Modes, Instruction Set, and Programming of 8086 173

each byte in 100 bytes of data in an array stored from the address 8000H: 1000H
in the data segment. Store the result from the address 8000H: 3000H.

. Write an 8086 assembly language program to add two matrices having word-type

data in each element of the matrix. Assume that each element of the result after
addition of the corresponding elements of the matrix is also word-type data. The
data for one matrix is present in an array stored from the address 8000H: 1000H
in the data segment, and the corresponding data for another matrix is present in an
array stored from the address 8000H: 2000H in the data segment. The result is to
be stored from the address 7000H: 1000H.

. Write an 8086 assembly language program to multiply two square matrices

having word-type data in each element of the matrix. Assume that each element
of the resultant matrix is of double word type. The data for one matrix is present
in an array stored from the address 8000H: 1000H in the data segment, and the
corresponding data for the other matrix is present in an array stored from the
address 8000H: 1000H in the data segment. The result is to be stored from the
address 7000H: 1000H.

. Write an 8086 assembly language program to find the factorial of the given byte of

data using a recursive algorithm. The result is to be stored in the address 7000H:
1000H.

. Write a non-recursive assembly language subroutine for the 8086 to evaluate the

number F, =F,_, +F, , forany given n > 1 given that F{; = 0 and F', = 1. Consider
the number # in such a way that F, is not more than a 16-bit number.

. Solve problem 1 assuming that the program is to be assembled by an assembler.
. Solve problem 7 assuming that the program is to be assembled by an assembler.
. Solve problem 10 assuming that the program is to be assembled by an assembler.
. Write a procedure chg_to exchange the contents of two memory locations. Write a

main program which accepts a string terminated by full stop (.), from the keyboard,
reverses it using chg and displays both the strings on the terminal.

. Write a program segment to accept a string from the keyboard consisting of digit and

non-digit characters and display the sum of the digits present in the input string.

. Write a procedure str_match that receives two pointers to strings: string and substring

and searches for substring in string and returns the starting position of the first match
if operation is successful else (FF) is returned.

THINK AND ANSWER

. Let the content of the different registers in the 8086 be as follows: DS = 1000H,

SS = 2000H, ES = 3000H, BX = 4000H, SI = 5000H, DI = 6000H, and BP =
7000H. Find the memory address/addresses from where the 8086 accesses the
data while executing the following instructions:)

(i) MOV AX, [BX] (vii) MOV AX, [BX + DI]
(i) MOV BX, [SI] (viii) MOV BX, [BP + DI + 5]
(i) MOV CX, [BP] (ix) MOV AH, [BX + 10H]
(ivy MOV AL, [DI] (x) MOV CX, DS: [BP +4]
(v) MOV BH, SS: [SI] (xi) MOV BX, [SI - 5]
(vi) MOV CX, ES: [DI] (xii) MOV AX, [BX + 10]

. Which registers of the 8086 are modified while executing inter-segment and intra-

segment jump instructions?

174 Microprocessors and Interfacing

3.

Is it possible to exchange the content of two memory locations or the content of
two segment registers using the XCHG instruction? Why?

- If the content of BP = 1000H and SI = 2000H, what is the value present in CX

after the 8086 executes the instructions LEA CX, [BP + SI], and LEA CX, [SI].

- Is it possible to use two memory operands in the ADD and SUB instructions?
- Is the carry flag affected by the execution of the INC and DEC instructions in the

80867

- What is the difference between SUB and CMP instructions?

- What s the difference between TEST and AND instructions?

- Which instructions of the 8086 are used to handle procedure or subroutine?
. What is the difference between arithmetic and logical right-shift?

- What are the common applications of left-shift and right-shift operations?

- When is the CL register used with the shift and rotate instructions?

- Consider the following pair of partial programs:

(i) MOV AX, 4000H (i)) MOV AX, 4000H
ADD AX, AX ADD AX, AX
ADC AX, AX RCLAX, 1
JC DOWN

JC DOWN

AX after execution of the third instruction and
processor fetch the next instruction after execution of the

For each case, what is the data in
from where does the
fourth instruction?

- How is the WAIT instruction usi

ed to coordinate th ti
il € operation between the 8086

A

O

8086 Interrupts

LEARNING OUTCOMES

After studying this chapter, you will be able to understand the following:

« Different types of interrupts in the 8086, such as hardware and software interrupts
* Processing of an interrupt by the 8086

* Interrupt vector table and interrupt vectors in the 8086

* Functions of the different interrupts in the 8086

* Priority among the interrupts in the 8086

* Writing interrupt service routines

* Afew BIOS (basic input/output system) interrupts or function calls

5.1 INTRODUCTION

The 8086 allows normal program execution to be interrupted in one of the
following ways:
(i) An external signal given through one of its interrupt pins (INTR/NMI)
(i) A special instruction in the program, such as the software interrupt
instruction (INT N)
(iii) The occurrence of an error condition such as divide-by-0
(iv) A trap interrupt
After receiving the interrupt, the microprocessor stops the execution of the
current program and calls a procedure called interrupt service routine (ISR),
which services that interrupt. The IRET instruction executed at the end of the
interrupt service routine returns the execution to the interrupted program.

5.2 INTERRUPT TYPES IN 8086

There are 256 intenupt types in the 8086. Among these, a few interrupt types are

assigned for specific interrupts such as the divide-by-0 interrupt, trap interrupt, and

the NMI interrupt. A few interrupt types are reserved by Intel for future expansion.

The programmer is free to use the remaining interrupt types according to his/her

requirement.

An 8086 interrupt can come from any one of the following four sources:

(i) An external signal applied to the non-maskable interrupt (NMI) pin or to
the interrupt (INTR) pin. An interrupt caused by a signal applied to one of
these inputs is called fiardware interrups.

—(ii) The execution of the ifistruction INT n, where n is the interrupt type that can

take any value between 00H and FFH. This is called Software interrupt.™
(iii) An error condition such as divide-by-0, which is produced in the 8086 by
the execution of the DIV/IDIV instruction.

(iv) A trap interrupt.

176 Microprocessors and Interfacing

5.3 PROCESSING OF INTERRUPTS BY 8086

After executing each instruction in a program, the 8086 checks if any interrupt
has been requested. If an interrupt has been requested, the 8086 processes it by
performing the following series of steps:

(i) Pushes the content of the flag register onto the stack to preserve the status
of the interrupt flags (IF) and trap flags (TF), by decrementing the stack
pointer (SPyby 2~

(ii) Disables the INTR interrupt by clearing IF in the flag register

(iii) Resets TF in the flag register, to disable the single step or trap interrupt
(iv) Pushes the content of the code segment (CS) register onto the stack by
decrementing SP by 2

(v) Pushes the content of the instruction poin

decrementing SP by 2
”‘v\é"i) Performs an indirect far jump to t
Lect z%‘(ISR) corresponding to the received interrupt
v an interrupt by the 8086.

Interrupt service
routine (ISR)

Save register contents
in stack

i } Program for the

ter (IP) onto the stack by

he start of the interrupt service routine

e -, Figure 5.1 shows the processing of
i

Push flag register
Clear IF and TF
Push CS and IP
Load CS and IP

with ISR address

Pop IP and CS
Pop flag register

: Fig. 5.1 Prbcessiﬁg of an interrdpt by the 8086

task to be done

etrieve register
contents from stack
IRET

T RS

Now, let us see in detail how the 8086 does an indirect far jump to the start

of the ISR of the received interrupt. When the 8086 responds to an interrupt, it

refers to four memory locations present in the interrupt vector table (IVT), to get

the new values of CS and IP. These memory locations are used to find the starting

address of the ISR of the received interrupt in the memory. In an 8086 system, the

first 1 KB of memory from the addresses 00000H—003FFH is set aside as a table

called interrupt vector table (IVT) for storing the interrupt vectors (IVs). Each
interrupt vector indicates the starting address of the ISR of a particular interrupt
in the memory. It contains four bytes, in which the lower two bytes are called
offset and the upper two bytes are called segment. The offset part of the interrupt
vector is loaded in the IP register and the segment part is loaded in the CS register.
While using interrupts in the 8086, the ISR of the different interrupts must be
initially stored in the memory at the desired locations. Then the interrupt vectors
corresponding to the various interrupts are stored in the IVT. For example, if the
ISR of interrupt type 0 is stored in the memory starting at the address 30000H,
the segment part of the interrupt vector is entered as 3000H and its offset part is

8086 Interrupts 177

entered as 0000H in the IVT. When these two values are loaded in the CS and
IP registers, respectively, the 8086 calculates the address of the next instruction
to be executed using the relation CS x 10H + IP, and obtains 30000H, which is
the starting address of the ISR of interrupt type 0. Since four bytes are required
to store the CS and IP values for each ISR in the IVT, and the IVT must hold the
interrupt vector for a maximum of 256 interrupts, the maximum size of the IVT
is 1 KB. Each interrupt vector is also called interrupt pointer and the IVT is also
referred to as the interrupt pointer table.

Figure 5.2 shows the 256 interrupt vectors arranged in the IVT in the memory.
The IP value is inserted as the lower-order word of the interrupt vector and the
CS value is inserted

N Address
as the higher- i
order word of the) 4 003FFH | Type FFH vector (available)
interrupt vector. | IREEESIEGG 5
Each interrupt vl ‘("ztgf)“pt 003FCH -
vector is identified ! Type 21H vector (available)
l.:>y a number called = Type 20H vector (available)
its fyp e{ which - is T & Type 1FH vector (reserved)
an 8-bit n.mnber' E 5 Réservéd interrupt . |
Hence the different = wvectors(27) S 4 b
Interrupt types i v 00014H | Type 05H vector (reserved)
vary from 0 to 255 : e e
(OOH—FFH) The ‘& ey 00010H | Type 04H vector (overflow)

. edicate: 3
i : Type 03H vector

lowest five ~types vectors (3) | 0000CH| _ (1-byte INT instruction)
are dedicated to 0000BH
specific interrupts 00008H |- Type 02K veciar VMR

P 00007H Type 01H vector
such a_s the divide- 00004H (Trap or single step)
by-0 interrupt, the cs [~ 00003H
single step (trap) = FEER e e
interrupt, the NMI L 000001 |
interrupt, the one- 8 bits

TS S

byte INT instruction
interrupt, and the
overflow interrupt. Interrupt types 5-31 are reserved by Intel for use in advanced
microprocessors such as the 80286 and the 80386. The upper 224 interrupt types
are available for the programmer to use for hardware/software interrupts.

The interrupt vector for each interrupt type requires four memory locations.
For example, the interrupt vector for type 00H occupies the memory locations
00000H-00003H, the interrupt vector for type O1H occupies the memory
locations 00004H—00007H, and so on. When the 8086 responds to a particular
type of interrupt, it automatically multiplies the type of that interrupt by 4 to find
the desired address in the vector table, from where it takes the interrupt vector
and loads it in the IP and CS registers. For example, if the interrupt type 03H is
currently received by the 8086, it goes to the memory address given by 03H x 04H
= 000CH, to get the interrupt vector for type 03H.

Fig.5.2 ' Interrupt vector table in the 8086

178 Microprocessors and Interfacing

5.4 DEDICATED INTERRUPT TYPES IN 8086

The lowest five interrupt types in the 8086 (i.e., types 00H—04H) are dedicated to
specific interrupts such as the divide-by-0 interrupt, the single step (trap) interrupt,
the NMI interrupt, the one-byte INT instruction interrupt, and the overflow
interrupt. Let us now discuss these interrupt types in detail.

5.4.1 Type 00H or Divide-by-zero Interrupt

Whenever the quotient from a DIV or IDIV operation is too large to fit in the result
register, which occurs while dividing a number by 0, or if the divisor is very small
compared to the dividend, the 8086 automatically generates a type 0 interrupt.

5.4.2 Type 01H, Single Step, or Trap Interrupt

The type 1 interrupt-is-used for single step operation, in which the 8086 executes
one instruction in the main program and then executes the ISR of the trap interrupt.
In this ISR, we write the instructions to verify the contents of certain registers and
memory locations, and display them in an output device, such as a seven-segment
display or CRT (cathode ray tube) monitor. If the expected data are present in the
registers and/or memory locations, the 8086 can be made to proceed to the next
instruction. The 8086 trap flag and type 1 interrupt response make it easier to
implement a single step feature in an 8086-based system' If the trap flag in the 8086
is set, the 8086 automatically generates a type 1 interrupt after each instructionrin
the main program is executed. After executing the IRET instruction in the ISR, the
8086 again goes to execute the next instruction in the main program.

5.4.3 Type 02H or NMI Interrupt

The 8086 generates a type 2 interrupt automatically when it receives a low-to-high
transition on its NMI pin. The NMI interrupt cannot be disabled by software and
hence it is used to inform the 8086 that some condition in an external system must
be taken care of.

One of the common uses of the type 2 or NMI interrupt is to save important
data in the RAM in case of a system power failure. An external circuitry detects the
failure of the power given to the system and sends an interrupt signal to the NMI
input of the 8086. Due to the large filter capacitor present in most power supplies,
the DC power to the 8086 remains for a few ms (say 25 ms or 50 ms) after the AC
power has failed. This time is sufficient for the NMI interrupt’s ISR to copy the
important data used in the program to a RAM chip with battery-backed power
supply. When AC power is restored, the data stored in the battery-backed RAM
can be retrieved and the program resumes execution from where it stopped.

The NMI interrupt is also used to sense hazardous situations such as fire,
smoke, and unsafe pressure or temperature limits in-an industrial environment,
when the 8086 is used to control the industrial processes. In these applications,
an appropriate sensor is used to detect the abnormal condition and its output is
connected to the NMI interrupt. Whenever the NMI interrupt is activated, the 8086
runs the NMI interrupt’s ISR, which is used to issue an alarm signal and shut off.
the process if needed.)

Coo W ht e

8086 Interrupts 179

5.4.4 Type 03H or One-byte INT Interrupt

The type 3 interrupt is produced by the execution of the INT 03H instruction. It is
a single-byte instruction, which is mainly used to implement a breakpoint function
in the 8086 system, for debugging a program. When we insert a breakpoint in the
program, the 8086 system executes the instructions up to the breakpoint and then
executes the ISR corresponding to the breakpoint interrupt. Unlike the single-step
technique in which the execution is stopped after each instruction, the breakpoint
technique allows us to execute all the instructions up to the inserted breakpoint in
the main program. The processor then goes on to execute the ISR of the breakpoint
interrupt.

In an 8086 system, the breakpoint is inserted in the main program at a
particular place by temporarily replacing the instruction byte at the address with
the instruction byte CCH, which is the opcode of the INT 03H instruction. When
the 8086 executes the INT 03H instruction, the type 3 interrupt is produced. In
the type 3 interrupt’s ISR, all the register contents are saved in the stack. Then,
depending on the system requirement, the desired register and/or memory location
contents may be sent to a CRT display for debugging, while the system waits for a
command from the user to proceed further.

5.4.5 Type 04H or Overflow Interrupt

The 8085 overflow flag (OF) is set if the result of an arithmetic operation on signed
numbers is too large to be stored in the destination register or memory location.
There are two ways to detect and respond to an overflow error in a program:

(i) Place the jump on overflow (JO) instruction immediately after the arithmetic
instruction. If the overflow flag is set due to the result of the arithmetic
instruction, execution is transferred to the address specified in the JO
instruction. At this address, an error routine that responds to the overflow in
the required manner can be placed.

(i) Place the interrupt on overflow (INTO) instruction immediately after the
arithmetic instruction in the program. If the overflow flag is not set when
the 8086 executes the INTO instruction, it is treated as a NOP (no operation)
instruction. However, if the overflow flag is set, the 8086 generates a type
4 interrupt after executing the INTO instruction. Instructions in the ISR
produce the desired response to the error condition. The advantage of using
the INTO instruction is that the type 4 interrupt’s ISR can be easily accessed
from any program in a multitasking environment.

5.5 SOFTWARE INTERRUPTS—TYPES 00H-FFH

The INT instruction of the 8086 can be used to generate any one of the 256 possible
interrupt types, which are called software interrupts. The desired interrupt type is
specified as part of the INT instruction. For example, the INT 21H instruction
causes the 8086 to generate an interrupt of the type 21H. The response of the 8086
to the software interrupt is same as that for any of the interrupt types described in
Section 5.4.

In general, when the 8086 executes the INT » instruction where n is the

180 Microprocessors and Interfacing

interrupt type, the 8086 pushes the content of the flag register, CS, and IP values
into the stack register, and clears IF and TF. Then the 8086 goes to the memory
address (given by 4 x n) to obtain the interrupt vector for the type » from the IVT
and loads it in the IP and CS registers. This makes the 8086 execute the ISR for the
interrupt type n. The IRET instruction at the end of the ISR makes the 8086 return
to the main program to the instruction next to the INT n instruction, to continue the
execution of the main program.
Software interrupts produced by the INT instruction have the following uses:
(i)UInserting break points in a program for debugging. The INT 03H instruction
is used for this purpose.
(ii)UTesting the function correctness of various ISRs. For example, the INT 02H
instruction can be used to test the ISR for the NMI interrupt, without giving
any input signal to the NMI pin of the 8086.

5.6 INTR INTERRUPTS—TYPES 00H-FFH

The 8086 INTR interrupt allows an external signal to interrupt the execution
of a program. The INTR interrupt can be masked (disabled) so as to not cause
an interrupt. If IF is set, the INTR interrupt is enabled and if IF is cleared,
INTR is disabled. IF can be set and cleared at any time, using the STI and
CLI instructions, respectively. After the 8086 is reset, IF is set using the STI
instruction, if the user needs to use the INTR interrupt. The INTR interrupt is
activated by a high level (i.e., logic 1) signal in the INTR pin. The minimum
duration for which the INTR signal must be kept high to be recognized by the
8086 is equal to the execution time of the instruction that takes longest time for
execution. This is because the 8086 tests the INTR signal during the last clock
cycle of an instruction cycle.

If the INTR input is high and IF is set, the 8086 is interrupted. As part of the
response to the interrupt, the 8086 automatically clears IF. This is done for the
following two reasons:

(i) To prevent a signal on the INTR input from interrupting a higher priority
ISR in progress. If needed, IF can be set at the beginning of the lower
priority ISR, so that 8086 can be interrupted by an INTR interrupt while
executing that ISR.

(ii) To make sure that a signal in the high state, existing for a sufficient duration
(say, a few ps), on the INTR input, does not cause the 8086 to interrupt it
again before completing the execution of its ISR.

The IRET instruction at the end of the ISR restores IF and TF to their original
value. When the 8086 processes an INTR interrupt signal, its response is slightly
different from its response to other interrupts. For an INTR interrupt, the interrupt
type is sent to the 8086 from an external hardware device such as a programmable
interrupt controller (the 8259) or a tri-state octal buffer (IC 74244) connected to
an 8-bit DIP switch having the specific interrupt type.

Figure 5.3 shows the 8086 INTR interrupt’s acknowledgement cycle.

Figure 5.4 shows the simplified diagram for interfacing the 8259 with the 8086.

8086 Interrupts 181

'T1|T2'T3‘T4>T1‘T2'T3‘T4‘

INTA
From 8086 to
8259 A or 74244
Atlzo Float Type vector from
ADI5 8259 or 74244
T T R SR e o8 - i S e O

Fig.5.3 8086 INTR interrupt’s response

When the 8259 receives an interrupt signal on one of its IR inputs (IRO-IR7), it
sends an interrupt signal (INT) to the INTR input of the 8086. If the INTR interrupt
is enabled (in the 8086) by setting IF, the 8086 responds as shown in Fig. 5.3.

The 8086 does two interrupt acknowledge cycles when it receives the INTR

INTR INT o
le——IR1
AD7 Data bus D7
8086 Do 8259

ADO 8

INTA INTA le———IR7
b M A B Interrupt inputs
'mmmv B et e e LU A ——

Fig.5.4 S|mpllfed dlagram of mterfacmg the 8259 W|th the 8086

interrupt. During the first acknowledgement, the 8086 floats the data bus AD15—
ADO and sends out an Interrupt Acknowledgement (INTA) pulse through its INTA
pin. This pulse instructs the 8259 to perform certain internal operations to get the
interrupt type related to the interrupt received by it. The interrupt type for the IRO
interrupt in the 8259 is pre-programmed in it during its initialization process. The
interrupt type for successive interrupts in the 8259 (IR1, IR2,...IR7) is one greater
than the interrupt type of the previous interrupt. For example, if the interrupt type
assigned to IR0 is 50H, the interrupt type assigned to IR1 is S1H, that assigned to
IR2 is 52H, and so on. During the second acknowledge cycle, the 8086 sends out
another pulse on its INTA pin. In response to this second INTA pulse, the 8259
places the interrupt type on the lower eight lines of the data bus (AD7-ADO),
which is read by the 8086. After receiving the interrupt type, the 8086 goes on to
execute the ISR of the received interrupt type. The advantage of using the 8259
with the 8086 is the ability of the 8086 to handle multiple hardware interrupts and
not merely two (INTR and NMI).

182 Microprocessors and Interfacing

While using the tri-state octal buffer (IC 74244) with its inputs connected to an
8-bit DIP switch and outputs connected to the data bus (AD0-AD?7), the required
interrupt type is set in the 8-bit DIP switch and the INTA signal of the 8086 is
connected to the enable inputs of the octal buffer (IG and 2G). When the 8086
receives the INTR interrupt, it makes INTA low, which enables the octal buffer IC.
The interrupt type, which was set in the 8-bit DIP switch, is now placed in the data
bus (D7-D0) and the 8086 reads it.

5.7 PRIORITY AMONG 8086 INTERRUPTS

Suppose two or more interrupts Table 5.1 Priority among 8086 interrupts
occur at the same time, how would

the 8086 respond? The highest Interrupt Pricrity
priority interrupt is serviced first Divide-by-0, INT Highest
by the 8086, followed by the next 1, INTO

highest priority interrupt, and so NMI

on. Table 5.1 shows the priority INTR

assigned to the different interrupts Single step or trap Lowest
in the 8086.

To explain the use of the assigning of priority among interrupts, consider the
following example. Let the INTR interrupt be enabled in the 8086. Assume that the
8086 receives an INTR interrupt while executing the division (DIV) instruction.
If divide-by-0 occurs during the division process, the 8086 first executes the ISR
of the divide-by-0 interrupt. During this time, IF and TF are temporarily cleared.
This disables the INTR interrupt from being processed. An IRET instruction at the
end of the divide-by-0 ISR again enables the INTR interrupt by setting IF. This
facilitates the 8086 to execute the ISR of the INTR interrupt, if it is still active.

When the 8086 responds to any interrupt, IF and TF are cleared after the flag
register contents are stored (to save the initial content of the different flags) in the
stack. If needed, IF, TF, or both the flags can be set at the beginning of the ISR of any
interrupt, in case the user wants to enable them while executing the current ISR.

5.8 INTERRUPT SERVICE ROUTINES

While using an interrupt, the programmer must set its interrupt vector with the CS
and IP addresses of the starting location of the ISR of that interrupt type, either
through the program or externally. The method of defining the ISR for software
and hardware interrupts is the same. This is explained with a few examples.

Example 5.1

Figure 5.5 shows the interfacing of an ASCII keyboard with the 8086 through a
port in the 8255 having the address FFEOH. When a key is pressed on the keyboard,
the ASCII code of that key is available on its data lines (D7-D0) and the KBINT
pin is pulled low for some time. This causes the NMI input of the 8086 to go high,
thereby interrupting the 8086. In the NMI interrupt’s ISR, the ASCII code of the
key pressed can be read through the 8255.

Now, let us write an NMI
ISR such that it stores the ASCII
code of the key pressed in an
array named ASC_STRING,
and after the ASCII codes of 50
keys are received, sets a byte
named DONE to 01H, which
initially has the value O0OH.
The main program is used to
initialize the array and the other
variables, and set the interrupt
vector for the NMI interrupt
in the IVT. The ISR is written
such that it can be accessed by
any program module.

Solution:
ASSUME CS:

8086 Interrupts 183
ASCII Port
keyboard FFEOH
DO DO ADO
8255
D7 D7 AD7
KBINT
+5V 8086
10K
NMI

CODE, DS: DATA, SS: STACK

with the 8086

DATA SEGMENT WORD PUBLIC ; This data segment can be

accessed by any other module.

ASC_STRING DB 50 DUP (@) ; Reserve 50 bytes for storing

the ASCII codes.

ASC_POINTER DW OFFSET ASC_STRING

CHR_COUNT DB 50

DONE DB @0H
DATA ENDS

STACK SEGMENT

DW 100 DUP (@)

STACK_TOP LABEL WORD

STACK ENDS

PUBLIC CHR_COUNT, DONE, AS

EXTRN KEYBRD: FAR

CODE SEGMENT WORD PUBLIC ;

START: MOV AX, STACK

MOV SS, AX

MOV SP, OFFSET STACK_TOP ;

>

3

e

>

>

>

..

>

..

B

; Pointer to ASCII string.
; Assign the number of ASCII

codes to CHR_COUNT.
Initialize DONE to @@H.
End of the data segment.

Set up the stack segment needed
for handling the interrupt.
Reserve 100 words for the
stack.

; Assign the label STACK_TOP

to the top of the stack.
End of the stack segment.

C_POINTER

Make the variables available
to other modules.

KEYBRD procedure (which is
the NMI ISR) is present in
another module.

Code segment to initialize
NMI IV starts.

Initialize the SS register
with the segment address of
the STACK.

Initialize the SP register.

184 Microprocessors and Interfacing

MOV AX, DATA

MOV DS, AX

MOV AX, ©00eH
MOV ES, AX

MOV WORD PTR ES: @@0AH, SEG KEYBRD

MOV WORD PTR ES: 0008H, OFFSET KEYBRD

HERE: JMP HERE
CODE ENDS
END START

>

ASSUME CS: CODE, DS: DATA

3

Initialize the DS register
with the segment address of
DATA.

Store the segment address and
offset address of the KEYBRD
procedure in the interrupt
vector table in the addresses
0008H-000BH.

Initialize ES with the segment
address @000H, as the IVT is
stored in this segment.

Move the segment address to
KEYBRD to the IVT.

; Move the offset address of

KEYBRD to the IVT.
Wait until a key is pressed in
the keyboard.

. The KEYBRD procedure (i.e., NMI ISR) follows.

DATA SEGMENT WORD PUBLIC

>

; This segment can be accessed

by any other module.

EXTRN CHR_COUNT: BYTE, DONE: BYTE, ASC_POINTER: WORD

DATA ENDS
PUBLIC KEYBRD

>

>

B

; These variables are present in

another module.

; End of data segment
; The procedure KEYBRD can be

accessed by some other module.

CODE SEGMENT WORD PUBLIC

KEYBRD PROC FAR

PUSH AX

PUSH BX
PUSH DX

CMP CHR_COUNT, ©

JZ EXIT

MOV BX, ASC_POINTER

MOV DX, OFFE@H

IN AL, DX

..

-

e e

3

..

Code segment having KEYBRD
procedure starts

Beginning of the KEYBRD
procedure

Store the content of the AX,
BX, and DX registers in the
stack.

Check whether CHR_COUNT = 0.
If it is @, go to EXIT.

; Move the value in ASC_POINTER

to BX.

Store the address of the 8255
port in DX.

Get the ASCII code of the key
from the keyboard.

8086 Interrupts 185

MOV [BX], AL Store it in the ASC_STRING array.

INC ASC_POINTER 5 Increment the ASC_STRING pointer.

DEC CHR_COUNT Decrement CHR_COUNT by 1.

JINZ NOT_DONE If CHR_COUNT is not @, go to NOT_DONE.

MOV DONE, @1 Move 1 to DONE to indicate that 50
ASCII codes have been received.

LR <

JMP EXIT ;3 Go to EXIT.
NOT_DONE: MOV DONE, @0 5 Move @ to DONE.
EXIT: POP DX ; Pop the register contents from the

stack.

POP BX

POP AX

IRET ; Return from ISR.

KEYBRD ENDP ; End of ISR

CODE ENDS ; End of segment

END
Example 5.2

Write a program that displays the message ‘IRQ2 IS WORKING’, in the monitor
of the personal computer (PC), if a hardware interrupt signal appears on the IRQ2
pin present in the I/O channel of the PC, and the message ‘TRQ3 IS WORKING’ if
a hardware interrupt signal appears on the IRQ3 pin present in the I/O channel of
the PC. Make use of the DOS (disk operating system) interrupt INT 21H.

Solution:

When a hardware interrupt signal appears on the IRQ2 pin present in the I/O
channel of the PC, it activates the INTR pin of the CPU (8086). When the CPU
sends the INTA pulse, the interrupt type 0AH is supplied to the CPU by the /O
channel of the PC. Hence, the effect of this action is the same as that of executing
the software instruction INT OAH. Similarly, when a hardware interrupt signal
appears at the IRQ3 pin present in the I/O channel of the PC, it activates the INTR
pin of the CPU (i.e., processor), and when the CPU sends the INTA pulse, the
interrupt type OBH is supplied to the CPU by the /O channel of the PC. Hence,
the effect of this action is the same as that of executing the software instruction
INT 0BH.

The DOS interrupt or function call INT 21H, which comes along with the DOS
program, is used for performing various functions in the PC such as accessing
the printer, monitor, and keyboard, and creating files. Before using INT 21H for
executing a specific instruction, the register AH, DX, or DS, or a combination of
these registers has to be loaded with a specific value. Now the specified operation
is carried out and a particular value is returned in specific registers or in flags, after
the execution of the INT 21H instruction, to reflect the result of the operation.

Main program:

ASSUME CS: CODE, DS: DATA
DATA SEGMENT
MESSAGE1 DB “IRQ2 IS WORKING”, @AH, @ODH, ”$”
MESSAGE2 DB “IRQ3 IS WORKING”, ©AH, @DH, ”$”

186 Microprocessors and Interfacing
DATA ENDS

CODE SEGMENT
START:

MOV AX, CODE

MOV Ds, AX

MOV DX, OFFSET IRQ2_ISR
MOV AX, 250AH

INT 21H

MOV DX, OFFSET IRQ3_ISR

MOV AX, 250BH

INT 21H

HERE: JMP HERE

IRQ2_ISR PROC NEAR
MOV AX, DATA
MOV DS, AX

MOV DX, OFFSET MESSAGE1 ;

MOV AH, @9H

INT 21H

IRET

IRQ2_ISR ENDP
IRQ3_ISR PROC NEAR
MOV AX, DATA

MOV DS, AX

MOV DX, OFFSET MESSAGE2 ;

MOV AH, @9H
INT 21H

IRET

IRQ3_ISR ENDP
CODE ENDS

END START

..

>

..

.o

>

..

.

3

..

.

[

>

..

..

Set DS with the segment address of
CODE, for setting the IVT.

; Set DX with the offset of IRQ2_ISR.

Set the IVT using the function
value 250AH in AX (AH = 25H,

AL = @AH (interrupt type))

Call the DOS interrupt INT 21H to set
the IVT.

; Set DX with the offset address of

IRQ3_ISR.

Set IVT using the function value 256BH
in AX (AH = 25H, AL = @BH (interrupt
type)).

Call the DOS interrupt INT 21H to
set the IVT.

Set DS with the segment address of
DATA.

Set DX with the offset of MESSAGE1.
Display MESSAGE1 in the monitor.

Return from ISR.

Set DS with the segment address of
DATA.

Set DX with the offset of MESSAGE2.
Display MESSAGE2 in the monitor.

Return from ISR.

In this program, a data segment is first defined with the messages to be displayed
in the monitor of the PC when the interrupt signal is given in the I/O channel of
the PC. Then, storing the segment address of CODE in the DS, the offset address

8086 Interrupts 187

of the ISR (IRQ2_ISR) in the DX, the function value 250AH in AX (i.e., AH =
25H and AL = 0AH (interrupt type)), and by using the DOS interrupt INT 21H,
the interrupt vector for the interrupt type OAH is created in IVT. Similarly, the
interrupt vector for the interrupt type O0BH is created in the IVT. In the IRQ2 ISR,
the segment address of DATA is placed in DS, the offset address of MESSAGE] is
placed in DX, AH is loaded with the value 09H, and by calling the DOS interrupt
INT 21H, MESSAGE] is displayed in the monitor of the PC. A similar procedure
isused in IRQ3_ISR as well.

The 0AH, ODH, and $ characters given in MESSAGE1 and MESSAGE2
represent the ASCII code of line feed (LF), ASCII code of carriage return (CR),
and end of string, respectively.

Example 5.3

Write a program to create a file named AGE in the PC and store 100 bytes of data
in it, which have to be taken from the memory block starting at 3000H: 2000H,
if the software instruction INT OAH is executed by the PC. Make use of the DOS
interrupt INT 21H.

Solution:
ASSUME CS: CODE, DS: DATA
DATA SEGMENT

FILENAME DB “AGE”, “$”
MESSAGE DB “FILE CREATION WAS NOT SUCCESSFUL”, @AH, ODH,”$”

DATA ENDS
CODE SEGMENT
START:

MOV AX, CODE

MOV DS, AX ; Set DS with the segment address
of CODE, for setting the IVT.

MOV DX, OFFSET ISR ; Set DX with the offset address of
ISR.

Set the IVT using the function
value 250AH in AX.

Execute the DOS interrupt INT 21H
to set the IVT.

MOV DX, OFFSET FILENAME ; Set DX with the offset address of

MOV. AX, 250AH

..

INT 21H

..

FILENAME.

MOV AX, DATA

MoV DS, AX ; Load the segment address of DATA
in DS.

MOV CX, @@H

MOV AH, 3CH

INT 21H ; Create a file with the file name

‘AGE’, using INT 21H.

If there is no carry, the file
creation operation was
successful. So go to the

INC SUCCESS

..

188 Microprocessors and Interfacing

location SUCCESS.
MOV DX, OFFSET MESSAGE ; If there is a carry, display the
message using INT 21H.
MOV AH, ©@9H
INT 21H
JMP END1
SUCCESS: INT @AH Execute the software INT @AH
instruction to write the data
into the file.
Return to DOS prompt.
ISR for interrupt type 0AH is as
follows:

END1: MOV AH, 4CH
INT 21H

e

ISR PROC NEAR

MOV BX, AX ; Take the file handle information
in AX to BX.
MOV CX, 100 5 Move the number of bytes to be

transferred, to CX.

Store the offset address of the
data to be moved into the file
in DX.

Store the segment address of the
data to be moved into the file

MOV DX, 2000H

MOV AX, 300@H

..

in AX.

MOV DS, AX 5 Move the segment address in AX
to Ds.

MOV AH, 40H ; Using INT 21H, write the data
into the file.

INT 21H

IRET

ISR ENDP

CODE ENDS

END START

In this program, a data segment is first defined with the file name to be assigned
to the file and the message to be displayed in the monitor, if the file creation is not
successful. Then, storing the segment address of CODE in DS, the offset address
of the ISR in DX, and the function value 250AH in AX (i.e., AH = 25H and AL
= OAH (interrupt type)), and by using the DOS interrupt INT 21H, the interrupt
vector for the interrupt type OAH is created in the IVT. Next, storing the offset
address of the file name in DX, the segment address of DATA in DS, 00H in CX,
and 3CH in AX, and by using the DOS interrupt INT 21H, the file named AGE is
created.

If the file creation operation is successful, the carry flag is cleared after the
execution of INT 21H and the AX register is loaded with the file handle information.
Otherwise, the carry flag is set. If the carry flag is cleared, the processor goes to the
location named SUCCESS in the program and executes the INT 0AH instruction,
which causes the execution of the ISR, to store 100 bytes of data taken from the
memory block starting at 3000H: 2000H into the file. If the carry flag is set after

8086 Interrupts 189

the execution of INT 21H, the processor executes INT 21H with DX having the
offset address of the message and AH having the value 09H, to display the message
‘FILE CREATION WAS NOT SUCCESSFUL’ in the monitor of the PC.

In the ISR, the file handle information in AX is first transferred to BX, followed
by the loading of CX with the number of data bytes to be stored into the file.
Then DX and DS are loaded with the offset address and the segment address,
respectively, of the memory block from where the data is to be taken. By loading
AH with the value 40H and by using INT 21H, data is moved into the file.

5.9 BIOS INTERRUPTS OR FUNCTION CALLS

The BIOS (basic input/output system) is boot firmware, which is designed to be
the first program run by a PC when powered on. The initial function of the BIOS
is to identify, test, and initialize system devices such as the video display card,
hard disk, floppy disk, and other hardware. The BIOS prepares the machine for a
known state, so that the software stored on the compatible media can be loaded,
executed, and given control of the PC. BIOS function calls, also known as BIOS
interrupts, are stored in the system ROM and in the video BIOS ROM present in
the PC. These BIOS function calls directly control the I/O devices with/without
DOS loaded in the system. Some BIOS function calls that are used to control the
monitor (video), disk, COM port, I/O devices, keyboard, and printer in the PC are
briefly discussed in this section.

5.9.1 INT I0H

The INT 10H BIOS interrupt, which is also called video services interrupt, directly
controls the video display in a system. INT 10H uses register AH to select the
video service provided by this interrupt. The video BIOS ROM is located on the
video board and varies from one video card to another used in the PC.

5.9.1.1 Video Mode Selection

The mode of operation for the video display is selected by placing 00H in AH,
followed by one of the mode numbers in AL. Table 5.2 shows the mode of
operation found in VGA (video graphics array) type video display systems using
standard video modes.

Table 5.2 Video display modes

Mode Columns Rows Type Resolution Colours
00H 40 25 Text 360 x 400 2
01H 40 25 Text 360 x 640 16
02H 80 25 Text 720 x 400 2
03H 80 25 , Text 720 x 400 16
07H 80 25 Text 720 x 400 4
11H 80 30 Graphics 640 x 480
12H 80 30 Graphics 640 x 480 16

13H 40 25 Graphics 320 x 200 256

190 Microprocessors and Interfacing

The set of instructions used to place the video display in mode 2 is as follows.
After the instructions are executed in the PC, the mode of the display is changed
and the screen is cleared.

MOV AH, @0H ; Video mode service
MOV AL, @2H ; Select mode 2.
INT 10H ; Call BIOS interrupt.

To know the current video mode used in the display, AH is set to OFH and
INT 10H is executed. After execution, AL has the current video mode, AH has the
number of character columns, and BH has the page number. The instructions are
as follows:

MOV AH, OFH ; Select read video mode.
INT 10H° ; Call BIOS interrupt.

If an SVGA (super VGA) or an Table 5.3 Extended VGA functions
EVGA/XVGA (extended VGA)

adapter is available, the SVGA BX Extended mode
fnode is set by using the INT 10H 1000 640 x 400 with 256 colours
nt i =
= errupt with AX = 4F02H and 101H 640 x 480 with 256 colours

X = VGA mode. This conforms :
to the VESA (Video Electronics 102H S
Standards Association) standard 103H 800 x 600 with 256 colours
for VGA adapters. VESA is an 104H 1024 x 768 with 16 colours
International standards body for i

; 1024 x 768 with 256 col

computer graphics, founded in i ; sl
1989 by NEC Home Electronics 106H 1280 x 1024 with 16 colours
and eight other video display 107H 1280 x 1024 with 256 colours
adapter manufacturers. Table 108H 80 x 60 in text mode

5.3 shows the modes selected

by the register BX for this INT 1095
10H interrupt. Most video cards 10AH 132 x 43 in text mode
are equipped with the driver 1oBH 132 x 50 in text mode
called VVESA.COM or VVESA.
SYS, which ensures that the card
conforms to the VESA standard
functions.

5.9.1.2 Cursor Control

The INT 10H interrupt is also used for cursor control in the video display (i.c.,
monitor). Table 5.4 shows the function codes placed in AH, which are used to
control the cursor on the video display. The code is shown in the Entry field and
the result obtained after execution of INT 10H is shown in the Exit field. These
cursor control functions work on a wide range of video displays—from the VGA
display to the latest SVGA display.

132 x 25 in text mode

10CH 132 x 60 in text mode

8086 Interrupts 191

Table 5.4 Functions provided by INT 10H for cursor control

Function

Select cursor type

Select cursor
position

Read cursor
position

Read attribute/
character at current
cursor position

Write attribute/
character at current
cursor position

Write character
at current cursor
position

Entry

AH=01H

CH = Starting line number
CL = Ending line number

AH = 02H

BH = Page number (usually 0)

DH = Row number (beginning with 0)

DL = Column - number
(beginning with 0)

AH = 03H

BH = Page number

AH = 08H
BH = Page number

AH = 09H

AL = ASCII character code
BH = Page number

BL = Character attribute

CX = Number of characters to write

AH = 0AH
AL = ASCII character code
BH = Page number

CX = Number of characters to write

Exit

Cursor size changed

CH = Starting line number
(cursor size)

CL = Ending line number
(cursor size)

DH = Current row

DL = Current column

AL = ASCII character
code

AH = Character attribute

(Note: This function does

not advance the cursor.)

(Note: This function does

not advance the cursor.)

(Note: This function does
not advance the cursor.)

59.2INT IIH

This interrupt is used to determine the type of equipment installed in the system.
To use this interrupt, the AX register is loaded with FFFFH and then the INT
11H instruction is executed. In return, INT 11H provides information in the AX
register, as given in Fig. 5.6.

15 | 14 [13 | 12

1110 (9 |8 |7 |6

4 |3 |2 |1 |Bit0

P1 | PO G

S2 | S1 | S0 (D2 |D1

Fig.5.6 Content of AX register after execution of INT I1H

P1 and PO = Number of parallel ports
$2, S1, and SO = Number of serial ports

G =1, if game I/O is attached
D2 and D1 = Number of disk drives

192 Microprocessors and Interfacing

5.9.3 INT I12H

The memory size present in the system is obtained by the INT 12H interrupt.
After executing the INT 12H instruction, the AX register contains the number of
1 KB blocks of memory (conventional memory in the first 1 MB of address space)
installed in the computer.

5.9.4 INT I3H

This interrupt controls diskettes that are within 5.25 or 3.5 inches in size and
also hard disk drives attached to the system. Table 5.5 shows the functions
available to this interrupt via register AH. The direct control of the hard disk drive
by a programmer using INT 13H leads to problems, including the alteration or
corruption of important programs such as operating system programs, compilers,
and other software that are stored on the disk. This may result in system failure.
Only upon reinstallation of the operating system programs in the hard disk will the
PC function normally. This wastes a lot of time for the programmer. Therefore, the
functions are listed without details about their usage. Before using these functions,
the BIOS literature available from the company that produced the particular
version of the BIOS ROM in the system should be referred to.

5.9.5INT I4H

The INT 14H interrupt controls the serial COM (communication) ports attached
to the computer. There are two COM ports—COM1 and COM2—in a computer
system. In newer AT style machines, the number of COM ports is extended to
four (including COM3 and COM4). Communication ports are normally controlled
using software packages that allow programming of microcontrollers/digital signal
processors (DSPs) serially, or by transmitting and receiving data through a modem
andatelephoneline. The INT 14H instructionisusedto control theseports, as givenin
Table 5.6.

5.9.6 INT I5H

The INT 15H interrupt controls various I/O devices interfaced with the computer.
It also allows access to protected mode operation and the extended memory system
on an 80286, Pentium Pro, etc., but it is not recommended for use by the normal
user; it is commonly used by programmers to develop OS-related programs. The
functions provided by INT 15H are given in Table 5.7.

5.9.7 INT I6H

The INT 16H interrupt is used to control the keyboard in a system. This interrupt is
usually accessed by the DOS interrupt INT 21H, but can also be accessed directly.
Table 5.8 indicates the functions provided by INT 16H.

5.9.8 INT I7H

TheINT 17H interruptaccesses the parallel printerport, called LPT1 in most systems.
Table 5.9 shows the functions provided by INT 17H.

Table 5.5 Functions provided by

8086 Interrupts 193

Table 5.7 Functions provided by

INT 13H INT I5H
AH Function AH Function
00H Reset the system disk 00H Cassette motor on
01H Read disk status to AL OIH Cassette motor off
02H Read sector 02H Read cassette
03H Write sector 03H Write cassette
04H Verify sector OFH Format ESDI periodic
05H Format track interrupt
06H Format bad track 21H Keyboard intercept
07H Format drive 80H Device open
08H Get drive parameters 81H Device closed
09H Initialize fixed disk 82H Process termination
chatacteristics 83H Event wait
OAH Read long sector 84H Read joystick
OBH Write long sector 85H System request key
OCH Seck 86H Delay
UDH - Restt fixed disk systerts 87H Move extended block of
OEH Read sector buffer memory
OFH Write sector buffer 88H Get extended memory size
10H Get drive status 89H Enter protected mode
IIH Re-calibrate drive 90H - Device wait
I2H Controller RAM diagnostics 91H Device power on self test
I3H Controller drive diagnostics (POST)
14H Controller internal diagnostics COH Get system environment
ISH Get disk type CIH Get address of extended BIOS
16H Get disk changed status data area
17H Set disk type C2H Mouse pointer
18H Set media type C3H Set watchdog timer
I9H Park heads C4H Programmable opinon
IAH Format ESDI drive sétset

Table 5.6 Functions provided by INT 14H

Extended initialize communications port

AH Function

00H

01H Send character

02H Receive character
03H Get COM port status
04H

05H

Iv
IN T
N Re‘

Initialize communications port

Extended communications port control

194 Microprocessors and Interfacing

Table 5.8 Functions provided by Table 5.9 Functions provided by
INT 16H - INT I7H
AH Function AH Function
O00H Read keyboard character 00H Print character
OIH Get keyboard status O0IH Initialize printer
02H Get keyboard flags 02H Get printer status

O3H Set repeat rate
04H Set keyboard click

OSH Push character and scan code

5.10 INTERRUPT HANDLERS

Any program, in general, requires to access hardware I/O devices for I/O operations
such as reading data from the keyboard, displaying data on the CRT, reading/
writing data on the disc, sending data to the printer or serial data transfer through
EIA232C (485). The programming techniques used to handle I/O operations are
as follows: N I o

Direct access There are I/O instructions provided by the manufacturers of the
processors. Using these instructions, program can be developed for interaction
with peripherals. This method is time consuming since the user has to develop the
code using basic I/O instructions. :

High level language (HLL) support There are functions provided by the OS,
such as library functions, to handle I/O operations. User can use these functions in
the program which makes development faster and easier.

DOS services Itis known that most of the peripherals or I/O devices are interfaced
to the system employ interrupt driven data transfer. Disk operating system (DOS)
has built-in routines for I/O operations. These routines, termed as DOS services,
are included in the library as interrupt handlers. Application of these service
routines makes program more legible and compact. DOS interrupts are used for
specific purposes, such as file access, and so on. Thus, DOS interrupts facilitate
the work with files, so that the user doesn’t need to have a full knowledge of this
file-system in order to create, read, and write a file. They can access basic input
output services (BIOS) and DOS functions from their programs through software
interrupts (INT instruction).

BIOS services System has built-in routines for I/O operations, which are resident
in the ROM. They are called BIOS. Application of these service routines makes
program more legible and compact. BIOS interrupts allow access to low-level
system resources (hardware).

We will now study how to apply last two methods to the development of application
programs.

8086 Interrupts 195
5.11 DOS SERVICES: INT 21H

Invoking an interrupt can be done using the assembly language instruction INT
XX. DOS services are used to accept data from the input devices and display data
on video terminals. INT 21H is used for these I/O operations. We will discuss the
uses of some of the basic functions provided in INT 21H. It is to be noted that
sub-function code has to be loaded in AH register before issuing the command
INT 21H.

Termination of a program There are two possible requirements for termination
of a program—the user wants to go either to the OS or to the parent program. The
sub-functions 00H and 4CH can be used as follows:
(a) MOV AH, @eH ; Segment used to terminate program

INT 21H

END
(b)MOV AH, 4CH ; Terminate the program but AL will decide

whether to return to OS or parent program.

MOV AL, XX

INT 21H

END

Accepting input from a standard input device (keyboard) The data entered
through the standard input device is either displayed on the default output device
(terminal) for confirmation or not. The sub-functions [01], [07] and [08h] can be
used as follows:
(@) MOV AH, @1H ; Accepts one character from default device
with echo on output terminal

INT 21H ; (AL)-ASCII code of input character

END .
(b)MOV AH, @7H ; Accepts one character from default device without
echo on output terminal

INT 21H 5 (AL)-ASCII code of input character

END Ac will terminate the entry operation
(c)MOV AH, @8H ; Accepts one character from default device without
echo on output terminal
INT 21H ; ~c will generate INT 23H to decide the next operation
END

..

.

.

e

Display data on the standard output device (terminal) The two modes of data
display functions are provided based on whether the program needs to display a
single character or a character string. The sub-functions [02] and [09h] can be used
as follows:

(@) MOV AL, XX ; (al)-ASCII code of character to be displayed

MOV AH, @1H ; Displays one character on the default device
INT 21H
END

196 Microprocessors and Interfacing

(b)MOV DX, YYYYH ; Offset of the string in memory to be displayeq
MOV AH, @9H ; Displays string on the default device
INT 21H
END
(c)MoV AL, XX 5 (AL)-ASCII code of character to be displayed
MOV AH, ©1H ; Displays one character on the default device
INT 21H
END
Example 5.4
Write a procedure to display a 4-digit value in the [AX] register.
Solution:
DISPPROCNEAR
PUSH CX
MOV CL, ©4H ; Counter
SET_LOCATION:
ROLAX, CL ; Position digit
PUSHAX
ANDAL, OFH '~ Convert into ASCII code.
ADDAL, 30
CMPAL, ‘9’
JBEDIS_SECT
ADDAL, 7H
DIS_SECT:
MOVAH, @2H
MOVDL, AL
INT21H
POPAX
DECCX
JINZSET_LOCATION ; Repeat for all four digits.
POP CX
RET
DISPEDNP
Example 5.5

Write a program segment to display types of roots of quadratic equation ax? + bx
+c=0.

Solution:
DISPLAY-MSG MACRO MSG
MOV AH, @9H
MOV DX, OFFSET MSG
INT 21H
ENDM

8086 Interrupts 197

DATA
CR DB@DH
LF DBOAH
A DD1.0
B DD3.0
C DD1.0
FLAG DD?
CONTROL -WORD DD?
STATUS-WORD DD?
MSG-REAL DB ‘Roots are real’, ‘$’
MSG-EQUAL DB ‘Roots are equal’
MSG-IMAG DB ‘Roots are imaginary’, $’
CODE
STARTUP
MAIN: MOVAX, @DATA
MOVDS, AX
FINIT

MOV CONTROL-WORD, @3FFH
FLDCWCONTROL -WORD

FLD1 Has
FLADDST, ST ; 2.0
FLADDST, ST ; 4.0

FLDDWORDPTR a
FLDDWORDPTR ¢

FMUL ; a*c, 4
FMUL ; 4*a*c
FTST ; Tests status of ST
FLD b ; b, 4*a*c
FMULST, ST ; b*b, 4*a*c
FSUBR ; b*b - 4*a*c
FTST ; Tests status of ST(®)
FSTSW WORDPTR FLAG ; Stores status in memory
FWAIT
MOV AX, WORD PTR FLAG
SAHF
JZ EQUAL
JC IMAG
DISPLAY-MSGMSG-REAL
JMP OVER
EQUAL:
DISPLAY-MSGMSG-EQUAL
JMP OVER

IMAG:
DISPLAY-MSGMSG-IMAG

198 Microprocessors and Interfacing

OVER:
MOV AH, 4CH
MOV AL, @eH
INT 21H
ENDS

5.12 SYSTEM CALLS—BIOS SERVICES

The BIOS program is always located in a special reserved memory area, the upper
64 KB of the system area (addresses FOOOOH-FFFFFH). On system startup, the
BIOS places addresses into the IVT. When DOS or an application wants to use
a BIOS routine, it generates a software interrupt. On processing the interrupt,
the IVT value in the table provides the jump address to the BIOS routine. BIOS
functions contain two types of routines:

(i) Test (post) and initialization routines

(ii) Control routine for I/O operations

BIOS functions available to the user can be activated by the instruction INT XX,
which generates a software interrupt of the type specified in the instruction that
depends upon the desired I/O operation through low-level access to hardware
resources. Table 5.10 depicts some of the interrupt services used normally.

Table 5.10 Normally used interrupt services

Int. No. Function Purpose
05H Print screen Print page (video)
10H Video services « Set/get mode
+ Read/write pixel; write string
« Read page; set color
¢ Write TTY mode
11H M/C configuration System information
12H Memory information Size (KB)
13H Disk I/O Function code: AH
Drive code: DL
14H Serial /O « Initialize
« Send/receive or status
15H APM
16H Keyboard services » Read/status/flag INT
17H Printer I/O Printer status
19H Warm reboot * Avoid POST
* Reset
1AH Date/Time services Time/date/day/alarm

Each interrupt is associated with number of sub-functions, which can be specified
by loading its corresponding number in (AH) register. Depending on the complexity

8086 Interrupts 199
of a function a series of parameters can be specified by following its pattern and
placing values in GPR or data structures specified by the vendor. In this section,
we will study some of the basic I/O operations using these BIOS calls.
5.12.1 Print Screen Service: INT 05H
This service is used to print all the printable characters present on the screen
either in text or graphics mode. This system call does not return the status in any
register but it is stored in the form of a code at the reserved location [0500:00001.
The content of this location may be [00], [01], or [FF], and indicates whether the
print screen operation was successful, disabled, or has an error been encountered
respectively.
Example 5.6
Write a program segment to perform print screen operation and display one of the
following messages: ‘success’, ‘disabled’, ‘error encountered during print screen
operation’ BIOS service INT 05H.

Solution:
5 PROGRAM SEGMENT TO CHECK PRINT SCREEN STATUS
PRINT_SCREEN_MSGMACRO MSG
MOV AH, @9H
MOV DX, OFFSET MSG
INT 21H
ENDM
DATA_SEG
CREQUODH
LFEQUOAH ,
DOS_ SEG_ADDREQU ©050H
MSG @ DB ‘PRINT SCREEN STATUS’, ‘%’
MSG 1 DBCR, LF, ‘PRINT SCREEN OPERATION SUCCESSFUL> ¢’
MSG 2 DBCR, LF, ‘PRINT SCREEN IS ALREADY IN PROGRESS’
DB ‘SCREEN IS DISABLED’, ¢’
MSG 3 DBCR, LF, ‘ERROR ENCOUNTERED DURING PRINT SCREEN, ‘$’
PASSDB ?

ENDS

CODE_SEG

START:
MOV AX, _DATA_SEG
MOV DS, AX
MOV AX, DOS_SEG_ADDR
MOVES, AX

MOV SI, @@eeH
MOV AL, BYTE PTRES:[SI]
MOV PASS, AL

200 Microprocessors and Interfacing

CMP AL, @OH
INENEXT_1
PRINT_SCREEN_MSGMSG1
IMP SKIP
NEXT_1:
CMP AL, @1H
INE NEXT-2
PRINT_SCREEN_MSGMSG2
IMP SKIP
NEXT_2:
CMP AL, OFFH
INE NEXT_3
PRINT_SCREEN_MSGMSG3
NEXT_3:
MOV AH, 4CH
MOV AL, @@H
INT 21H
ENDS
END START

5.12.2Video Services: INT I10H

A collection of video BIOS functions are termed as video services. They allow more
control over the video display and lower execution time than DOS functions.

It is necessary to detect the cursor position before using the video screen so that it
can be cleared and started at any desired location. The cursor position assumes that
the left-hand page column is column 0 progressing across a line to column 79.
The row number corresponds to the character line number on the screen. Row
0 is the uppermost line whereas row 24 is the last line on the screen. For text
mode, the video adapter defines 80 characters per line by 25 lines.

Table 5.10 gives a summary of the function codes and their purposes. The page
number is often ignored after a cursor read. Page zero is available in the color
graphics adapter (CGA), enhanced graphics adapter (EGA), and variable
graphics array (VGA) text modes of operation. These functions are provided for
the use of the video terminal in either the character or the graphic mode. Normally,
video RAM is used for displaying data in character or graphic modes. The use of
interrupt helps programmers in avoiding calculation of video memory addresses
at which every character has to be written. Video services can be called by loading
the function code from Table 5.11 in AH register.

Table 5.11 Sub-function code for BIOS services—INT |0H

Function code Description

00H Set video mode
01H Set cursor shape
02H Set cursor position

(Contd)

8086 Interrupts 201

Table 5.11 Sub-function code for BIOS services—INT 10H (Contd)

Description

Get cursor i)osition and shape

Get light pen position

Set display page

Clear/scroll screen up

Clear/scroll screen down

Read character and attribute at cursor
Write character and attribute at cursor
Write character at cursor

Set border color

Write character in TTY mode

Get video mode:
OFH Returns no. of characters/row in AH register
number of bytes in a video page @word location [4CH]

13H Write string

Example 5.7
Write a program segment to clear the screen using the BIOS service INT 10H.

Solution:
In the text mode, two bytes are stored in video RAM for one character as per the
format shown in Fig. 5.7.

SLTEER e A 25 6 43 e R0
li'SClI code of the character l B ' Background colour Foreground colourJ
0 Blink 000 Black 0000 Black
- 1 Do not blink 001 Blue 0001 Blue
3 010 Green 0010 Green
011 Cyan 0011 Cyan
100 Red 0100 Red
101 Magenta 0101 Magenta
110 Brown 0110 Brown \
111 White 0111 White
1000 Dark gray
1001 Light blue
1010 Light green
1011 Light cyan
1100 Light red

1101 Light magenta
1110 Yellow :
1111 Bright white I

Fig.5.7 Character storage format in text mode

202 Microprocessors and Interfacing

Algorithm:

1. Divide the number of bytes by two to find the number of characters in the
page.

2. Obtain the number of rows by dividing the number of characters in a page by
the number of characters per row.

3. Set the cursor at the beginning of row 0.
(function: 9: 10H - write a dummy character with black color on black
background. This will make the row blank.)

4. Repeat the procedure for all the rows till the entire screen is blanked.

The code development based on this algorithm is left as an exercise for the reader.

5.12.3 Keyboard Services: INT 16H

The keyboard unit contains a processor, which is programmed to carry out
housekeeping operation such as scan, key press, key release, and identification. It
maintains a buffer, and transmits each keystroke serially to the PC’s system unit.
There are two bidirectional data lines in the cable connecting the keyboard unit to
the system unit. Data are transmitted serially at 10KBPs along with the baud rate
clock. In the system unit, the character received is reconverted to parallel format,
gated into port 60H, and a interrupt is sent on IRQ1 to the interrupt controller,
which triggers INT 9 for IRQI.
KBD_INT, the name given to the default BIOS keyboard INT 9 handler, reads
the scan code from port 60h and carries out following operations:
(i) Sends clear signal and re-enables the handshaking signal to the keyboard
unit
(i) Processes the scan code
(iii) Sends an end-of-interrupt (EOI) to the interrupt controller to port 20h
(iv) Returns from the interrupt

The information word, regarding keyboard status, is maintained at the word size
location [0040:0017h]. Figure 5.8 depicts the format of the status word.

b7 [0418] b0 b7 [0417]
[su]s]u|u[1019|s|7[6[5|4]3|2|1m
Right control Scroll lock O! Right shift
Left alt Number lock ON Left shift
System request Caps lock ON Control key

Pause ON Insert ON Alt key

Fig.5.8 Format of keyboard status word

This information can be used in the program by the user for the desired operation
in keyboard status.

Example 5.8
Write a program segment to display the keyboard status.

Solution:

MAIN:

SKIP1:

SKIP2:

SKIP3:

8086 Interrupts 203

PRINT_STRING MACRO MSG

PUSH AX

PUSH DX

Mov AH, 09H

Mov DX, OFFSET MSG

INT 21H

POP DX

POP AX

ENDM

DATA

CR EQU @DH

LF QU OAH

MSG DB ‘Keyboard status is as follows.’
MSGB@ DB ‘Right shift key - pressed.’
MSGB1 DB ‘Left shift key - pressed.’
MSGB2 DB ‘Ctrl key - pressed.’

MSGB3 DB ‘Alt key - pressed.’

MSGB4 DB ‘Scroll Lock ON.’

MSGB5 DB ‘Num Lock ON.’

MSGB6 DB ‘Caps Lock ON.’

MSGB7 DB ‘Insert ON.’

ends

CODE

STARTUP

MOV AX, _DATA

MOV DS, AX

PRINT_STRING MSG@

MOV AH, ©2H ; Gets keyboard flags
INT 16H ;' calls BIOS keyboard driver, ax-contains

TEST AL, ©1H
JZ SKIP1
PRINT_STRING MSGB@

TEST AL, @2H
JZ SKIP2
PRINT_STRING MSGB1

TEST AL, 04H
JZ SKIP3
PRINT_STRING MSGB2

>

keyboard status

; Masks b, of al

; Checks Left shift key

; Checks ctrl key status

204 Microprocessors and Interfacing

SKIP4:

SKIPS:

SKIP6:

SKIP7:

TEST AL, @8H
JZ SKIP4
PRINTSTRING MSGB3

TEST AL, 10H
JZ SKIP5
PRINTSTRING MSGB4

TEST AL, 2@H
JZ SKIP6
PRINTSTRING MSGB5

TEST AL, 40H
JZ SKIP7
PRINTSTRING MSGB6

TEST AL, 8H
JZEXIT_PROGRAM
PRINTSTRING MSGB7

EXIT_PROGRAM:

MOV AH, 4CH
MOV AL, @eH
INT 21H
ENDMAIN
Example 5.9
Write a program segm
Solution:
START: MOV AH, 1
INT 16H
MOV AH, @
INT 16H
INITIALIZE_NUMBER: MOV CX, @
PROCESS : INC CX
MOV AH,1
INT 16H
JZPROCESS
XOR CL, CH
MOV AH,0
INT 16H

; Checks Alt key status

. Checks Scroll key status

>

; Checks Num Lock key status

. Checks Caps Lock key status

)

. Checks Insert key status

>

ent to enter a random number when any key is pressed:

Is a key available?
Issue interrupt command

B

>

JZ INITIALIZE_NUMBER

; Initialize “random” number

; See if a key is available yet?

; Randomize the content
; Read character from buffer

5.12.4 Printer Services: INT I7H

I]t] is n.ecessary to initialize the printer port, write characters, or read the status of
F eFPnnSte;'. The status of the printer is returned by the handler in the format show?
in Fig. 5.9.

8086 Interrupts 205

- Ack. oi‘ hst character Printer selected

I EACICIENESESEY

0 Offline ~ Outofpaper /O error ~ Timerout eﬁoy :
Ready \

Fig.5.9 Printer status format
The printer number [00-02] is loaded in DX and the sub-functions [00], [01], and
[02h] can be used.
Example 5.10
Write a program segment to check whether the printer is online.
Solution:
DISPLAY_STRING MACRO MSG
MOV AH, @SH
MOV DX, OFFSETMSG
INT 21H
ENDM
DATA
MSG_ON DB CR, LF,’ON_LINE’CR,LF,’$’
MSG_OFF DB CR, LF,’OFF_LINE’,’$’
STATUS_INFO DB ?
ENDS
CODE
STARTUP
MAIN:
MOV AX, _DATA
MOV DS, AXMSG @ .
MOV AH, @2H ; Sub-function code for reading the status:
MOV DX, LPT Lo
INT 17H ; Issue BIOS command for printer serV*
MOV STATUS_INFO, AH
MOV AL, STATUS_INFO
AND AL, 1eH
CMP AL, o0
JE SKIP_PRINT_CHARACTER
DISPLAY STRING MSG_ON

bry MOV ST, OFFSET MSG_OFF
"t\Character:

206 Microprocessors and Interfacing

CMP DL, ‘$°
JNE PRINT_CHARACTER
JMP END_PROCESS
SKIP_PRINT:
DISPLAY_STRING MSG_OFF
END_PROCESS:
MOV AH, 4CH ; Terminate the program segment.
MOV AL, ©eH
INT 21H
ENDS

Example 5.11)
Write a program segment to check and display the status of a printer.

Solution:
MODEL SMALL
DATA
STATUS_MSG DB ‘PRINTER STATUS XX’,@DH,@AH,’$’
BO DB ‘TIME-OUT ERROR$’
B1 DB ‘RESERVED$’
B2 DB ‘RESERVED$’
B3 DB ‘I/O ERROR$’
B4 DB ‘PRINTER SELECTED$’
BS DB ‘OUT OF PAPER$’
B6 DB “ACKNOWLEDGES$’
B7 DB ‘PRINTER NOT BUSY$’
MESSAGE_STRING DW Be, B1, B2, B3, B4, B5, B6, B7
CODE
STARTUP
LEA DX, STATUS_MSG
MOV AH, @9H
INT 21H
MOV AH, @2H
MOV DX, ©@H
INT 17H
MOV CX, ©8H
LEASI, MESSAGE_STRING
REPT:
SHR AH, ©1H
PUSH AX
INC SKIP
MOV DX, [SI]
MOV AH, @9H
INT 21H
SKIP:
POP AX

8086 Interrupts 207

ADD SI, @2H
LOOP REPT
END

POINTS TO REMEMBER

An interrupt is an external or internal event in a microprocessor that diverts it from
the execution of the main program, to another program called the interrupt service
routine (ISR).

The interrupt can be either a hardware interrupt or a software interrupt. The 8086
has two hardware interrupts—NMI and INTR. The software interrupt is created in
the 8086 using the INT instruction.

There are 256 interrupt types available in the 8086 and the interrupt vector for each
type, which is four bytes long, is stored in an interrupt vector table (IVT) from
address 00000H in the memory.

Whenever an interrupt is received, the 8086 saves the current value of IP, CS, and
the flag register in the stack, clears TF and IF, and loads CS and IP with the interrupt
vector corresponding to the received interrupt type. This causes the 8086 to start the
execution of the ISR.

The IRET instruction at the end of the ISR makes the 8086 return to ‘the main
program.

There exist different levels of priority among the interrupts, and if two interrupts
appear simultaneously in the 8086, the interrupt having higher priority is serviced
first.

BIOS function calls (also called BIOS interrupts) are stored in the system ROM and
the video BIOS ROM present in the PC. These BIOS function calls directly control
the I/O devices with/without the DOS (disk operating system) loaded in the system.
Interrupts can be invoked using the assembly language instruction INT XX. Each
interrupt is associated with a number of sub-functions, which can be specified by
loading the corresponding number in the AH register.

Depending on the complexity of a function, a series of parameters can be specified
by following its pattern and placing values in GPR/data structures specified by the
vendor.

BIOS functions contain two types of routines—test (post) initialization routines
and control routine for I/O operations.

DOS services are used to accept data from the input devices and display data on the
video terminals. INT 21H is used for these I/O operations.

BIOS program is always located in a special reserved memory area, the upper 64
KB of the system area (addresses FOOOOH-FFFFFH).

The zero page is available in the colour graphics adapter (CGA), enhanced
graphics adapter (EGA), and variable graphics array (VGA) text modes of
operation.

. KEYTERMS ©

Hardware interrupt It is an interrupt generated by activating the interrupt pin of
the microprocessor.
Interrupt vector It is a four-byte entry in the IVT, which contains a 16-bit offset

208 Microprocessors and Interfacing

part and a 16-bit segment part that are loaded in the IP and CS registers, respectively,
when an interrupt is received. ’
Interrupt vector table (IVT) It is a table in the memory that contains the interrupt
vectors of the different interrupts.

INTR It is 2 maskable hardware interrupt in the 8086 that can be enabled/disabled
using the I flag.

Non-maskable interrupt (NMI) It is an interrupt that cannot be disabled by
software.

Software interrupt It is an interrupt generated by the execution of the software
interrupt instruction in the microprocessor.

Trap interrupt It is used for performing single-step operations in the 8086 and can
be enabled/disabled using the T flag.

i REVIEW QUESTIONS

. What is the function of an interrupt in a microprocessor?

. What is the difference between maskable and non-maskable interrupts?

What is the difference between hardware and software interrupts?

How many interrupt types are present in the 8086 and how they are classified?

Name the dedicated interrupts in the 8086 along with their functions.

What are the differences between INTR and NMI interrupts in the 80867

. How does the 8086 recognize an NMI interrupt?

. What is the function of the T and I flags in the 8086 and how can they be set/

reset?
. Write the sequence of steps performed by the 8086 when it receives an interrupt
other than INTR.

10. How does the 8086 return to the main program after completing the ISR of an
interrupt?

11. What is an interrupt vector? What is the maximum number of interrupt vectors
that can be stored in the IVT of the 8086?

12. How is a software interrupt generated in the 80867

13. What is the function of the INTO instruction?

14. What are the advantages of software interrupts?

15. Write the priority among the interrupts in the 8086.

16. Explain the interrupt structure of the 8086 in detail.

17. With the necessary timing diagram, explain the processing of the INTR interrupt
by the 8086.

18. Draw the diagram showing the supply of the interrupt type 80H through an 8-bit
DIP switch and the 74244 IC, when the 8086 receives the INTR interrupt.

19. List the BIOS interrupts used to select the video mode and cursor control in the
computer monitor.

20. What are the BIOS interrupts used to control the keyboard and the COM port?

21. Enlist the advantages of modular programming.

22. What is an interrupt handler?

23. Explain the term video services. Enlist and explain the video services provided by
BIOS.

24. Differentiate between DOS and BIOS services.

25. Discuss techniques for developing programs to handle operations of I/O devices.

PN LAWY~

o

w

N o=

8086 Interrupts 209

PROGRAMMING EXERCISES

. Write an 8086 ISR to add the byte type data stored in an array starting at the

address 2000H: 5000H in the memory with the corresponding data in another
array stored in the memory starting at the address 3000H: 5000H and store the
result in another array in the memory starting at the address 4000H: 5000H, when
the NMI interrupt is given to the 8086. The number of byte type data in the array
is 100. Assume that the result after addition of all the data in the array is an 8-bit
data. The ISR must be accessible by any module.

. Write an 8086 ISR to send the byte type data stored in the address 6000H: 5000H

in the memory, to port A in the 8255, whose address is FFOOH, when the IRQ2
interrupt in the I/O channel of the PC is activated.

. Write an 8086 ISR to receive byte type data through port B of the 8255, whose

address is FFO1H. Store the data in the address 7000H: 5000H in the memory,
when the software interrupt INT 0BH is executed by the PC.

. Write a program to display the keyboard status.
. Write a program to determine the status of a printer.
. Write a program segment to accept a string consisting of digit and non-digit

characters from the keyboard and display the sum of the digits present in the input
string.

 THINKAND ANSWER

. For what purpose is the NMI interrupt commonly used in an 8086-based system?
. What is the minimum duration for which the INTR signal must be kept high for

being recognized by the 80867

. Is it possible to store the IVT starting from the address 20000H in the memory of

the 80862 Why?

. If the ISR of interrupt type O is stored from the memory address 2000: 3000H,

what is the segment and offset part of the interrupt vector?

. If the ISR of interrupt type 40H is stored from the memory address 8000: 4500H,

what is the segment and offset part of the interrupt vector?

. Isit possible to enable the INTR and the trap interrupts again when the 8086 starts

executing the ISR of an interrupt? How?

. How does the 8086 obtain the specific interrupt type when it receives the INTR

interrupt?

. If the interrupt type allotted for the interrupt IR0 is 70H in the 8259, what is the

interrupt type allotted for IR2 and IR4?

. How can the breakpoint technique for debugging a program be implemented in

the 8086?

. Is it possible to access the divide-by-0 ISR by using a software interrupt in the

8086? How?

. If both INTR and NMI occur simultaneously in the 8086, which interrupt is
processed first? Why?

. ‘It is necessary to initialize a stack before using procedures.” Comment on the

validity of this statement.

Memory and I/O Interfacing

LEARNING OUTCOMES

After studying this chapter, you will be able to understand the following:
|+ Physical memory organization in the 8086
« Generation of separate address and data buses in the 8086
+ Interfacing RAM and EPROM chips with the 8086
I« Difference between I/O-mapped and memory-mapped l{e]
» Interfacing /O devices with the 8086

6.1 PHYSICAL MEMORY ORGANIZATION IN 8086

Since the 8086 has 20 address lines, it can access 1 MB (= 2% bytes) of memory.
The memory addresses in the | MB memory range from 00000H to FFFFFH. The
memory is constructed using RAM and ROM/EPROM chips. The 1 MB memory
in the 8086 is physically organized as an odd bank and an even bank, where each of
the 512KB (= 1 MB/2) is addressed in parallel by the 8086. Each memory location
stores one byte of data. The byte data at an even memory address is transferred
through the 8-bit data bus D7-DO0, while the byte data at an odd memory address
is transferred through the 8-bit data bus D15-D8. The 8086 provides two enable
signals, BHE and A0, for the selection of odd banks and even banks, respectively.
Figure 6.1 shows the physical memory organization in the 8086. The 8086 is a 16-
bit processor and hence it can transfer two bytes of data in one memory read/write
cycle (or I/O read/write cycle).

Address Address
00001H 00000H
3086 00003H | Odd address bank Sk address | 00002H
System 00005H | (selected when when(i"«(l)egtgg 00004H
BHAE=0) =
8-bit memory 8-bit memory
FFEFEH. ooy S0 FFFFEH
8
DI5-D8 1:&_—_0 U
D7-DO
8

Fig. 6.1 Physical memory organization in the 8086

Memory and I/O Interfacing 211

Two memory locations are needed to store a word in the memory in an 8086
system. While reading or writing word data (16 bits), the bus interface unit of the
8086 requires one or two memory cycles, depending upon whether the lower-
order byte of the word is located at an even or odd memory address, respectively.
It is better to store the word type data in the memory such that its lower-order byte
is stored at an even memory address, since only one read cycle is required to read
the data through the 16-bit data bus (D15-D0) of the 8086. If the lower-order byte
of the word is located at an odd memory address, the first read cycle is required
for accessing the lower-order byte of the word through the higher-order data bus
(D15-DB), and the second is required for accessing the higher-order byte of the
word through the lower-order data bus (D7-DO0). Thus, two bus cycles are required
to access a word whose lower-order byte is stored in an odd memory address in the
memory. While initializing data structures such as an array of word type data or a
stack, they should be initialized at an even address for efficient operation. This is
also applicable to the memory write operation.

The use of the BHE and A0 signals to fetch data or instruction from the memory
and to write data in the memory is given in Table 6.1.

Table 6.1 Function of BHE and A0 signals

BHE A0 Operation
16-bit data is read from or written into the memory.
8-bit data is read from or written into the odd memory bank.

8-bit data is read from or written into the even memory bank.

- - o °
- o = o

Memory is not accessed.

The BHE and AO signals, along with a few higher-order address lines of the
8086, are used to generate the Chip Select (CS) or Chip Enable (CE) signal for
different memory chips.

6.2 FORMATION OF SYSTEM BUS

The 8086 has a multiplexed 16-bit address/data bus (AD15-ADO0) and a
multiplexed 4-bit address/status bus (A19/S6-A16/S3). The multiplexed address
bus can be split into a separate address bus and data bus/status bus, using the
Address Latch Enable (ALE) signal of the 8086 and three external octal latches
(IC 74373). Figure 6.2 shows the de-multiplexing of the address bus and the data
bus using the 74373 ICs.

The data bus can be buffered using two bidirectional buffers (74245). Since
the data can flow in either direction (i.e., from and into the microprocessor) while
accessing the memory or I/O devices, the bidirectional buffers are used for deriving
the data bus. The signals DEN and DT/R indicate the presence of data on the bus
and the direction of the data (i.e., from/to the microprocessor), respectively. They
are connected to the chip enable and direction pins of the buffers, as shown in
Fig. 6.3.

212 Microprocessors and Interfacing

74373 | 4
S0R 4 Q3-QU/=> Al19-Al6 !
A19/S6-—7——————D3-D0 o
A16/S3 —>|CLK :

74373 | g

3 Q7-Q0/=> Al5-A8
ADI5-AD8 [/ D7-DO
F—{cLk

74373 | g .
8 Q7-QO/—> A7-A0 I
AD7-ADOE—/———————ID7-D0 |
ALE CLK |

e e

Fig. 6.2 De‘-r‘nultiplexing the address bus and data bus

8086 74245 ‘
DT/R DIR ; |
S — Y7-Y0KS/=>D15-D8
DEN = BN YO

ADI15-ADO[—Z X7-X0 |
74245 i
—>»|DIR §
SNty D7-D0 |
: Y7 Yo@? z
AD-ADD 7 e XKD

6.3 Buffering the data bus of the 8086 using IC 74245

If DEN is low, it indicates that the data is available on the multiplexed address/
data bus (ADO-AD15). Both the bidirectional buffers (74245s) are enabled to
transfer that data since their enable inputs are activated at that time. When the DIR
pin goes high, the data available at the X pins of the 74245 are transferred to the Y
pins, i.e., data is transmitted from the 8086 to either the memory or the /O device
(write operation). If the DIR pin goes low, the data available at the Y pins of the
74245 are transferred to the X pins, i.e., data is received by the microprocessor
from the memory or the I/O device (read operation). For generating the Memory
Read (MEMR) and Memory Write (MEMW) control signals, the RD, WR, and
M/IO signals of the 8086 are used along with the combinational circuit (as shown
in Fig. 6.4) during the minimum mode operation of the 8086. In the case of
maximum mode operation of the 8086, a bus controller chip (8288) derives all
the memory control signals using the status signals S0, ST, and S2. Section 9.4 in
chapter 9 gives the complete details of the 8086 bus timings, such as memory read/
write operations, I/O read/write operations, etc., in minimum and maximum mode
operation.

Certain locations in the memory are reserved for specific CPU operations.
After resetting the 8086, CS and IP are initialized to FFFFH and 0000H,

Memory and I/O Interfacing 213
RD WR M/I0
l —Dc‘Do— MEMR
—DCD"’— MEMW

S ——

v Fig. 6.4 Generation of control signals for the memdry in the 8086

respectively; the first instruction for execution is taken from the address FFFFOH
in the memory. Hence, the locations from FFFFOH to FFFFFH in the memory are
reserved for storing instructions, execution of which causes the 8086 to jump to
the initialization program of the system. The memory locations 00000H-003FFH
are reserved for the interrupt vector table. These memory locations are assigned to
the ROM/EPROM chips in an 8086-based system, so that the programs stored in
them are permanent. The interrupt vector table may be located in the RAM chips
in some systems. The memory chips can be interfaced with the 8086 using only
logic gates, or using both logic gates and the decoder IC 74138. This is explained
in Sections 6.3 and 6.4.

6.3 INTERFACING RAM AND EPROM CHIPS
USING ONLY LOGIC GATES

When RAM and ROM/EPROM chips with the same or different storage capacities
have to be interfaced with the 8086, it can be easily done using logic gates. The
following example illustrates this concept.

Example 6.1

Interface two 8K x 8 EPROMs (2764) and two 8K x 8 RAM chips (6264) with the
8086 using logic gates, such that the memory address ranges assigned to them are
FCO00H-FFFFFH and 00000H-03FFFH, respectively.

Solution:

First, let us see the interfacing of the two 8K x 8 EPROM chips with the 8086,
so that they have the address range FCOOOH-FFFFFH. The addresses FCOOOH—
FFFFFH are given in binary form in Table 6.2.

Table 6.2 Memory addresses assigned to the EPROM chips

A19 A18 A17 A16 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Address
1 1.1.1 1 1 0 0 0 0 000O0O0OO0OO0O O 0O FCOOOH

1 11 1 1 1 0 0 0 O 00O0OO0O0OO0OO0OOO 1 FCOOIH
1 111 1 1 0 0 0 0 0O0O0O0OCO0OOOO1 0 FCOO2H
1111 110 0 0 0 0O0O0OOOOOOT1 1 FCOO3H

1 11 1 1 1 1 1 1 1 111111111 1| FFFFFH

214 Microprocessors and Interfacing

It can be noted from Table 6.2 that even addresses such as FCO00H, FC002H, and
FCO004H are assigned to one 8K x 8 EPROM chip (say, 2764-A), which acts as an
even memory bank and odd addresses such as FCO01H, FC003H, and FCO05H are
assigned to another 8K x 8 EPROM chip (say, 2764-B), which acts as an odd memory
bank. Since the address line A0 is 0 for all even addresses, it is used to generate the
Chip Select or Chip Enable signal for 2764-A, along with some of the higher-order
address lines of the 8086. Similarly, BHE is used along with some of the higher-order
address lines of the 8086 to select the odd memory bank formed by 2764-B

First, the number of address lines in the 8K x 8 EPROM chip is noted, which is
13 (A12-A0) since 2"*= 8K. The address lines A1-A13 of the 8086 are connected
to the address lines AO-A12 of 2764-A and 2764-B, since the address line A0
of the 8086 is used for selecting the even memory bank. The remaining address
lines A19-A14 of the 8086 are used for address decoding. Figure 6.5 shows the
interfacing of two EPROM chips with the 8086.

MEMR
BHE
A0
AL9
AlS
A
Al6
AlS {/
Al4 I
OE CE CE OE
PNER NE) 2 CE OF
Az | 2 |
a1l Al
3086
. o 2764A |- ¢ BB
. 8K x 8 S
EPROM | - s
i e a2 | L, ERoM
Al Al [
3 A0 p7_po - A%p7 po
o e R ou
1 DO bank bank A8
DIs
D8

Circuit for address/data bus demultiplexing and control signal generation

P T o v = e
Fig. 6.5 Interfacing EPROMs with the 8086 using logic gates

Since all the address lines A14-A19 are 1 for the addresses FCOOOH-FFFFFH,
these address lines are directly connected to an AND gate to produce the output
“1°. The AND gate output and the inverted A0 signal are given to a NAND gate
and the output of this NAND gate is connected to the chip enable pin of 2764-A,
which is the even memory bank. Similarly, the same AND gate output and the
inverted BHE signal are given to another NAND gate, whose output is used to
select the 2764-B chip, which is the odd memory bank.

Memory and I/O Interfacing 215

‘When the 8086 wants to access a byte from any odd address in the address
range FCOOOH-FFFFFH, the value in the address lines A1-A13 of the 8086 is
used to select one of the locations within 2764-B, as A1-A13 of the 8086 are
connected to AO-A12 of 2764-B. The address lines A14-A19 contain the value
1, which makes the AND gate output 1. The 8086 now activates the BHE signal
(i.e., BHE is made 0), due to which the CE pin of 2764-B goes low and is selected.
Since A0 = 1 for odd memory addresses (as it is the LSB of the address), CE of
2764-A is high and is not selected.

When the 8086 wants to access a byte from any even address in the address
range FCOOOH-FFFFFH, the values in the address lines A1-Al13 and A14-A19
are used for the purposes we have just discussed. Now, the address line AO is 0
while the 8086 sends out an even address. BHE is made 1 by the 8086. Due to
this, CE of 2764-A is made low and is selected. Since BHE = 1, CE of 2764-B is
in high state and is not selected. While accessing a byte from either an odd or an
even memory bank, the 8086 activates MEMR after sending the memory address
to get the data.

When a word (16-bit data) whose lower-order byte is stored in an even address
is accessed by the 8086, both A0 and BHE are made 0, due to which both the chips
are selected. One byte from each memory bank is placed in the data bus (D15-D0)
when the 8086 activates the MEMR signal. The 8086 processor then reads the
entire word in the data bus. For example, if the 8086 wants to read the word whose
lower-order byte is stored in the address FFFFEH, all the address lines (A1-A19)
of the 8086 contain 1. A0 and BHE are made 0. This makes the AO—A12 lines of
both the memory chips 1 and the CE input to both the chips 0. Due to this, the data
in the last memory location in both the chips are placed in their data buses, when
the MEMR signal is activated by the 8086.

Now, let us discuss the interfacing of the two 8K x 8 RAM chips with the 8086,
so that they have the address range 00000H-03FFFH. The addresses 00000H—
03FFFH are given in binary form in Table 6.3.

Table 6.3 Memory addresses assigned to the RAM chips

A19 A18 A7 A16 A15 A14 A3 A12 AT1 A10 A9 A8 AT AG A5 A4 A3 A2 A1 A0 Address
000 00 00000 0 00O0O00O0O0O 0 0 00000H
000 0 0 000000 000O0O0OOOO 1 0000H
00 0 0000000 0000O0OOO 1 0 00002H
000 0 000000 0 0000OO0O0O 1 1 00003H

0 :40: . 0ms90: 0. 508 iy L i Lo Sl 155Y . Ll 1520 :03FFEH:
01207 = 0x 7015041100 LuT s el 1R FoslE]t g1 203FFFH

The even addresses such as 00000H and 00002H are assigned to one 8K x 8 RAM
chip (say, 6264-A), which acts as an even memory bank and the odd addresses

216 Microprocessors and Interfacing

such as 00001H and 00003H are assigned to another 8K x 8 RAM chip (say, 6264-
B), which acts as an odd memory bank.

As discussed in the interfacing of the EPROM chip, the inverted A0 line
and the output of the address decoder formed using the AND gate are given to a
NAND gate, and the NAND gate’s output is connected to the CE input of 6264-A.
The inverted BHE line and the same address decoder output are given to another
NAND gate, and the output of that NAND gate is connected to the CE input of
6264-B. The interfacing of the RAM chips with the 8086 is shown in Fig. 6.6.

MEMR
MEMW
e ol
: A0, !
A19 :
Al8
JA17 f
1A16
Al5
1A14 i

‘WE OE CE WE OE CE
:z il A:; —jan
3086 INH All
: ¢ 6264-A | * 2 6264-B

8Kxg§ |- S

ol - 8Kx8 ‘
A A2 il
A Al i
o THERRS
3 A% b7-DO y 0p7-D0O

£

13 ¥

1 gg 8 Even 0dd :v
/ bank bank 8 £

DIs i
K2 i
D8 i

A2
Al

Fig.6.6 Interfacing RAM chips with the 8086 using logic gates

Since the address lines A14-A19 contain 0 for the addresses 00000H—-03FFFH,
the signals in these lines are inverted and then given to the AND gate, so that
they produce an output of 1 for the same addresses. This AND gate output and
the inverted A0 signal through the NAND gate activate the CE input of the even
memory bank. The same AND gate output and the inverted BHE signal activate
the CE input of the odd memory bank. The CE input of both the memory chips are
activated when the 8086 wants to access a word whose lower-order byte is stored
in the even memory bank.

The MEMR signal of the 8086 is connected with the OE (Output Enable) input.
The 8086 activates the MEMR signal while reading a byte or word from the RAM,
after sending the address through the address bus. The MEMW signal of the 8086
is connected with the WE (Write Enable) input. The 8086 activates the MEMW
signal while writing a byte or word in the RAM after sending the address through
the address bus and placing the data in the data bus.

Memory and I/O Interfacing 217

6.4 INTERFACING RAM/EPROM CHIPS USING DECODER IC
AND LOGIC GATES

When RAM/EPROM chips with the same storage capacity have to be interfaced
with the 8086, the interfacing can be easily done using a decoder IC and logic
gates. The following examples illustrate this concept.

Example 6.2

Interface two 8K x 8 EPROM chips with the 8086, such that the memory address
range assigned to them is FCOOOH-FFFFFH, using an address decoder made up
of the 74138 IC and logic gates.

Solution:

The 13 address lines AO-A12 in the 2764 are connected to the address lines
A1-A13 of the 8086. For the entire address range FCOOOH-FFFFFH, the value
in the address lines A19-A14 is equal to 1. The address lines A19-A15 are used
to enable the 74138 decoder IC, and the address lines A14, A0, and BHE are
connected to the selection lines of the 74138 IC.

Figure 6.7 shows the interfacing of the EPROM chips with the 8086 chips
using the 74138 decoder. For simplification, only the decoder and EPROM chips
are shown in the figure. The connection of the EPROM chips with the 8086 is the
same as in Example 6.1.

YS Yl\Decodex/Y?’ Y1

outputs
— YO
Pt YL MEMR
74138 Vo — — — o
decoder p— Y3 CE OE CE OE!
— Y4
faeno X5
BHE—{C (MSB) —— Y6 2764-A 2764-B
. A0—B A T
Al4—A(LSB)
Gl G2A G2B Eyeh 0dd bank

L_Ll bank

 AI9AIBAITAI6ALS

Fig. 6.7 Interfacing EPROM chips with the 8086 using 74138 decoder

When the address lines A19-A14 are 1, the decoder is enabled. The selection
of a particular EPROM chip under that condition is explained in Table 6.4.

When we want to interface more RAM and EPROM chips of the same capacity
with the 8086, we can use two separate decoders (74138), one for accessing the
lower bank and the other for accessing the upper bank. A0 and BHE are used to
enable the two decoders.

218 Microprocessors and Interfacing

Table 6.4 Selection of EPROM chips

BRE A0 A14:;Y5 va Y1E 21562_; 215&2; Operation

0 0 1 - 110 , 0 i 0 é A word is read from the memory.

0 1 1 1 01 1 0 A byte is read from the odd memory bank.
1 0 1 01 1:0 E 1 E A byte is read from the even memory bank.

Example 6.3

Interface four 8K x 8 RAM chips (6264) with the 8086, to assign the address range
80000H-87FFFH using two 74138 ICs.

Solution:
The addresses assigned to various memory chips are written in binary form as
shown in Table 6.5.

Table 6.5 Addresses assigned to various memory chips

Address in
hex

(For
6264-1L)

1 0 0000 00 0 O 0O0OOOOOOOO 0O 80000H
1 0 0000 0 0 0 0 0O0OO0OOCOOOT1 0 80002H

A19 A18 A17 A16 A15 A14 A13 A12 A1 A10 A9 AB AT A6 A5 A4 A3 A2 A1 A0

1 0 000 00 0 0 O O0O0OO0OOOOOOO 1 800H
1 0 0 0000 0 0 0 0O0O0O0CO0OO®OO 1 1 80003H

6264-2L)
1 0 0001 00 0O 000O0O0OOOO0 0 84000H

1 0 0 001 00 0 0 000O0O0O0GO0O 1 0 84002H

1 0 0001 0000 00O0O0O0OOO 01 8400H
1 00 001 00 00 00O0DO0GO0OTOO 1 1 84003H

1 00 0 01 1 1 1 1 111111111 1 8FFFH

Memory and I/O Interfacing 219

Here, 6264-1L and 6264-2L are the RAM chips forming the lower banks.
6264-1H and 6264-2H are the 6264 RAM chips forming the higher banks.
For simplification, only the decoder and RAM chip connections are shown in
Fig. 6.8. The connection of the RAM chips with the 8086 is as explained in

Example 6.1.
Yi
S
74138-1 Yob— by -
Ale—IC(MSB) Y3— CE CE
Al5—B s
Ala—]A(LSB — '
g A 6264-2L ;:;,f,'(‘ 6264-1L
Y7b—
D7-DO D7-DO

Gl G2A G2B ToD7-D

Al9 Ij—l of 8086
Al8 A0
Al7 ﬁ

Oh;:]‘

GIG2AG2BY
vl '
74138-2 Y2r— —L L
Alé—(C Yi— CE CE |
Al5—B g |
- Al4—A Y= 0dd
Yo— 62642H | bank | 6264-1H
Yp—
D7-DO D7-DO
ToD15-D8
of 8086 e |
|
e e g T e T Yo S

Fig. 6.8 lnterfacmg RAM chips using two 74138 decoders

The data for selection of the different chips is shown in Table 6.6.

Table 6.6 Data for selection of different RAM chips

A9 AI8 A1 i A6 A15 Al4

e

1 0 0 0 0 1
1 0 0 0 0 1
1 0 0 0 0 1

0 ~~—jomeimorrqmme

H
i
'
'
'
'
i
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
i
i
i
'
i
i
H
i
i
'
1

A0 BHE
0 0
0 1
1 0
0 0
0 1
1 0

H
'
i
'
i
'
'
'
'
'
i
'
i
'
i
'
i
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

RAM chips and byte/word
selected

6264-1L and 6264-1H;
a word is read/written
6264-1L; a byte is read/
written

6264-1H; a byte is
read/written

6264-2L and 6264-2H;
a word is read/written
6264-2L; a byte is read/
written

6264-2H; a byte is
read/written

— | Tead/writen

220 Microprocessors and Interfacing

6.5 1/0 INTERFACING

In this section, the operation of I/O instructions (IN and OUT), the concept of I/O-
mapped /O and memory-mapped I/O, and the interfacing of simple I/O devices
such as DIP switches and LEDs with the 8086 are discussed.

6.5.1 1/O Instructions in 8086

The IN instruction is used to read data from an input device to AL or AX in the
8086. The OUT instruction is used to send the data in AL or AX to an output
device. The /O device’s address is stored either in the register DX as a 16-bit I/O
address or in the byte immediately following the opcode of the IN/OUT instruction
as an 8-bit I/O address. Table 6.7 lists all versions of the IN and OUT instructions
in the 8086.

‘Whenever data are transferred using the IN or OUT instruction, the I/O device’s
address, often called port number, appears on the address bus. The external I/O
interface decodes this address to select a particular I/O device. The 8-bit fixed port
number appears on the address lines A7-A0, with the address lines A15-A8 as
O0H. The address lines A15—-A19 are undefined for an I/O instruction. The 16-bit
port number in DX appears on the address lines A15-A0.

Table 6.7 Input/output instructions in the 8086

Instruction Operation

IN AL, XXH Read a byte from the input device with address XXH and store it
in AL.

INAL, DX Read a byte from the input device with the address specified by
DX and store it in AL.

INAX, XXH Read a word from the input device with the address XXH and
store it in AX.

IN AX, DX Read a word from the input device with the address specified by
DX and store it in AX.

OUT XXH, AL Send a byte from AL to the output device with the address XXH.

OUT DX, AL Send a byte from AL to the output device with the address
specified by DX.

OUT XXH,AX Send a word from AX to the output device with the address XXH.

OUT DX, AX Send a word from AX to the output device with the address
specified by DX.

6.5.2 1/0-mapped and Memory-mapped 1/O

Similar to the 8085, there are two methods for interfacing I/O devices with the
8086—1I/O-mapped I/O and memory-mapped I/O schemes. In I/O-mapped
1/O scheme, the IN and OUT instructions are used to transfer data between the
microprocessor and the I/O devices. In memory-mapped I/0, any instruction that
references the memory can be used to transfer data.

Memory and I/O Interfacing 221

6.5.2.1 1/O-mapped 1/O

The most common I/O data transfer technique used in the Intel microprocessor-
based system is 1/O-mapped 1/O; it is also called isolated I/O scheme. The term
isolated indicates that the 1/O locations are isolated from the memory system in a
separate I/O address space. Figures 6.9 (a) and 6.9 (b) show both the isolated I/O
and memory-mapped I/O address spaces for the 8086.

Address Address Address Address
FFFFFH! FFFFH FFH FFFFFH f
(or) 70
|
IMx38 i
100000H| bits | and 0000H 00H 00000H |
S Memory /0 /0 Memory + I/O |
-) e - e p— '

Fig.6.9 Memory and /O maps for the 8086 (a) I/O-mapped I/O (b) memory-
mapped I/O

The address for isolated I/O devices, called ports, is separate from the memory
in the isolated I/O scheme. As a result, the user can expand the memory to its full
size (i.e., 1 MB) without using any of its address space (00000H-FFFFFH) for /O
devices. A disadvantage of I/O-mapped /O is that the data is transferred between
the 8086 and the /O devices only by the IN and OUT instructions. Separate control
signals for the /O devices are generated, which indicate an J/O read or an /0
write operation. The generation of the TOR and IOW signals in the minimum mode
operation of the 8086 is shown in Fig. 6.10. In the maximum mode operation of
the 8086, the IOWC and TORC signals generated by the 8288 bus controller are
used to interface the I/O devices with the 8086.

RD . WR M0 :
l B OB e
P BN b S

Fig. 6.10 Generation of TOR and [OW signals in minimum mode operation
of the 8086

6.5.2.2 Memory-mapped 1/O

The memory-mapped I/O scheme does not use the IN and OUT instructions. Any
instruction that transfers data between the microprocessor and the memory can
be used for transferring data between the 8086 and the I/O devices. The main

222 Microprocessors and Interfacing

advantage of this scheme is that there are many memory transfer instructions in
the 8086 and all of them can be used to access the I/O device. The same control
signals used for accessing the memory (MEMR and MEMW in the minimum
mode and MRDC and MWTC from the 8288 in the maximum mode) are used for
accessing the I/O devices. This reduces the additional circuitry needed to generate
the control signals. The main disadvantage of the memory-mapped I/O scheme
is that a portion of the memory system is used as the I/O map. This reduces the
amount of memory available to the applications.

6.6 INTERFACING 8-BIT INPUT DEVICE WITH 8086

To interface an input device with the 8086, three-state buffers are used. A typical
example for a three-state buffer IC is the 74L.S244. Let us consider the interfacing of
an 8-bit DIP switch with the 8086 using the 7415244 IC. Depending upon whether
an 8-bit or a 16-bit address is to be assigned to the DIP switch, the construction
of the address decoder differs. The address decoder can be constructed only using
logic gates or a combination of logic gates and decoder ICs such as the 74LS138.

6.6.1 Assigning 8-bit Address to 8-bit Input Device using
Address Decoder having only Logic Gates

Let us interface an 8-bit DIP switch with the 8086 operating in the minimum
mode, such that the address assigned to it is 8FH, using an address decoder having
only logic gates. Figure 6.11 shows the required interfacing circuitry. When the
8086 has to read the data from the 8-bit DIP switch, the instruction IN AL, 8FH or
IN AL, DX with DX already loaded with the value 008FH has to be executed by
it. During the execution of any one of these instructions, the address lines A7-A0
contain 8FH and the IOR signal is made low for some duration (a few us) by the
8086. As a result, the enable inputs (TG and 2G) of the 7415244 are activated (i.e.,
made low), and the data from the DIP switch is placed on the data bus (D15-D8).
The 8086 reads that data and places it in the AL register. The data bus D7-DO0 of
the 8086 is used if the I/O device address is an even number. The reason for this
is explained in Section 6.9.

6.6.2 Assigning 8-bit Address to 8-bit Input Device using
Address Decoder IC 74LS138

In Fig. 6.11, if we want to assign the address 8FH to the DIP switch using an
address decoder IC such as the 74LS138, the design of the address decoder is
done as shown in Fig. 6.12. When the 8086 places the address 8FH (10001111 in
binary form) in the address lines A7-A0, the inputs C=B =A =1, Gl = 1, and
G2A =G2B =0 in the 74LS138 IC, due to which the decoder IC is enabled, its Y7
output goes low, and other outputs remain high. This Y7 output of the decoder IC
along with the IOR signal of the 8086 is used to enable the 74L.S244 IC, thereby
transferring data from the DIP switch to the AL register of the 8086 when the
instruction IN AL, 8FH is executed. The same decoder IC’s other outputs (i.c.,
Y0-Y6) can be used to assign the addresses 88H-8EH to other I/O devices.

Memory and I/O Interfacing 223

15V
8 0
D15 / Ty 1Al
D14 / S b
/ w4 2a4
8086]
74LS244

EREEEE S
WY
2l
1

TOR

8- bn DIP sthch

T r————

Fig.6.11 Interfacmg an 8-bit DIP switch with the 8086 (8-bit address)

A2 ——C (MSB) YOp-—————=288H
Al Beas 3
A0———— A(LSB) 1 S
Y2 oaRAH
Y3p———8BH
Y4 8CH
From
8086 A3 Gl 74LS138 ysb——— — gpH
A7
Y6p— 8EH
Y7 8FH
A4 G2A Inverter To %
AS SR 1G and 2G
A6 G2B of 7418244
3 ic
IOR——-——[>°——

e Lt L et T T ——— e

Fig.6.12 Address decoder using 74LSI38 IC

224 Microprocessors and Interfacing

6.6.3 Assigning 16-bit Address to 8-bit DIP Switch using

Address Decoder having only Logic Gates
The interfacing of an 8-bit DIP switch with the 8086, such that the address assigned
to the DIP switch is FFFOH, is shown in Fig. 6.13.

+5V
8
D7 / w1 1Al
ne / .
/ w4 244
oo /
15 74LS244 R
14 =
13 G
2 X
1A10 2a
8086 b
A8
,
5
A p>o i
AL|><>-D° 8-bit DIP switch
A0 Do i
s osed i
TOR i

'Fig. 6 13 Interfacing an 8-bit DIP switch with the 8086 (I6;bit address)

When the 8086 executes the instruction IN AL, DX with DX already loaded
with the value FFFOH (this is done using the MOV DX, FFFOH instruction), it
places the address FFFOH in the address lines A15-A0 and activates the TOR
signal for some duration (a few ps). This makes TG and 2G of the 7415244 low,
thereby enabling the 74LS244. Data from the DIP switch is placed in the data bus
(D7-DO0) of the 8086. The 8086 reads that data and places it in the AL register.
The 16-bit address decoder can be designed using a combination of logic gates and
decoder ICs (74LS138), as explained using the 8-bit address decoder.

6.7 INTERFACING 8-BIT OUTPUT DEVICEWITH 8086

To interface an output device with the 8086, latches are used. A typical example
of an octal latch IC is 74LS373. Figure 6.14 shows the interfacing of a set of 8
LEDs with the 8086 using the 74LS373 IC. Either an 8-bit or 16-bit address can be

Memory and I/O Interfacing 225

8
L ./ D7 Q7 —‘M\—D}\]—
D6 be A
-) Q6 —ww—u;
¥ : Q5 —wWwA—pf—
DO A
DO / Q4 —W—Pf—|
b, T4LSIT3 o3 X 5\7'
5 5 A
8086 2 —Wf—
Y bt CLK 5 oH
Ao o Q1 —M—Pf—
Nies A
ALSo| QO F—W—Pf—
£
LED ——
oC
10w
53 =

Fig.6.14 Interfacing eight LEDs with the 8086 (8-bit address)
assigned to the set of LEDs, as explained in the interfacing of input devices with
the 8086. The address decoder can be constructed either using only logic gates or
using a combination of logic gates and decoder ICs such as the 74L.S138.

Let us discuss the interfacing of an 8-bit output device having an 8-bit address
with the 8086. In Fig. 6.14, the address assigned to the LEDs is FOH. When the
8086 has to send the data in the AL register to the LEDs, either OUT FOH, AL or
OUT DX, AL with DX already loaded with the value 00FOH has to be executed by
it. During the execution of any one of these instructions, the address lines A7-A0
contain FOH and the data lines D7-DO contain the data in the AL register. The TOW
signal (assuming that the 8086 is operating in minimum mode) is made low for some
duration (a few ps) by the 8086. This activates (i.e., makes high) the clock (CLK)
signal of 74LS373 IC. The data in the data bus D7-D0, which is the content of the
AL register, is latched in the 74LS373 IC and held there until the OUT instruction
with the same address is again executed by the 8086. The OC pin in the 7418373 IC
is made low to enable the tri-state inverter connected to each output pin.

6.8 INTERFACING PRINTERWITH 8086

There are different types of printers available today, such as the dot matrix printer,
line printer, inkjet printer, and laser printer. The dot matrix printer uses print heads
that contain pins arranged in matrix form. These pins can print characters in one
of the following matrix formats: 5 x 7, 7 x 7, or 9 x 9. Line printers differ from
dot matrix printers in that they print line by line and not character by character.
The inkjet printer reproduces digital images by propelling ink droplets of variable
size onto a page. The laser printer produces high quality text and graphics on plain
paper, at a very high speed. Like digital photocopiers, laser printers employ
a xerographic printing process. However, they differ from analog photocopiers

226 Microprocessors and Interfacing

in that images are produced by the direct scanning of a laser beam across the
printer’s photoreceptor.

The printer can be interfaced with a microprocessor through a serial or a
parallel interface. The serial interface normally used is the RS-232C standard.
When the serial interface is used, the printer receives the data bit by bit from
the microprocessor and stores it in its internal input buffer. The input buffer can
normally hold the characters for one line to be printed. On receipt of the print
command from the microprocessor when its input buffer is full, the printer sends
the Busy signal to the microprocessor and starts printing the characters.

In the parallel interface, the printer is connected with the microprocessor througha
set of data lines (seven or eight bits) and control lines. The microprocessor places the
data to be sent to the printer in the data lines and activates a strobe signal. The printer
accepts the data, stores it in its internal buffer, and then sends an acknowledgement
signal to the microprocessor. The printer also sends status signals such as Busy,
PE (paper exhausted), and Error to the microprocessor, which are used to identify
the readiness of the printer for data transfer. Most of the printers accept the data in
ASCII (American Standard Code for Information Interchange) form. Data transfer
through a parallel interface is faster and simpler than that through a serial interface.
The Centronics interface is a popular parallel interface that is used for interfacing the
printer with the microprocessor and is named after the manufacturer of the Centronics
printer, who introduced it. Table 6.8 shows the pin number and the description of
various signals in the Centronics printer connector.

Table 6.8 Pin connections and signals in the Centronics interface

f’ln" Signal Direction of signal Description of signal
no. (with respect to
: the printer)
1 STROBE Input ‘When the STROBE signal goes low, the

printer reads the data in the data lines
and stores them in its internal buffer.
The minimum low state (i.e., 0) duration
of the STROBE signal must be 0.5 ps.

2-9 DATAI-DATA8 Input This represents the data (eight bits) to be
printed in the printer.

10 ACK Output ‘When the printer has received data and
is ready for next data, it makes the ACK
signal low (i.e., 0) for a minimum period
of 5ps.

11 Busy Output The Busy signal is high (i.e., 1) when
the printer is unable to receive data. It is
high during data entry into the printer,
during printing operation, when the
printer is in offline state, or when it is in
error state.

(Contd)

Memory and /O Interfacing 227

Table 6.8 Pin connections and signals in the Centronics interface (Contd)

< ‘Dlrecﬁon of signal Description of signal

- (with respect to ‘
 the printer) 2
Output If the printer is out of paper, the PE
signal goes high.

13 SLCT Output When the printer is in selected state,
SLCT is high.

14 AUTOFEEDXT Input When this signal is low, the paper is
automatically fed one line after printing.

15 NC - Not used

16 0V - Logic ground level

17 CHASSISGND - Printer chassis ground. In the printer,
the chassis ground and logic ground are
isolated from each other.

18 NC - Not used

19- GND = This is the twisted pair return (ground)

30 signal for the STROBE, DATA, ACK,
Busy, and PE signals.

31 INIT Input ‘When the INIT signal is made low (for
more than 50 ps), the printer controller
is reset to its initial state and the printer
buffer is cleared.

32 ERROR Output This signal goes low when the printer
is in ‘offline state’, ‘paper end state’, or
‘error state’.

33 GND = Ground

34 NC — Not used

35 +5V Output This signal is pulled up to +5V through
a 4.7 kQ resistor.

36 SLCTIN Input Data entry to the printer is possible only

when this signal is low.

Figure 6.15 shows the timing diagram of the important signals involved in
interfacing of the Centronics printer with the microprocessor. When the Busy
signal is 0, which means that the printer is ready for accepting the character from
the microprocessor, the microprocessor places the ASCII code of a character or the
code of a special command in the data lines (DATA1-DATAS). After a minimum
time of 0.5 pis, it activates the STROBE signal (i.e., makes it 0) for a minimum
period of 0.5 ps. The data in the data lines is kept at the same value for a minimum
period of 0.5 ps after the STROBE signal is deactivated (i.e., made 1). When the
STROBE signal is activated, the Busy signal from the printer immediately goes

228 Microprocessors and Interfacing

high (i.e., becomes 1). It remains high until the printer sends the ACK signal,
as shown in Fig. 6.15. This is done because the microprocessor should not send
another data to the printer before the first data is processed in the printer. During
the rising edge of the ACK signal, the Busy signal goes low (as shown in Fig. 6.15)
and now, another data can be sent to the printer.

= 65l

T1
ACK
Data 1 Valid data
T2 T3 T4
S Ay >l
STROBE |_,

T1 = 5ps (approx.), T2 = 0.5 ps (min.), T3 = 0.5 us (min.), T4 = 0.5 ps (min.)

Fig.6.15 Timing diagram of important signals in the Centronics printer interface

Table 6.9 indicates the signals that are mainly required for interfacing the
Centronics printer with the microprocessor. There are totally ten output signals
that have to be sent from the microprocessor to the printer and four input signals
that have to be received by the microprocessor from the printer. Microprocessors
such as the 8085 and the 8086 can use one 8255 IC (programmable peripheral
interface) to interface a Centronics printer.

Table 6.9 Signals needed to interface the Centronics printer with the microprocessor

 Signal description Signalname ~ ~ Number of ~ Input/output (with respect
e i e inss o slanalsie to the microprocessor)
Data lines DATA1-DATAS g Output

Strobe STROBE 1 Output

Acknowledge ACK 1 Input

Busy Busy 1 Input

Error ERROR 1 Input

Paper exhausted PE 1 Input

Initialize INIT 1 Output

Figure 6.16 shows the interfacing of 8086 microprocessor with the Centronics
printer using one 8255 IC. It shows the main signals involved in the data transfer.
In Fig. 6.16, port A is used to send the data (eight bits) to the printer and hence
it should be configured as an output port. Port B is used to send the INIT and

Memory and I/O Interfacing 229

—
— PAT I i i i
PA6 —— >ID6
PAS ——— > D5 f
PA4 — D4
PA3 ——— > D3 i
PA2 —
8086 <:> 8255 P:j e e gf Centronics i
PAD fiiiis o gly printer =
PB.1 INIT
PB.O STROBE
PC3 PE
PC2 ERROR |
; PC.1 BUSY |
- ; PC.0 ACK E
| GND GND [»‘GND

Fig.6.16 Interfacing the Centronics printer with the 8086 using the 8255

STROBE signals to the printer and hence it should be configured as an output port.
Port C is used to receive status signals such as ACK, Busy, ERROR, and PE from
the printer and hence it should be configured as an input port.

The complete sequence of steps to be carried out in software, for the Centronics
printer to print a message having several lines, is given in the flowchart shown
in Fig. 6.17. The ASCII code of various characters in the message to be printed
is first stored in some portion of the RAM in the microprocessor system. The
microprocessor has to send the ASCII code of characters in the RAM to the printer
one by one, with the line feed and carriage return characters (OAH and ODH,
respectively) as the last code. Printers are often capable of executing commands
that are sent through the data lines by the microprocessor. The difference between
the data and the command is achieved by means of escape (ESC) codes. Whenever
the microprocessor sends an ESC code, the printer interprets the following code as
a command. Such commands are needed to specify the desired font, the size of the
margin, the line spacing, etc., in the message that is printed.

6.9 INTERFACING 8-BIT AND 16-BIT I/O DEVICES
OR PORTS WITH 8086

Let us see how data are transferred between the 8086 and 8- or 16-bit I/O devices.
Data transferred to an 8-bit I/O device or port exists in one of the I/O banks of the
8086. The I/0 system contains two 8-bit I/O banks, just like the memory system
of the 8086. This is shown in Fig. 6.18, which indicates the separate I/O banks
for a 16-bit system. When an 8-bit address is used for I/O devices, the even bank
contains even addresses such as 00H, 02H, and 04H and the odd bank contains
odd addresses such as 01H, 03H, and 05H. When a 16-bit address is used for I/O
devices, the even bank contains even addresses such as 0000H, 0002H, and 0004H
and the odd bank contains odd addresses such as 0001H, 0003H, and 0005H.

230 Microprocessors and Interfacing

Send one character on
DATAI to DATA8

Has the last
character in a line
been sent?

Have the
characters in the
last line
been sent)

Reset printer (INIT = 0)

Send paper exhausted
message
to the operator

Stop

An 8-bit I/O device having an even address is connected to the data bus D7-D0
of the 8086, and a device having an odd address is connected to DI15-DS of the
8086. A 16-bit /O device is connected to the data bus D15-DO0 of the 8086. When
address line A0 is 0, the even I/0 bank is accessed and when BHE is 0, the 0odd /0

bank is accessed.

Fig.6.17 Software sequence for interfacing the Centronics printer with the
microprocessor

Memory and l/O Interfacing 231

BHE-0 Address A0=0 Address oo
FFFFH FFFFH A IOWH
g BHE——
Highorodd | ° Low or even
bank 3 bank
IOWL
A0

- TOWH—Write strobe for high I/O bank

DIS « D’ D7 o DO IOWL—Write strobe for low /O bank

S ——— e T -
Fig.6.18 1/0 banks in an 8086-based Fig.6.19 Generation of write
system with |6-bit addresses strobes for I/O banks

Since two I/O banks exist, any 8-bit I/O write operation requires
separate write strobes to function correctly. These are generated as shown in
Fig. 6.19. VO read operations do not require separate read strobes because as with
the memory, the 8086 only reads the byte it expects and ignores the other byte.

Figure 6.20 shows a system that contains two different 8-bit output devices
located at the 8-bit I/O addresses FOH and F1H. Since these are 8-bit devices and
appear in different /O banks, separate I/O write signals are needed. In Fig. 6.20,
the connections of only the address decoder and the 74LS373 ICs are shown. The
remaining connections to the 8086 are the same as in Fig. 6.14.

8
D15 ——7— D7 U——
DI4 D6 Q6|
Port FIH .
D8 DO Qof—— i
oW . 124LS373
oC
From 8086 ‘L
A7
A6 e
| D7 D7 Q—
A3 _p D6 D6 Qb=
A2 —{>o—| : . . Port FOH
Al —Do—|) ' . ° }
DO DO Q—— i
|

74LS373
CLK ‘
TOWL i

g

R =

Fig.6.20 /O port decoder to select 8-bit output ports FOH and FIH

232 Microprocessors and Interfacing

Another way to interface an 8-bit output device having an even address with
the 8086 is using the address line A0 along with the remaining address lines (A7-
Al for 8-bit address and A15—-A1 for 16-bit address) in the address decoder and
directly using the IOW signal as shown in Fig. 6.14. Similarly, to interface an 8-bit
output device having an odd address with the 8086, the BHE line is used instead
of the address line AQ. The other steps remain the same as for an output device
having an even address.

When selecting 16-bit wide I/O devices, the A0 and BHE pins have no function
because both I/O banks are selected together. To interface the 16-bit ADC or DAC
ICs with the 8086, 16-bit ports are needed. Here, two successive addresses are
assigned for the same I/O device. One address is an even number such as 00H
(for 8-bit address) or 0000H (for 16-bit address), where the lower-order byte of
the 16-bit data is present. The other address is an odd number such as 01H (for
8-bit address) or 0001H (for 16-bit address), where the higher-order byte of the
16-bit data is present. In the IN or OUT instruction, only the address of the lower-
order byte of the 16-bit data is specified either directly or implicitly through DX.
Figure 6.21 shows the interfacing of a 16-bit input device connected to function
at the 8-bit I/O addresses F4H and F5H. In the figure, only the connections for the
address decoder and the 7418244 ICs are shown. The remaining connections to
the 8086 are as shown in Fig. 6.11. Using the instructions IN AX, F4H or IN AX,
DX with DX already loaded with the value 00F4H, the data from the 16-bit input
port can be read and placed in AX.

To8086 .o ey Tl ;
D14 1v2 1A2le——):
PortFSH |
D8 24 2A4 le—
TOR o
1G 741.5044 |
26 i
From 8086 !
A7
A6
A5 8
| D7 1Y1 1Al le— :
232 —Po—] D6 1Y2 1A2}e—— |
Al m . : : PortF4H |
DO 2Y4 2A4|e——
To8086 | _ |
1G 7418244
2G

Fig.6.21 16-bit input port decoded at I/O addresses F4H and F5H

Memory and I/O Interfacing 233
6.10 INTERFACING CRT TERMINALWITH 8086

The CRT (cathode ray tube) terminal uses the RS-232C interface for communication
with the microprocessor. Three signals in the RS-232C—TXD, RXD, and GND—
are mainly used for interfacing the CRT terminal with the microprocessor. TXD
is used for transmission of data from the CRT to the microprocessor and RXD
is used for receiving data from the microprocessor into the CRT. The GND
(ground) signal in the CRT interface is connected to the GND (ground) signal in
the microprocessor. The RS-232C interface transmits or receives data by serial
communication, i.e., one bit of data is transmitted or received at a time. Each byte
of data transmitted or received by the RS-232C interface is enclosed by one start bit
and 1, 1.5, or 2 stop bits. Figure 6.22 shows the RS-232C format for transmission
or reception of one byte of data, 4DH (which is equal to 01001101 in binary form),
with one start bit and two stop bits. When no data is transmitted or received, the
TXD and RXD lines remain high. In the RS-232C standard, any voltage between
+3V and +12V in the data lines (TXD and RXD) is used to represent binary 0
and any voltage between -3V and —12'V is used to represent binary 1. Due to this
reason, the RS-232C standard is said to be using negative true logic.

+12V 0 0 0

T

1 1 LA 1 SNAN |
DO DI D2 D3 D4 D5 D6 D7 Stop
R R PR A R e e e ———

Fig.6.22 RS-232C format for transmission or reception of a byte of data (4DH)

e e s e

There are three methods by which a CRT terminal can be interfaced with the
microprocessor:
(i) Direct connection of the microprocessor with the CRT terminal

A microprocessor (e.g., 8085) that has facilities for serial input/output (through
its SID/SOD pins), can be directly connected to the CRT terminal through level
translators. The SID pin of the 8085 is connected to the TXD pin of the CRT
terminal; the SOD pin of the 8085 is connected to the RXD pin of the 8085
through level translators, as shown in Fig. 6.23. The reason for using the level
translators is the mismatch in the voltage levels for representing binary 1 and 0 in
the microprocessor and the CRT terminal. We already know that the CRT terminal
uses the RS-232C interface. Microprocessors such as the 8085 and 8086 use TTL
(transistor—transistor logic) standard, in which +5V is used to represent binary 1
and 0V is used to represent binary 0. The level translators convert the TTL signal
to an RS-232C signal and vice versa. One example for such a level translator that
is available in an integrated circuit (IC) form is MAX-232. Each MAX-232 can
convert two TTL signals to the corresponding RS-232C signals and two RS-232C
signals to the corresponding TTL signals.

234 Microprocessors and Interfacing

Level lator (
e (TTL to RS-232) RXD
8085 CRT terminal)
Level translator o }
SID (RS-232 to TTL) 2o i
N e]

T T

Fig.6.23 Direct connection of the microprocessor with the CRT terminal

(ii) Connection of the microprocessor with the CRT terminal through serial-to-
parallel converter and parallel-to-serial converter

We can interface a microprocessor that does not have serial input/output
(e.g., 8086) with the CRT terminal using a serial-to-parallel converter, a parallel-to-
serial converter, and level translators, as shown in Fig. 6.24. Level translators are
used here because the serial-to-parallel converter and parallel-to-serial converter
operate only with TTL signals. The data (8 bits or 16 bits) that is transmitted from
the microprocessor through its data bus to the CRT terminal is first converted to
serial data using a parallel-to-serial converter and then sent to the CRT terminal
through the level translator, which converts the TTL signal into an RS-232C
signal. Similarly, the serial data that is transmitted from the CRT terminal to the

pins

Databus | Serial-to- L

parallel || Wapsiator L | £

convertor RS-232 to i &

TTL) £

E

8086
8086 ' CRT terminal :

Parallel-to- sttt ;

serial convertor (TTL to > RXD ?

RS-232) |

GND GND |

[S R

TR s

ig.6.24 Connection of the microprocessor with the CRT terminal using serial-
to-parallel converter and parallel-to-serial converter

Memory and I/O Interfacing 235

microprocessor, which is in RS-232C format, is first converted into a TTL signal
using a level translator, then converted to parallel data using a serial-to-parallel
converter, and sent to the microprocessor through its data bus.

(iif) Connection of the microprocessor with the CRT terminal through USART
(universal synchronous asynchronous receiver—transmitter)

There exists a special IC chip such as USART (IC 8251), which has a built-in
parallel-to-serial converter (eight bits) and a built-in serial-to-parallel converter
(eight bits). Figure 6.25 shows the connection of the 8086 microprocessor with the
CRT terminal through USART and level translators. The level translators are used
here because the USART operates only with TTL signals.

seswoms

Level

i translator
| RXD 1 pga3r o [€7 TXD

: C: 8251

USART CRT terminal
i Level
translator
[SIXDI Y (TTLto [RXD,
RS-232)
GND

Fig.6.25 Connection of the microprocessor with the CRT terminal using USART

The CRT terminal transmits or receives data at a fixed baud rate. Baud rate
represents the number of bits transmitted or received per second. There are some
standard values for baud rate, such as 600, 1200, 2400, 4800, and 9600. One of
these speeds can be selected in the CRT terminal by properly configuring certain
switches present in it. The microprocessor must also be programmed to the same
baud rate as the CRT terminal, for proper data transfer between them. The time
between transmitting or receiving two consecutive bits is known as bit time in
serial communication and it is the reciprocal of the baud rate. The required bit time
can be obtained using a delay program in the microprocessor. Based on the baud
rate input given to the microprocessor, the delay count used in the delay program
can be found using look-up table technique.

The microprocessor software that controls the data transfer between the
microprocessor and the CRT terminal does the following operations sequentially:

(i) During the transmission of data from the microprocessor to the CRT
terminal, the microprocessor first sends the start bit, then the data bits one
by one, and finally, the stop bit(s).

236 Microprocessors and Interfacing

(ii) During the reception of data from the CRT terminal, the microprocessor
first checks whether start bit has occurred (i.e., whether RXD is made 0). If
start bit is received, then the microprocessor receives the data bits one by
one. Then it checks for the reception of stop bit(s).

The CRT terminal uses the parity bit along with the data, to ensure that the

transmission or reception of data does not involve any error. Some terminals use
odd parity and some use even parity. The number of 1s in the data is made odd
or even using the seventh bit of the data, depending upon whether odd or even
parity, respectively, is needed. The software in the microprocessor should be able
to generate odd or even parity data during transmission and check for the same
parity of data during reception.

POINTS TO REMEMBER

The maximum memory that can be connected with the 8086 is 1 MB, which is
organized as two separate banks—even/low memory bank and odd/high memory
bank.

The BHE signal is used to enable the odd memory bank and the data lines of the
odd memory bank are connected with the data lines D15-D8 of the 8086.

The address line A0 is used to enable the even memory bank and the data lines of
the even memory bank are connected to the data lines D7-DO of the 8086.

When the lower-order byte of a word is stored in the even memory bank, the 8086
can access both bytes of that word in a single memory read cycle. Otherwise, it
takes two memory read cycles to read the same word. Therefore, while storing an
array of word type data in the memory or while initializing the stack, the lower-
order bytes of the words are stored in the even addresses.

There are two methods that can be used to interface I/O devices with the 8086—
memory-mapped I/O and I/O-mapped I/O.

In the memory-mapped I/O method, the I/O device is treated as if a memory
location and the instructions used for transferring data between the memory and
the 8086 can be used for data transfer between the 8086 and the I/O devices. The
MEMR and MEMW signals are used to activate the input device and output device,
respectively. The I/O devices have a 20-bit address in memory-mapped I/O and the
design of the address decoder is same as that of the memory address decoder.

The I/O-mapped I/O scheme is commonly used to interface I/O devices with the
8086. Here, there are two methods of addressing I/O devices—fixed port addressing
(in which the 8-bit address of an I/O device is specified in the IN or OUT instruction
directly) and variable port addressing (in which the 16-bit address of an I/O device
is specified in the IN or OUT instruction implicitly through the DX register). In
1/O-mapped 1/0, only the IN and OUT instructions are used to communicate with
the I/O devices. The advantage of this method is that the user can fully utilize the |
MB memory space, which is not possible in memory-mapped 1/0.

The 8086 can be interfaced with either an 8-bit or a 16-bit I/O port. The I/O space
in the 8086 is also organized as two separate I/O banks—odd and even I/0 bank,

Memory and I/O Interfacing 237

which is the same as the memory organization in the 8086. The odd I/O bank
contains odd I/O addresses and the data lines of the odd I/O bank are connected to
the D15-D8 lines of the 8086. The even I/O bank contains even I/O addresses and
the data lines of the even I/O bank are connected to the D7-DO lines of the 8086.
The BHE signal is used to enable the odd I/O bank and A0 is used to enable the
even I/O bank, which is the same as the process for enabling the memory in the
8086. The IOR and TOW signals are used to activate the input and output devices,
respectively, in the I/O-mapped I/O scheme.

KEY TERMS

16-bit input device It is an input device that sends 16-bit data to the 8086.

16-bit output device It is an output device that receives 16-bit data from the 8086.
8-bit input device It is an input device that sends 8-bit data to the 8086.

8-bit output device It is an output device that receives 8-bit data from the 8086.
BHE This is the Bus High Enable signal, which is used to enable the upper bank of
the memory and odd I/O bank in the 8086.

Even/low memory bank The even/low memory bank is a memory chip (or chips)
that contains even memory addresses; its data lines are connected to the D7-DO0 lines
of the 8086.

High/odd I/O bank This is the I/O bank that contains odd addresses and is connected
to the data lines D15-D8 of the 8086.

I/O-mapped /O This is a method of interfacing an I/O device with the 8086, in
which an I/O device is treated differently from the memory.

IN and OUT instructions These are the instructions used for transfer data between
the accumulator and the I/O devices in I/O-mapped I/O.

TOR This is the I/O read control signal that is activated during the I/O read operation.
TOW This is the /O write control signal that is activated during the /O write
operation.

Latch The latch is used for interfacing output device with microprocessor.
Low/even I/O bank This is the I/O bank that contains even addresses and is
connected to the data lines D7-DO of the 8086.

Memory address space or memory map The memory addresses that can be
generated by the 8086 (00000H-FFFFFH) together constitute the memory map.
Memory-mapped I/O This is a method of interfacing an I/O device with the 8086,
in which an I/O device is treated as if a memory location.

MEMR This is the Memory Read control signal that is activated during the memory
read operation.

MEMW This is the Memory Write control signal that is activated during the memory
write operation.

Odd/high memory bank The odd/high memory bank is a memory chip (or chips)
that contains odd memory addresses; its data lines are connected to the D15-D8 lines
of the 8086.

Physical memory address The memory address in the physical memory such as the
RAM or EPROM chip is called physical memory address.

238 Microprocessors and Interfacing

’Iﬁ-state buffer The tri-state buffer is used for interfacing the input device with the
MiCroprocessor.

& v Awd =

% N

10.
11.
12.
13.

14.

16.

—

. What is the maximum memory, in terms of b

REVIEW QUESTIONS
ytes, that can be interfaced with the

8086? Why?
What is the memory address space in the 80867
anized in the 80867

How is the physical memory OTg
How are the A0 and BHE signals in the 8086 used in the selection of memory

banks?
Why should the data structures such as array of word type data or stack be stored
from an even address in the memory?
How is the multiplexed address bus in
data bus? Draw the diagram for the same.

What are the functions of IC 74244 and IC 742457

How are the Memory Read and Memory Write control signals generated in the
minimum mode of operation of the 80867
What is the importance of the memory a
FFFFOH-FFFFFH in the 80867

What are the differences between memory-mapped /O and I/O-mapped /O?
Write the different forms of the IN instruction in the 8086.

Write the different forms of the OUT instruction in the 8086.
‘What is meant by fixed port addressing in the 8086 and how many I/O devices can

be connected to the 8086 by this method?

‘What is meant by variable port addressing in the
can be connected to the 8086 by this method?
Draw a diagram showing the memory and 1/O map when memory-mapped /O
and I/O-mapped /O schemes are used.

Draw a circuit showing the generation of I/O rea
minimum mode operation of the 8086.

the 8086 separated into address bus and

ddress ranges 00000H-003FFH and

8086 and how many VO devices

d and write control signals in the

% NUMERICAL/DESIGN-BASED EXERCISES

. Interface two 16K x 8 EPROM chips with the 8086, such that the memory address

range assigned to the EPROM chips is F8000H-FFFFFH, using an address
decoder having only logic gates.

. Interface two 16K x 8 RAM chips with the 8086, such that the memory address

range assigned to the RAM chips is 00000H-07FFFH, using an address decoder
having only logic gates.

. Interface two 8K x 8 EPROM chips with the 8086, such that the memory address

range assigned to the EPROM chips is FO000H-F3FFFH, using an address
decoder that employs the 74138 IC and logic gates.

~

]

Sd

10.

11.

2.

13.

w

14.

Memory and I/O Interfacing 239

. Interface two 8K x 8 RAM chips with the 8086, such that the memory address

range assigned to the RAM chips is 20000H-23FFFH, using an address decoder
that employs the 74138 IC and logic gates.

. Interface four 16K x 8 EPROM chips with the 8086, such that the memory address

range assigned to the EPROM chips is 90000H-9FFFFH, using an address
decoder that employs two 74138 ICs and logic gates.

. Interface four 16K x 8 RAM chips with the 8086, such that the memory address

range assigned to the RAM chips is AOOOOH-AFFFFH, using an address decoder
that employs two 74138 ICs and logic gates.

. Interface an 8-bit DIP switch with the 8086 operating in minimum mode, such

that the address assigned to it is FOH, using an address decoder having only logic
gates. Write the instructions needed to read the data from the DIP switch into AL,
in fixed port and variable port addressing.

. Interface an 8-bit DIP switch with the 8086 operating in minimum mode, such

that the address assigned to it is FOH, using an address decoder that employs the
74138 decoder and logic gates.

Interface a seven-segment LED in common cathode connection with the 8086
operating in minimum mode, such that the address assigned to it is 7FH, using an
address decoder having only logic gates. Write the instructions needed to display
the number 5 in the LED, using fixed port and variable port addressing.

Interface a seven-segment LED in common cathode connection with the 8086
operating in minimum mode, such that the address assigned to it is 3FH, using
an address decoder that employs the 74138 decoder and logic gates. Write the
instructions needed to display the number 7 in the LED, using fixed port and
variable port addressing.

Interface an 8-bit DIP switch with the 8086 operating in minimum mode, such
that the address assigned to it is FF80H, using an address decoder having only
logic gates. Write the instructions needed to read the data from the DIP switch into
AL.

Interface a seven-segment LED in common anode connection with the 8086
operating in minimum mode, such that the address assigned to it is 7FFFH, using
an address decoder having only logic gates. Write the instructions needed to
display the number 5 in the LED.

Interface a 16-bit DIP switch with the 8086 operating in minimum mode, such
that the addresses assigned to it are 80H and 81H, using an address decoder
having only logic gates. Write the instructions needed to read the data from the
DIP switch into AX, in fixed port and variable port addressing.

Interface two seven-segment LEDs with common cathode connection with the
8086 operating in minimum mode, such that the addresses assigned to them
are 70H and 71H, using an address decoder having only logic gates. Write the
instructions needed to display the number F5 in the LEDs, using fixed port and
variable port addressing.

Features and Interfacing of
Programmable Devices for
8086-based Systems

LEARNING OUTCOMES

After studying this chapter, you will be able to understand the following:
« Architecture, need, features, and operation of the IC 8255
+ Applications of the 8255 including interfacing of switches, seven-segment displays,
AID converter, D/A converter, stepper motor, and intelligent liquid crystal display (LCD)
systems
Features of keyboard/display interface of the IC 8279, interfacing of matrix keyboard,and
multiplexed LED display
* Architecture, details, interfacing, and programming of the 8253 timer
“Serial port basics and definitions
Features, details, interfacing, and programming of USART 8251
Architecture and details of the programmable interrupt controller 8259
« Features and operation of the DMA controller 8237

.

.

7.1 INTEL 8255 PROGRAMMABLE PERIPHERAL INTERFACE

Intel microprocessors can transfer data between external devices such as input and
output devices through ports. Normally, a register can act as an I/O port. However,
having a separate register and configuring it for input and output operation
becomes difficult and tedious. Hence, Intel has designed a separate IC 8255 with
the objective of interfacing input and output devices with Intel microprocessors.
The 8255 is used on a range of several I/O cards that plug into available slots in
the personal computer (PC).

The 8255 programmable peripheral interface (PPI) is a very popular and
versatile input/output chip that can be easily programmed to function in several
different configurations. This chip can perform both digital input and output (DIO)
operations from the processor in a preprogrammed manner.

The common applications of the 8255, include turning on or off an electronic
switch such as a bipolar junction transistor (BJT), a metal oxide semiconductor
field effect transistor (MOSFET), or an insulated gate bipolar transistor (IGBT),
controlling movement by use of DC/AC/stepper motors, detecting the position
using proximity sensors and interfacing different sensors (temperature, flow,
pressure or level, etc.) through an analog to digital converter (ADC), etc.

Features and Interfacing of Programmable Devices for 8086-based Systems 241

7.1.1 Features of 8255

Each 8255 has three 8-bit TTL-compatible registers or ports, which allow
programmers to control digital outputs, inputs, or a combination of both. The
common features of the Intel 8255 IC are as follows:
(i) Three 8-bit ports named as A, B, and C are present.
(ii) Port C has been divided to two groups of 4 bits each as port C upper (PCU)
and port C lower (PCL). Each of them can be programmed independently

for input and output operation.

(i) All the ports can be programmed for simple I/O or handshake /O for the

data transfer in I/O modes.

(iv) Each port C bit can be set/reset individually in bit set/reset (BSR) mode.
(v) Port A bits and PCU bits are grouped as group A (GA).
(vi) Port B bits and PCL bits are grouped as group B (GB).

Sronpiit Q:r
control

8-bit
internal
data bus

Group B
control

PortA PAO
@®)
Group A Vo
Port C PCT-
upper @<= EC4
Group B <£
Port C

lower (4) <]

Group B
Port B <‘:
8

7.1.2 Block Diagram of Intel 8255
The internal block diagram of the 8255 PPI is
shown in Fig. 7.1.

As shown in Fig. 7.1, the block diagram of
the 8255 has three basic registers called ports
A, B, and C, each containing 8 bits. Port A and
the upper 4 bits of port C are grouped together
as group A. Similarly, port B and the lower
4 bits of port C are together known as group
B. In addition to the three registers A, B, and

Table 7.1
register selection of 8255

- o = o

Fig. 7.1 Internal block diagram of 8255 PPl

Address lines and

Port A
Port B
Port C

Control register

242 Microprocessors and Interfacing

is another register
C, there gl e

called the control register. 1 4000 pag |
The contents written into FAZ g2 3901 pAS L
the control register decide PAl 03 38[1 PA6 i
the operating modes of the PAO 4 37 PAT i}
three parallel ports. In order ~ RD Os 360 WR |
to identify the four registers, cs Os 351 RESET |
the 8255 uses two address GND L7 341 Do i
lines A and Al. These lines Al L]8 130 b i}
get their signals from the Ao Oo gis 3200 D2 i
processor address bus. The PC7 1o Dual in-line 310 D3
identification of the registers PC6 []11 package 30[J D4
based on A0 and Al is given PC5 []12 29[1 ps
in Table 7.1. pcs 13 28] D6

The pin details of the 8255 pco []14 273 D7
are shown in Fig. 7.2. The pc1 15 2601 Ve
three ports of the 8255 need pc2 [16 25[J pB7
eight lines each and hence 24 pc3 [17 24[] PB6
pins are allotted for the ports s 23] PBS
and these lines are connected o 221 PB4
to external input or output Cl20 21[1 PB3
devices. DO-D7 are the lines SMESSSSEEmeni- o . oo S ade
required for interfacing the Fig.7.2 Pin details of IC 8255

8255 with the processor. These

data lines are connected to the data bus of the processor. Out of the remaining eight
lines, two, namely AO and Al, are allotted for selecting one of the four available
registers. The control signals for reading and writing to these registers are the active
low RD and WR signals. These signals are obtained from the processor cnnﬁ)l
signals. The entire chip is selected by activating the active low chip select (CS)
signal. This signal is obtained from the decoder, which decodes the 8086 address
lines and identifies the 8255 address range. A common reset signal can be applied
to reset the 8255 which can be same as the RESET signal given to the processor.

7.1.3 Operating Modes and Control Words of 8255

The function of each port in the 8255 is software-programmed by the programmer.
The programming of the 8255 is done by writing a control word (CW) to the
control register of the 8255. The control word contains information such as mode,
bit set, bit reset, etc., that initializes the functional configuration of the 8255.

he basi¢ operating modes of the 8255 are shown in Fig. 7.3. There are
O@gu ations of the 8255 namely input/output mode ((w
and BSR mode. I/O méde consists) of_three different modes for the ports. The
programmer can select a particular operating mode using commands and control
words. The three ports of the 8255 are grouped as groups A and B which accept

commands from the read/write (R/W) control logic and receive control words
from the internal data bus, and issue proper commands to the associated ports.

Features and Interfacing of Programmable Devices for 8086-based Systems 243

The chip has to be programmed to configure its operation, before using it. The
configuration is done by the control word (CW) which determines whether the
ports are input, output, bidirectional, or strobed.

Operating modes 7 |

Input/Output mode (D7 bit in CW = 1) BSR mode (D7 bit in CW = Oi

Mode 0—Basic I/O i§
(Applicable for ports A, B, and C) /

Mode 1—Handshake /O f
(Applicable for groups A and B) ’

Mode 2—Bidirectional /O i
(Applicable for group A only) |

— —— v
Fig.7.3 Operating modes of the 8255

7.1.3.1 11O Control Word Format

The control word format for the I/O configuration is given in Table 7.2.

Table 7.2 /O control word format of the 8255

D5 D4 D3 D2 . DO
1 Group A Port A Port C upper Group B Port B Port C
(1= Modeselect Direction Direction Mode Direction lower
1/0) 00—mode 0 select select select select Direction

0l—mode 1 1—input I—input 0—mode 0 1—input select
1X—mode 2 O—output O—output 1l—mode 1 0—output 1—input
O—output

The MSB D7 is set to 1 to indicate that the chip is configured in /O mode. The
bits D6 and D5 are used to select the operating modes of group A to one of the
following three basic modes:

(i) Mode 0—Basic /O (bits D6 and D5 are both 0)—Ports A, B, and C can
be operated as inputs or outputs. This mode uses simple /O operation and
no interrupts are used. The outputs written to the ports are latched and
available at any time. Inputs available at the port pins are buffered through
port latches.

(i) Mode 1—Strobed or handshake /O (bits D5 and D6 are 0 and 1,
respectively)—Port A is configured in mode 1 but upper port C is used for
handshaking and control of data transfer in port A. Input and output data are
latched.

(iii) Mode 2—Bidirectional bus (bits DS and D6 are 1 and X, respectively)—
Port A is bidirectional (both input and output) and port C is used for
handshaking. Port B cannot be programmed to this mode.

244 Microprocessors and Interfacing

Bit D4 is used to select the direction of data flow in the port A bits, that is, it
decides whether the pins of port A are input (D4 = 1) or output pins (D4 = 0). Bit
D3 is used to decide whether the PCU pins are used for input (D3 = 1) or output
(D3 =0).
Bit D2 of the control word is used to select the mode for the group B. As
discussed earlier, only two operating modes—0 and 1—are possible for group B.
(i) Mode 0—Basic I/0 for group B is selected if bit D2 is programmed as 0.
This mode uses simple I/O operation and no interrupts are used as discussed
earlier.

(ii) Mode 1—Strobed or handshake I/O is selected for group B if bit D2 is set to
1. Port B is configured in mode 1 but the PCL bits are used for handshaking
and control of data transfer.

Bit D1 is used to select the data direction for port B pins. If it is 0, then they are
configured as output pins and if it is 1, they are configured as input pins.

Bit DO is used to select the data direction for PCL. If it is 0, then the port pins
are configured as output pins and if it is 1, then they are configured as input pins.

7.1.3.2 BSR Mode Control Word Format
The control word format for the BSR configuration is given in Table 7.3.

Table 7.3 BSR control word format of the 8255

o7 D6 D5 D4 D3 D2 D1 DO

0 X X X B2 BI BO Bit set/reset

(0=BSR (Don’t (Don’t (Don’t p¢ geject bits—select one of 8 bits L =S¢t
mode) care) care) care) of port C 0 = reset

In BSR mode, any of the eight bits of port C can be set or reset using a single
control word written to the control register. This feature helps the programmer to
control the port C pin outputs individually. This feature is also used in the mode 1
and mode 2 I/O operations wherein the individual ports of port C can be controlled
by the programmer to indicate the status and control.

7.1.3.3 1/0O Mode | Operation
Mode 1 configuration of the 8255 provides a means for transferring I/0 data to or
from a specified port in conjunction with strobes or handshaking signals. In mode
1, ports A and B use the lines on port C to generate or accept these handshaking
signals. The ports are divided into two groups—A and B. Each group contains one
8-bit port and one 4-bit control/data port. The 8-bit data port is either port A or port
B and can be either an input or output port. Both inputs and outputs are latched.
The 4-bit control port—either PCU or PCL is used to control and decide the status
of the 8-bit ports A and B.

The operation of handshake signals for the input operation in mode 1 of the
8255 is explained with the help of Fig. 7.4.

The sequence of operations for the data input operation from an input device to
a microprocessor through the 8255 is listed as follows.

Features and Interfacing of Programmable Devices for 8086-based Systems 245

Mode 1 (Port A)

Control word
D7 D6 D5 D4 D3 D2 D1 DO

[T T+ [+ oD

Control word

D7 D6 D5 D4 D3 D2 DI DO

[DD Y

PA7-PAO 8
l«—— STBA

—> IBFA

—> INTRA

2
PC6, PCT [«<4> 1/0

Mode 1 (Port B)

PB7-PB0

Fig.7.4 Control and handshake signal for input operation in mode |

Step 1 The input device places data in the data lines of port A or port B. This is
communicated to the 8255 by making the strobe input pin (STB) low. STB is an
active low signal applied through PC4 and PC2, for ports A and B respectively.

Step 2 The 8255 acknowledges the receipt of the data to the input by making
input buffer full pin (IBF) high. This also indicates that the data has been latched

into the input port.

Step 3 The 8255 then makes interrupt request line (INTR) high and applies an
interrupt to the processor. This signal is applied only when the interrupt enable
signal (INTE) is high. The INTE signal for port A is controlled by set/reset of PC4
and the INTE signal for port B is controlled by set/reset of PC2. PC2 and PC4 can

be controlled using BSR mode.

Step 4 In the interrupt service routine, the processor reads the data from the
corresponding input port. Reading from the port is done by selecting the 8255 port

and applying RD active low signal.

Step 5 During read operation, the RD signal is low. When the RD signal goes low,
the INTR signal is reset. The IBF is reset by the rising edgé of the RD input.

Figure 7.5 shows the waveforms for mode 1 input operation of the 8255,

246 Microprocessors and Interfacing

Fig.7.5 Mode | strobed input operation of the 8255

Thus mode 1 allows an input device to request service from the CPU by simply
sending its data into the port and activating the STB signal.

The control signals or handshake signals used for the output operation in mode
1 of the 8255 is shown in Fig. 7.6. The handshake signals used are output buffer
full (OBF), ACK, and INTR. The sequence of operations taking place for data
output from the processor to an output device is listed below. The waveforms for
mode 1 output operation of the 8255 shown in Fig. 7.7 is explained as follows:

Step 1 The processor initiates the data transmission by writing the data to be

Fig.7.6 Control and handshake signals for output operation in mode |

Features and Interfacing of Programmable Devices for 8086-based Systems 247

transmitted to the output device, to the corresponding port of the 8255. This is
done by sending the port address to the 8255, placing the data on the data lines and
then activating the active low WR signal.

Step 2 To transfer the data to the output device, the 8255 makes the OBF low,
to indicate that the CPU has written data to the specified port. The OBF signal is
reset by the rising edge of the WR input.

Step 3 The data available on the output port pins is then read by the output
device. After receiving data from the port pins, the output device acknowledges
the receipt by making ACK low. ACK is an active low input signal to the 8255
from the peripheral device indicating that it has accepted a data. The OBF output
signal of the 8255 is set by the ACK input going low.

i

Fig.7.7 Mode | strobed output operation of the 8255

Step4 The 8255 now informs the processor that data has been transferred to the
output device by making the INTR line high. A high on this output can be used
to interrupt the CPU when an output device has accepted the data transmitted by
the CPU. INTR is set when ACK, OBF, and INTE are all 1. INTE for port A is
controlled by the set/reset of PC6 and INTE for port B is controlled by the set/reset
of PC2. PC2 and PC6 can be controlled using BSR mode.

Step 5 In the interrupt service routine, the processor writes the next data to be
transmitted to the output device to the output port of the 8255. The INTR signal is
reset by the falling edge of the WR signal.

7.1.3.4 1/0 Mode 2 Operation

In mode 2, data is transmitted and received via port A pins (bidirectional I/O)
with handshaking capability. Only port A can be configured in mode 2 and is used
as a bidirectional port, while port C is used for handshaking signals. Interrupt
generation and enable/disable functions are also available through port C pins.
Port B can be configured to be in mode 0 or 1 but not in mode 2. Both inputs and
outputs are latched. The 5-bit control port (port C) is used for control and status
for the 8-bit, bidirectional port (port A). The basic control signal transmission and
operation of the data transfer in mode 2 is shown in Fig. 7.8.

248 Microprocessors and Interfacing

Controlword
D7 D6 D5 D4 D3 D2 D1 DO ——> INTRA
PC2-PCO
1 =Input
0= Output
PortB
= Input
e =(;“'p“t ' [pcsle—— STBA
oupBmode =—— | [A&l |
0=Mode0 WR——>9 PCS—> IBFA
1=Model __ S
RD

PC2-PCO 4734* o

Fig.7.8 Control of port A data transfer in mode 2

The input and output operation of the 8255 in mode 2 is similar to its operation
in mode 1 except that port A is a bidirectional port. For the output operation, as
in mode 1, the data transfer is initiated by the processor by making the active low
signal OBF low. This indicates that the processor has written data into the output
port. The output device, after reading the data will give an acknowledgement by
making ACK low. The processor is then interrupted by the 8255 to indicate that the
output data port is ready for next data output or transmission. Here, the interrupt
can be applied to the processor only if the INTE 1 flip-flop associated with OBF
and controlled by PC6 has already been set by the processor.

The input operation is also similar to mode 1 operation. Here, the data transfer
is initiated by the input device by placing the data on the port pins. Then an active
low control signal STB is given to the 8255 by the input device. The 8255 now
latches up the data to its port and then gives an active high signal IBF to the input
device. The 8255 then issues an interrupt signal to the processor to indicate that
data is readily available for read operation. Here, the interrupt can be applied to
the processor only if INTE 2 flip-flop associated with IBF and controlled by PC4
has already been set by the processor.

7.1.4 Programming Examples

Example 7.1

Configure the ports of the 8255 (PPI) as follows: port A = input, port B = output,
PCU = output, PCL = input. Assume that the control register’s address in the 8255
PPI is 46H. Configure the ports in simple I/O mode.

Solution:
The control word format for the given conditions is given in Table 7.4.

Table 7.4 Control word bit pattern (Example 7.1)

1 Group A PortA PCU GroupB Port B PCL
(1=7/0) mode—00 input—1 output—0 de—0 output—0 input—1

Features and Interfacing of Programmable Devices for 8086-based Systems 249

The control word from this table is 10010001B, that is, 91H. The following
program instructions will configure the control word of the 8255.
MOV AL, 91H ; Load control word in the accumulator.
OUT 46H, AL ; Transfer it to the control register of the 8255.

Example 7.2
Find the data direction and the modes of operation of ports of the 8255, if the
control word written into it is AOH.

Solution:
The control word bit pattern is given in Table 7.5.

Table 7.5 Control word bit pattern (Example 7.2)

‘D6 D5 D4 D3 D2 D1 DO

1 0 1 0 0 0 0 0
: Uroup & gii:c/t\ion gi(;:cgol:fper Sronp 1) Zi‘;:c?ion Zi(::ctciolzwer
(1=1/0) mode—1 mode—0

O—output 0—output O0—output O0—output

The direction and modes of all ports are as follows:
Port A—output port in mode 1 Port C upper—output port
Port B—output port in mode 0 Port C lower—output port

7.2 INTERFACING SWITCHES AND LEDS

In this section, we discuss the interfacing of four switches and four LEDs with the
8086 through the 8255. Data is obtained from the switches and displayed using
the LEDs.

The 8255 is interfaced with the 8086, with the 8255 ports connected to the
switches and LEDs. A latch is used to demultiplex the lower address bus and the
data bus (AD7-ADO). In the 8086-based system, either 8-bit or 16-bit addresses
are used for the /O devices. When 8-bit addresses are used, the address of the
1/O device appears in the lines AD7-ADO when the 8086 executes the IN/OUT
instructions. When 16-bit addresses are used, the address of the I/O device appears
in the lines AD15-ADO when the 8086 executes the IN/OUT instructions. In this
example, it is assumed that 8-bit addresses are used for the different ports and
control register of the 8255. So, the lower-order address bus alone is enough for
addressing the 8255 and the address decoder uses the address bus A7—AQ0. If 16-bit
addresses are used for the different ports and control register of the 8255 then the
higher-order address bus is required and the address decoder uses the address bus
A15-A0. The signals M/IO, RD, and WR are also used in decoding and selecting
the 8255.

The 8255 needs two address lines A0 and A1 in order to select one of its four
registers, as detailed in Table 7.1 and they are respectively connected to the lines
Al and A2 of the 8086. This is because, there are two I/O banks in the 8086,
namely odd and even banks. The odd bank contains the I/O devices that have

250 Microprocessors and Interfacing

only odd addresses and their data lines are connected to the data bus D15-D8 of
the 8086. The even bank contains the I/O devices that have only even addresses
and their data lines are connected to the data bus D7-D0 of the 8086. Since the
8255 has only 8-bit data bus namely D7-DO0, it can be connected to either D7-D0
or D15-D8 of the 8086. If the data bus of the 8255 is connected to D7-DO of the
8086, only even addresses can be assigned to the ports and the control register of
the 8255; if it is connected to D15-D8 bus of the 8086, only odd addresses can be
assigned to the ports and control register of the 8255.

Let us assume that the data bus of the 8255 is connected to D7-D0 of the 8086,
so that only even addresses can be assigned to the ports and control register of the
8255 throughout the discussion of the 8255 interfacing in this chapter. If address
line A0 of the 8086 is connected to line A0 in the 8255 then there occurs a problem
in selecting the port B and control register in the 8255 using even addresses. The
reason being, for all even addresses, the address line A0 is always zero and hence
it is not possible to select port B and the control register of the 8255, for the
selection of which line A0 must be 1. Hence, the lines A0 and A1 of the 8255 are
connected to lines A1 and A2 of the 8086. The IOR and IOW signals from the
8086 are connected to the RD and WR control signals of the 8255, respectively.

Figure 7.9 shows the interfacing of the switches and LEDs with the 8255
through the 8086. The four switches in Fig. 7.9 are connected to the lower-order
four bits of port A of the 8255. The switch connection is such that when it is open,
it connects logic 0, that is, 0 volts to the port and when it is closed, it connects
logic 1, that is, 5 volts to the port pins. These connections ensure that the port is
not damaged and also not sourcing over current. This ensures safe operation of the
ports and switches. The interfacing of four LEDs through an inverter (which acts
as a driver) to the ports is shown in Fig. 7.9. When logic 1 is given on the port pin,
it will be inverted by the inverter and will connect ground (logic 0) to the cathode
of the LED. This will forward bias the LED and light will be emitted by the LED.
This connection ensures that the port pin is not sourcing enormous current and also
the current required for the LED illumination is from the supply and the driver IC.

Fig.7.9 Interfacing keys and LEDs with the 8086 through the 8255

Features and Interfacing of Programmable Devices for 8086-based Systems

The design of the
address decoder for the
8255 is explained as
follows with an example.
Let us assume that we want
to assign the addresses
40H, 42H, 44H, and 46H
to port A, port B, port C,
and the control register of
the 8255, respectively. In
Table 7.6, these addresses
are given in binary and
hexadecimal form. The
address decoder is shown
in Fig. 7.10.

A7—-——<{>o———»

A5 ———] 00—
Ao ——
A3———‘>0———

Da»—» To CS of 8255

251

b cmecne

Fig.7.10 Address

decoder for the 8255

(shown in Fig.7.9)

Table 7.6 Addresses assigned for 8255 (shown in Fig. 7.9)

o © © o

46H

1
1
1
1

- Addresses in binary form
A7 A6 A5 A4 A3 A2 A1 A0

0 00O0O0 O
0 000O0T1 O
0 0010 0
07+ 012 05211 4-#0

Register selected
in the 8255

Port A
Port B
Port C

Control register

The software part consists of initializing the 8255 for port A input and port B
output operation. All the ports are initialized in mode 0. Hence, the control word
shown in Table 7.7 is used and the control word is 90H.

Table 7.7 Control word bit pattern for interfacing LEDs and switches

1 GroupA . PortA Port C upper GroupB Port B

(1=1/0) mode—00 input—1

D6 D5 D4

m

02,

IR P

output—0 mode—0

Dl A

A

output—0 output—0

Port C lower

{ 0o ‘.
The program for initializing the 8255 and transferring the data available in port

Ato port B is as follows:

MOV AL, 9@H ; Move control word to accumulator.

OUT 46H, AL ; Send control word in AL to control register of 8255.

IN AL, 4@H ; Get the data from port A in accumulator.
OUT 42H, AL 5 Send the data in AL to port B.

HLT
Example 7.3

v

Terminate program execution.

Design a system (both software and hardware) that will cause four LEDs to flash

252 Microprocessors and Interfacing

10 times when a push button (PB) switch is pressed. Use the 8255 to interface the
LEDs and the PB switch. Assume persistence of vision to be 0.1 s. Assume that
the addresses 40H, 42H, 44H, and 46H are assigned to port A, port B, port C, and
the control register of the 8255, respectively.

The interfacing scheme is shown in Fig. 7.11 in simplified form.

Tie
. DO R
D7 DO-D7 2
Al—> A0 B Vo
A2—>{ Al i
'IOR —4 RD i -
IOW—- WR 8255
CS—4CS
§ \ N
PCO o
PC1
PC2
PC3

Fig.7.11 Interfacing LEDs with the 8086 through the 8255

Program:
MOV AL, 96H

OUT 46H, AL

MOV BL, @AH
CHECK: IN AL, 40H

RCR AL, 1

JC CHECK

REP: MOV AL, ©@H
OUT 44H, AL
CALL DELAY
MOV AL, OFH
OUT 44H, AL
CALL DELAY
DEC BL
INZ REP

JMP CHECK

DELAY: MOV CX, COUNT
L1: NOP

NOP

DEC CX

H

H

Move the control word to configure port A as
input port and port C as output port in AL.
Move data in AL to control register.

Move count of 10 decimal (=@AH) in BL.
Input data from Port A into AL (i.e., PA@).
Rotate content of AL right by 1 bit
through carry to check LSB in AL.

If carry = 1, PB switch is not

pressed, so go to CHECK.

Turn on all LEDs by sending @@H to port C.
Move data in AL to port C.

Call delay program of 0.1 second delay.
Turn off all LEDs by sending @FH to port C.
Move data in AL to port C.

Call delay program of @.1 second delay.
Decrement BL.

If BL is not @, go to REP to turn on and turn
off LEDs again.

; If BL is @, go to CHECK, to check status of PB

switch.

; Load COUNT in CX.

No operation
No operation
Decrement value in CX.

Features and Interfacing of Programmable Devices for 8086-based Systems 253

INZ L1 ; Execute loop L1, until CX becomes zero.
RET ; If time delay over, then return from
subroutine.

COUNT is calculated based on the concept explained in writing time delay
programs in 8086 assembly language programming.

7.2.1 Debouncing of Keys

Akey, in general, isa type of push-button switch, toggle switch, or electromechanical
relay, having spring contacts. Metal contacts make and break the circuit and carry
the current in switches and relays. These contacts have mass and contain springs
to control the movement. Since the moving contacts have mass and springs, with
low damping they will be ‘bouncy’ as they make and break. When a normally
open (NO) pair of contacts is closed, the contacts will come together and bounce
off each other several times before finally coming to rest in a closed position.
The effect is called contact bounce or, in a switch, it is called switch bounce. The
waveform of a switch with contact bouncing, from position 1 to 0, is shown in
Fig. 7.12.

Fig.7.12 Contact bounce waveform

If such a switch is used for sensing by input ports of a microprocessor, then
there is a chance that the microprocessor will respond several times, that is, input
will be sensed repeatedly even though the key is pressed only once. In general, the
bouncing of the switch may last for several milliseconds. Since the microprocessor
works at a speed of a few microseconds, it senses the input several times.

The simplest hardware solution uses a resistor capacitor (RC) time constant
to suppress the bounce and the circuit for this is shown in Fig. 7.13. The RC time
constant has to be larger than the switch bounce and is generally around 0.1 s.
The capacitor takes at least twice the time constant to change from one position
to the other. During this time, any change in the switch position is not transmitted
beyond the buffer. The buffer, after the switch is used to make the transition from
high-to-low or low-to-high sharp.

The key bouncing problem can be solved by software methods also. The easiest
software method is to make the processor wait until the bouncing oscillation
settles down. This wait-and-see technique is implemented using software time
delays. When the voltage from the switch changes, an appropriate delay routine is
executed and the value of the voltage on the switch line is checked again to make
sure that the line has stopped bouncing. The delay is normally 10 ms as in most of
the switches, the oscillations settle within that period.

254 Microprocessors and Interfacing

a

Buffer

Switch (inverting)

I —— AW <
/
2

s ,_!

e e

Fig.7.13 Hardware solution for debouncing of keys

7.3 INTERFACING SEVEN-SEGMENT DISPLAYS

Seven-segment light emitting diode displays are the most commonly used low-cost
displays and are easy to interface with microprocessors. Seven-segment displays
consist of seven LED segments. Figure 7.14 shows the arrangement of these seven
and the appearance of the various digits. Seven-segment displays are available in a
single dual in-line package (DIP). There is one pin for each segment and these pins
are named from ‘a’ to ‘f” and another LED is available for the decimal point (dp).
In addition to these eight pins, the seven-segment displays have one more pin for
power supply. Seven-segment displays come in two types—common anode and
common cathode.

In common anode display, the anodes of all segment LEDs are connected
together. So, to illuminate a segment, the common anode is connected to the
supply and then the segment input, that is, ‘a’ to ‘f” is connected to a low-level
voltage or logic 0.

In common cathode display, the cathodes of all the LEDs are connected together.
So, to illuminate a segment, the corresponding segment input is connected to the
high-level voltage or logic 1 and the common cathode is connected to the ground.
This forward biases the LEDs and illuminates them.

bt i a R a #
: —le. fl_.!.;lb’
i i° I° '
f._x_lb: v
"i __g_“’,

Fig.7.14 Arrangement of LEDs and appearance of digits in seven-segment displays

Features and Interfacing of Programmable Devices for 8086-based Systems 255

The circuit required to v

drive a single seven- ch +|5V
segment LED display o SR Y Gt ¥ a
from a 4-bit BCD " v —> f’ ‘b
output is shown in Fig. BCD e —'Wv-~—g— g |
7.15. inputs —| AT

The BCD to the —

seven-segment display
decoder IC 7447 i

8x220Q

Seven-segment LED
converts the 4-bit BCD

code applied at its

S —e—

e e e]

input into the patterns Flg 7 I5 Drlver circuit for slngle seven-segment display
required to display
the BCD number in a seven-segment LED. The patterns generated are active low
outputs, meaning that logic 0 is given as output when a particular segment is to be
illuminated. So, the common anode display is suitable for use with the 7447.

The complete circuit diagram for interfacing the seven-segment display with
the 8086 through the 8255 and the 7447 is shown in Fig. 7.16.

‘{CC +5V.
- D7-D0 ¢——|D7-DO
: / . -
AL A o EESEMGEE T o e
eAY Al B N — f’ : lb
% A d
8255 7447 AASEEE =
mezoss AR S
Wy 3 drich |
s‘xz'zon S

GND Seven-segment LED

|IF—~

Fig.7.16 Circuit for interfacing single seven-segment display

Let us assume that the addresses 40H, 42H, 44H, and 46H are assigned to port
A, port B, port C, and the control register of the 8255, respectively. The following
instructions can be used to display the data ‘7’ in the seven-segment display.

Program:

MOV AL, 82H ; Load the control word 80H in AL to configure port A as
output port.

OUT 46H, AL ; Output it to the control register of the 8255.

MOV AL, @7H ; Load accumulator with data to be displayed in the
lower nibble as PA3-PA@ is connected to the 7447.

256 Microprocessors and Interfacing

OUT 40H, AL ; Output data in AL to the port A, where display is
connected.
HLT ; Terminate program execution.

‘We can connect two seven-segment displays to a single 8-bit port. One 7447 IC
can be connected to the lower-order four bits and another 7447 can be connected
to the higher-order 4 bits. So six seven-segment displays can be connected to a
single 8255 that has three parallel I/O ports. This results in a more complicated
circuit. The complexity of the circuit can be reduced by using a technique called
multiplexed display. By using multiplexed display as many as eight displays can
be connected to the two ports. The multiplexed display concept is discussed later
in this chapter.

7.4 TRAFFIC LIGHT CONTROL

Example 7.4
Design a microprocessor system
to control traffic lights. The traffic
should be controlled in the following
manner:
(i) Allow traffic from Wto Eand E
to W transition for 20 seconds.
(ii) Give a transition period of 5
seconds (yellow bulbs ON).
(iii) Allow traffic fromNto Sand S
to N for 20 seconds.
(iv) Give transition period of 5
seconds (yellow bulbs ON).
(v) Repeat the process.
The traffic light arrangement is shown

Fig.7.17 Traffic control signal scheme

in Fig. 7.17. for a four-road junction
Solution:

The actual pin connections of Table 7.8 Pin connections of the 8255
the 8255, controlling different controlling lights (Fig.7.17)

lights are listed in Table 7.8.
The interfacing diagram to

control 12 electric bulbs is PAO) R1) PBO) R3
shown in Fig. 7.18. Port A is
- PA1 Y1 PB1

used to control the lights on L
N-S road and port B is used to PA2 Gl PB2 G3
control lights on W-E road. PA3 R2 PB3 R4
) The electric bulbs (i.e., PA4 2 PB4 va
lights) are controlled by relays.

The 8255 pins are used to PAS G2 FBS G4

control relay on—off action
with the help of relay driver circuits. The driver circuit includes 12 transistors to

Features and Interfacing of Programmable Devices for 8086-based Systems 257

drive 12 relays. The interfacing of the 8255 to the system is also shown in Fig.
7.18. Instead of 230V bulbs, LEDs can be interfaced with the 8255.

Freewheeling

diotle 230V AC
il 50Hz
DO DO PAQR == WV
D7 D7 PAL—
PA2— -
iyl =
A0 A0 ki
Al—> Al PA4—
8235, pas +12V
IOR —4 RD "gO
oW w5 EB1 Freewheeling
WR PB2 diode
B3 —— 230VAC
RESET—> RESET ppy s 50Hz
__ PBS| y
cs
s 28
From 8086 i
and decoders e

T T

Fig.7.18 Traffic light control interface diagram

Let us assume that the addresses 80H, 82H, 84H, and 86H are assigned to port
A, port B, port C, and the control register of the 8255, respectively. The data bytes
to be sent to the ports of the 8255 to glow specific LEDs are shown in Table 7.9.

Let us assume that the data to be sent to port A and port B, which is listed in
Table 7.9 is stored consecutively in memory from the address1000H:2000H to
1000H:2007H. For example, data 09H is stored in memory at address 1000H:2000H
and the data 24H is stored in memory at address 1000H:2001H and so on.

Program:
START: MOV AL, 8@H ; Move the control word 80H in AL to configure
port A and port B as output ports.
OUT 86H, AL ; Move the control word in AL to the control
register of the 8255.
MOV BX, 100@0H ; Move the segment address of data (=1000H) to
BX.
MOV DS, BX ; Move the segment address in BX to DS.
START: MOV AH, @4H ; Move the number of data sets (8/2 = 4) to AH.
MOV BX, 2000H ; Move the offset address of data (=2000H) to
BX.

258 Microprocessors and Interfacing

Table 7.9 Traffic signal subsequences for a four-road junction

Toglow PB7 PBG

R1,R2,G3

and G4 X 2.
Y1L,Y2,Y3

and Y4 2 2
R3,R4,G1 x

and G2 2
Y1,Y2,Y3 x

and Y4 X

PB5 PB4 PB3 PB2 PB1 PB0

1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
0 1 0 0 1 0

Toglow PA7 PA6

R1,R2,G3

X X
and G4
Y1,Y2,Y3

X X
and Y4
R3,R4,G1

X X
and G2
Y1,Y2,Y3

X X
and Y4

PA5 PA4 PA3 PA2 PA1 PA0 PortB PortA

0 0 1 0 0 1 24H 09H
0 1 0 0 1 0 12H 12H
1 0 0 1 0 0 09H 24H
0 1 0 0 1 0 12H 12H

REP: MOV CX, COUNT1

MOV AL, [BX]
OUT 8@H, AL
INC BX
MOV AL, [BX]
OUT 82H, AL
CMP AH, O3H
INZ CHECK
IMP LOAD
CHECK: CMP AH, @1H
INZ NEXT

LOAD: MOV CX, COUNT2 ;

NEXT: CALL DELAY

INC BX
DEC AH
INZ REP

3

H

H

H

tos

Load countl corresponding to 2@ seconds delay
in CX.

Move the data at [BX] in memory into AL.
Send the data in AL to Port A.

Increment BX.

Move the data at [BX] in memory into AL.
Send the data in AL to Port B.

Check whether AH = 3.

Otherwise check whether AH = 1.

If AH = 03, go to LOAD.

Check whether AH = 1.

If AH is not equal to 1, go to NEXT.

Load COUNT2 corresponding to 5 seconds delay
in CX.

Call DELAY program to wait for 20 or 5
seconds.

Increment BX.

Decrement AH.

If AH is not zero, go to REP to send next set
of data to ports.

Features and Interfacing of Programmable Devices for 8086-based Systems 259

JMP START ; Jump to START to start from the first set of
data.
DELAY: MOV DX, OFFFFH
L1: NOP
NOP
DEC DX
INZ L1
LOOP DELAY ; Execute loop DELAY CX times.
RET ; If time delay is over, then return from

subroutine.

In this program, since we want two delays, one for 20 seconds and the other
for 5 seconds, two delay counts COUNT1 and COUNT?2 are used respectively
in the same delay program. The logic used to load COUNT1 or COUNT? in the
delay program is based on checking the value of AH. If the value in AH is equal
to either 3 or 1, then at that time the data for glowing yellow lamps will be sent to
ports of the 8255 and COUNT?2 is loaded in CX to get a time delay of 5 seconds.
Otherwise COUNT!]1 is loaded in CX to get a delay of 20 seconds. The LOOP
instruction takes 17 clock cycles for execution when CX is not zero, which occurs
either (COUNT1 — 1) or (COUNT2 — 1) times depending upon the initial value
loaded in CX and takes five clock cycles for execution when CX is zero, which
occurs only once, during the execution of the delay program.

7.5 INTERFACING ANALOG-TO-DIGITAL CONVERTERS

The basic function of the analog-to-digital converter (ADC) is to convert the
input analog voltage levels into corresponding discrete digital signals. An ADC is
essential in a microprocessor-based system as the microprocessor can only handle
digital data, though the real-world signals are all in analog form only.

There are many types of ADC. The major ones are counter ramp type ADC,
dual slope ADC, flash type ADC, and successive approximation type ADC. Each
type of ADC has its own advantages and disadvantages. Successive approximation
type ADC is a commonly available ADC. This ADC has fixed conversion time for
any analog input voltage level.

The specifications of the ADC are the range of analog input voltage, number
of digital bits at the output, resolution, the conversion time, and the number of
analog input channels. The analog input voltage can be either unipolar or bipolar.
Unipolar means that the input voltage can have only one polarity such as 0 to +5V
or 0 to +10 V. Bipolar means that the input voltage can range from one polarity to
the other such as —5 to +5V or —10 to +10V. Most of the ADC chips come with an
option of selecting one of these voltage ranges using the V, ; input pins. The ADC
chips are available for different number of output binary bits. ADCs are available
with 8-, 10-,12-, or 16-bit digital outputs. The number of bits will decide the
number of voltage levels sensed. For example, an 8-bit ADC will have 28 possible
levels, that is, 256 levels. The number of bits and the input voltage range will
decide the resolution. The resolution of an ADC is defined as the smallest change

260 Microprocessors and Interfacing

in the input voltage that can be sensed or detected at the output. The resolution can
be mathematically defined as the range of input voltage divided by the number of
levels at the output. For example, an ADC with the input voltage range of 0 to +5V
with eight bits at the output will have a resolution of 5/256, that is, approximately
19.5 mV. The conversion time of the ADCs will be decided by the type of the
ADC, and the clock frequency used in the converter circuits.

Some ADC chips come with an option of having more than one analog input.
One of these analog input channels are selected using select lines and an analog
multiplexer circuit. The ADC chips also have a sample and hold circuit. The
sample and hold circuit is used to maintain the analog input voltage constant,
when the conversion is in progress.

7.5.1 ADC Chips and Interfacing to Microprocessor

The single chip ADCs available in the markets have many options. The commonly
available ADC chip family is ADC 080X from National Semiconductor. ADC
0800, ADC 0804, ADC 0808, and ADC 0816 are the common chips available in
this family. ADC 0804 has one analog input channel with an 8-bit output. ADC
0808/0809 has eight analog inputs with 3-bit channel select lines and an 8-bit
output. ADC 0816 has 16 analog input channels with four select lines and 8-bit
outputs.

This section discusses the operation and interfacing of ADC 0816 with the
8086 microprocessor through the 8255 PPI. ADC 0816 is an 8-bit successive
approximation type ADC chip with an in-built analog multiplexer, which can
select one of 16 analog inputs for conversion into digital format. One of 16 analog
inputs INO-IN15 in the ADC0816 chip can be selected by the select lines A, B,
C, and D. The analog to digital conversion can be started by using the active high
control signal Start Conversion (SC). The conversion of the analog voltage on the
input channel selected, will then take place based on the clock signal applied to
the ADC chip. After the conversion is over, the ADC chip will issue an active high
‘end of conversion’ (EOC) signal on the EOC line. The digital output can then be
read from the data lines after issuing an active high Output Enable (OE) signal on
the OE line in the ADC chip.

The interfacing of ADC 0816 with the 8255 is shown in Fig. 7.19. The 8255
PPI is in turn interfaced with the 8086 as shown in Fig. 7.9. In the interfacing
diagram shown in Fig. 7.19, it can be noted that the port A of the 8255 is used to
output or send the channel select lines and the related control signals. The port B
lines are used to get or input the digital result data from the ADC chip. The LSB of
port C (i.e., PCO) is used to check the end of conversion signal. With this hardware
arrangement, the ADC chip can only be interfaced with software polling method.
For interrupt driven interface, the EOC signal can be connected to any interrupt
input. Analog inputs can be applied to the analog input pins of the ADC 0816.

The software interfacing procedure follows the flowchart shown in Fig. 7.20.
The ADC conversion process can be started after applying the analog input to any
of the channels. The conversion process-is started by initializing the 8255 with
the proper control word. The control word format for the hardware interface in

Features and Interfacing of Programmable Devices for 8086-based Systems 261

Data
PBO i //
3 PB7 r MSB 3 Analog
g ‘ input
: h i
2 PA A INI5 S
2 | 8255PPI py; B ADCO816
= PA2 ¢
g; PA3 D
. ® PA4; ALE, SC . CLK
PA' OE
PC EOC

Fig.7.19 Interfacing ADCO8I6 with 8255

Start of
conversion

I ~ Write the prbper control word to 8255 I

Select channel number and issue
'ALE/SC signal

| Remove ALE/SC signal j

[Send OF signal o ADC chip_ |

: [: Réaddi"gim]datgﬁj\;mgﬁ:q%" L

Fig. 7.20 Flowchart for ADC conversion software

262 Microprocessors and Interfacing

Fig. 7.22 is given in Table 7.10. Then the channel selection and start conversion
is done simultaneously as these two control bits are tied together in the hardware.

The start conversion must be issued as a pulse for a minimum duration only.
Then the conversion takes place in the ADC chip, if it is properly powered and
clock pulses are given. After the conversion, the logic high end of conversion
(EOC) signal is issued by the ADC chip. This is sensed in the software. Then the
data is read from the data lines after issuing the logic high OE signal. The program
for the ADC conversion process is given below as a software routine.

Table 7.10 Control word bit pattern for ADC conversion

D7 D6 D5 D4 D3 D2 D1 Do

1 GroupA PortA Port Cupper Group B PortB Port C lower
(1=7/0) mode00 output output mode 0 input input

1 0 0 0 0 0 1 1 =83H

The following subroutine ADCON assumes that the channel number in which
the analog signal to be converted is present, is obtained from the memory location
named CH_NUM (i.e., if the analog data in the 5% channel has to be converted
then CH_NUM will have the data 05H) and the addresses 80H, 82H, 84H, and
86H are assigned to port A, port B, port C, and the control register of the 8255,
respectively.

Program:
ADCON: MOV AL, 83H ; Load the control word for 8255 in AL.
OUT 86H, AL ; Send it to control register.
MOV AL, CH_NUM; Load the channel number in AL.
AND AL, OFH ; Mask the most significant 4 bits in AL as
zero.
OR AL, 1@H ; Make D4 bit in AL to 1 by OR operation with 16H
to issue ALE/SC signal.
OUT 8eH, AL ; Send it to port A.

NOP 5 Wait.

NOP 5 Wait.

AND AL, OFH ; Remove the ALE/SC signal by making D4 bit in
AL to 0.

OUT 80H, AL ; Send it to port A.
CHECK: IN AL, 84H ; Read Port C into AL to check EOC signal.

RCR AL, 1 ; Rotate AL through carry to bring EOC signal to
carry flag.
INC CHECK ; If EOC is @, go to CHECK.

MOV AL, CH_NUM; If EOC is 1, then load channel no. in AL.

OR AL, 20H ; Combine channel no. in AL with OE signal high
(i.e., D5 = 1).

OUT 86H, AL ; Send it to port A.

Features and Interfacing of Programmable Devices for 8086-based Systems 263

IN AL, 82H ; Read the digital data result from port B into
AL.
RET 5 Return.
The resultant digital data will be available in AL register after execution of the
subroutine.

7.6 INTERFACING DIGITAL-TO-ANALOG CONVERTERS

Digital-to-analog converters (DACs) are used to get a proportional analog voltage
or current for the digital data given out by the microprocessor. The DACs are
essential in microprocessor-based systems as the real-world applications operate
with analog data. Bas<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>